

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Signed Integer Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Today's Lecture is About Addition and Subtraction of Signed Numbers

Quick Review

Signed v.s. Unsigned Numbers

Signed v.s. Unsigned Numbers

positive	only
and	positive
negative	integers
integers	

Signed v.s. Unsigned Numbers

	·	
positive	only	
and	positive	
negative	integers	
integers		
and zero	and zero	

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

There are 3 different ways to represent signed numbers. They will be introduced today. But only the last method will be used later.

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Important Clarificaiton

- Addition of Boolean variables, e.g.,
 - x + y where $x, y \in \{0, 1\}$

• Addition of n-bit Binary numbers, e.g.,

 $x_4x_3x_2x_1x_0 + y_4y_3y_2y_1y_0$ where each $x_k, y_k \in \{0, 1\}$

• Addition of Boolean variables, e.g.,

1 + 0 = 1

• Addition of n-bit Binary numbers, e.g.,

00101 + 00110 = 01011

Addition of two Boolean variables, e.g.,

Addition of two 5-bit Binary numbers, e.g.,

Addition of two Boolean variables, e.g.,

Addition of two 5-bit Binary numbers, e.g.,

- Addition of two Boolean variables, e.g.,
 - 1 + 1 = 1 (according to the rules of Boolean algebra)

• Addition of two 1-bit Binary <u>numbers</u>, e.g.,

1 + 1 = 10 (because in decimal 1 + 1 = 2)

Addition of two Boolean variables, e.g.,

Addition of two 1-bit Binary numbers, e.g.,

In this case, the adder circuit simplifies to the half-adder.

Addition of 1-bit Unsigned Numbers

Addition of two 1-bit numbers (there are four possible cases)

[Figure 3.1a from the textbook]

Addition of two 1-bit numbers (there are four possible cases)

[Figure 3.1a from the textbook]

Adding two bits (the truth table)

[Figure 3.1b from the textbook]

Adding two bits (the truth table)

Adding two bits (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(d) Graphical symbol

[Figure 3.1c-d from the textbook]

Addition of Multibit Unsigned Numbers

Addition of multibit numbers

Generated carries —	▶ 1110			 c_{i+1}	c_i	
$X = x_4 x_3 x_2 x_1 x_0$	01111	(15) ₁₀		 	x_i	
$+ Y = y_4 y_3 y_2 y_1 y_0$	+ 0 1 0 1 0	$+(10)_{10}$		 	y_i	
$S = s_4 s_3 s_2 s_1 s_0$	11001	(25) ₁₀	•	 	s _i	

Bit position *i*

[Figure 3.2 from the textbook]

$$+ \begin{array}{cccc} \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \\ \hline & \mathbf{s}_2 & \mathbf{s}_1 & \mathbf{s}_0 \end{array}$$

	C ₃	C ₂	\mathtt{C}_1	C ₀
┹		\mathbf{X}_2	\mathbf{X}_1	\mathbf{x}_{0}
I		\mathbf{y}_2	\mathbf{y}_1	\mathbf{Y}_{0}
		s ₂	\mathbf{s}_1	s ₀

Another example in base 10

Another example in base 10

Example in base 2

Example in base 2

Example in base 2

Problem Statement and Truth Table

[Figure 3.3a from the textbook]
Problem Statement and Truth Table

[Figure 3.3a from the textbook]

Let's fill-in the two K-maps

c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	1	1 0 1	0 0 1	1
0	$1 \\ 0 \\ 0$	1 0	1 0	0 1 0
1 1	0 1	1 0	1 1	0 0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	1	1 0 1	0	1
0	$1 \\ 0 \\ 0$	1 0 1	1 0 1	0 1 0
1	01	1 0	1 1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic (s_i can be implemented in two different ways)

 $s_i = x_i \oplus y_i \oplus c_i$

These two circuits are equivalent

A decomposed implementation of the full-adder circuit

[Figure 3.4 from the textbook]

A decomposed implementation of the full-adder circuit

[Figure 3.4 from the textbook]

We can place the arrows anywhere

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example: Computing 5+6 using a 5-bit adder

Example: Computing 5+6 using a 5-bit adder

Example: Computing 5+6 using a 5-bit adder

Math Review

- 39 - 15 - ??

The problems in which row are easier to calculate?

_ 82	_ 48	_ 32
61	26	11
??	??	??
82	48	32
- 64	29	13
??	??	??

The problems in which row are easier to calculate?

_ 82	_ 48	_ 32
61	26	- 11
21	22	21
Why?		
82	48	32
64	29	13
18	19	19

Another Way to Do Subtraction

82 - 64 = 82 + 100 - 100 - 64

Another Way to Do Subtraction

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100
82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100= 82 + (99 + 1 - 64) - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

= 82 + (99 + 1 - 64) - 100

= 82 + (99 - 64) + 1 - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

= 82 + (99 + 1 - 64) - 100

Does not require borrows

9's Complement (subtract each digit from 9)

99 64 35

10's Complement (subtract each digit from 9 and add 1 to the result)

 $-\frac{99}{64}$ 35 + 1 = 36

82 - 64 = 82 + (99 - 64) + 1 - 100

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$
$$= 82 + 35 + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= 82 + (35 + 1) - 100

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$
$$= 82 + (35 + 1) - 100$$
$$= 82 + 36 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

= 82 + 35 + 1 - 100
= 82 + 36 - 100 // Add the first two.
= 118 - 100

$$82 - 64 = 82 + 99 - 64} + 1 - 100$$

= $82 + 35 + 1 - 100$
= $82 + 36 - 100$ // Add the first two.
= 18

Ways to Represent Negative Integers

Formats for representation of integers

[Figure 3.7 from the textbook]

Unsigned Representation

This represents + 44.

Unsigned Representation

This represents + 172.

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

only this method is used in modern computers

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

b_3	$b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
	0111	+7	+7	+7
(0110	+6	+6	+6
(0101	+5	+5	+5
(0100	+4	+4	+4
(0011	+3	+3	+3
(0010	+2	+2	+2
(0001	+1	+1	+1
(0000	+0	+0	+0
	1000	-0	-7	-8
	1001	-1	-6	-7
	1010	-2	-5	-6
	1011	-3	-4	-5
	1100	-4	-3	-4
	1101	-5	-2	-3
	1110	-6	-1	-2
	1111	-7	-0	-1
1				

The top half is the same in all three representations.

It corresponds to the positive integers.

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign. If that bit is 1, then the number is negative.

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

Sign and Magnitude

Sign and Magnitude Representation (using the left-most bit as the sign)

This represents + 44.

Sign and Magnitude Representation (using the left-most bit as the sign)

This represents – 44.

Circuit for negating a number stored in sign and magnitude representation

Circuit for negating a number stored in sign and magnitude representation

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$\mathbf{K} = (2^n - 1) - \mathbf{P}$$

This means that K can be obtained by inverting all bits of P.

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^8 - 1$, namely

$$K = (2^8 - 1) - P = 255 - P$$

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most significant bit must be zero to indicate that it is positive.

1's Complement Representation

1's Complement Representation

1's Complement Representation

1's Complement Representation (invert all the bits to negate the number)

- 44 in 1's complement representation

No need to borrow!

211 = 255 - 44 (as unsigned)

Circuit for negating a number stored in 1's complement representation

Circuit for negating a number stored in 1's complement representation

This works in reverse too (from negative to positive)

1's Complement Representation

+ 44 in 1's complement representation

Negate these numbers stored in 1's complement representation

0 1 0 1 1 1 1 1

1 1 1 0

0111

Negate these numbers stored in 1's complement representation

0 1 0 11 0 1 11 0 1 00 1 0 0

 1 1 1 0
 0 1 1 1

 0 0 0 1
 1 0 0 0

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 1's complement representation

 $\begin{array}{ll}
0 \ 1 \ 0 \ 1 = +5 \\
1 \ 0 \ 1 \ 0 = -5 \\
\end{array} \qquad \begin{array}{ll}
1 \ 0 \ 1 \ 0 = -4 \\
0 \ 1 \ 0 \ 0 = +4 \\
\end{array}$

 $1 \ 1 \ 1 \ 0 = -1 \qquad 0 \ 1 \ 1 \ 1 = +7$ $0 \ 0 \ 0 \ 1 = +1 \qquad 1 \ 0 \ 0 = -7$

Just flip 1's to 0's and vice versa.

Addition of two numbers stored in 1's complement representation

There are four cases to consider

- (+5) + (+2)
- (-5) + (+2)
- (+5) + (-2)
- (-5) + (-2)

There are four cases to consider

- (+5) + (+2) positive plus positive
- (-5) + (+2) negative plus positive
- (+5) + (-2) positive plus negative
- (-5) + (-2) negative plus negative

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

(+5) +(+2)	$ \begin{array}{r} 0 \ 1 \ 0 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \\ \end{array} $
(+7)	0111

[Figure 3.8 from the textbook]

(+5)	<mark>0101</mark>
+(+2)	+0010
(+7)	0111

$b_3 b_2 b_1 b_0$	1's complement
0111 0110	+7 +6 +5
0100 0100 0011	+3 +4 +3
0010 0001 0000	+2 +1 +0
1000 1001	-7 -65
$1010 \\ 1011 \\ 1100$	-3 -4 -3
$1101 \\ 1110 \\ 1111$	$\begin{array}{c} -2 \\ -1 \\ -0 \end{array}$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

(- 5)	1010
+(+2)	+0010
(-3)	1100

[Figure 3.8 from the textbook]

(- 5) +(+2)	$ \begin{array}{r} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array} $
(- 3)	1100

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$b_3 b_2 b_1 b_0$	1's complement		
0111	+7		
0110	+6		
0101	+5		
0100	+4		
0011	+3		
0010	+2		
0001	+1		
0000	+0		
1000	-7		
1001	-6		
1010	-5		
1011	-4		
1100	-3		
1101	-2		
1110	-1		
1111	-0		

(+5)	0101
+(-2)	+1101
(+3)	10010

[Figure 3.8 from the textbook]

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(+5)}{+(-2)}$ (+3)	$ \begin{array}{r} 0 1 0 1 \\ + 1 1 0 1 \\ 1 0 0 1 0 \end{array} $	But this is 2!	$\begin{array}{c} b_{3}b_{2}b_{1}b_{0} \\ \hline 0111 \\ 0110 \\ 0101 \\ 0100 \\ 0001 \\ 0001 \\ 0000 \\ 1000 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1110 \\ 1111 \\ \end{array}$	$ \begin{array}{r} 1's \text{ complement} \\ +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ \end{array} $
---	------------------------------	--	----------------	---	---

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

(-5) + (-2)	1010 + 1101
(-7)	10111

1's complement
+7
+6
+5
+4
+3
+2
+1
+0
-7
-6
-5
-4
-3
-2
-1
-0

[Figure 3.8 from the textbook]

1's complement
+7
+6
+5
+4
+3
+2
+1
+0
-7
-6
-5
-4
-3
-2
-1
-0

			$b_3 b_2 b_1 b_0$	1's complement
			0111	+7
			0110	+6
(5)			0101	+5
$\begin{array}{c} (-5) \\ +(-2) \\ \hline (-7) \\ \end{array} + \begin{array}{c} 1010 \\ +1101 \\ \hline 0111 \\ \hline \end{array}$	But this is +7!	0100	+4	
		0011	+3	
		0010	+2	
			0001	+1
			0000	+0
			1000	-1
			1010	-0
			1010	-4
			1100	-3
			1101	-2
			1110	-1
			1111	-0

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

We need to perform one more addition to get the result.

hababa ha	1's complement
03020100	1 5 complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
Implications for arithmetic operations in 1's complement representation

- We could do addition in 1's complement, but the circuit will need to handle these exceptions.
- In some cases, it will run faster that others, thus creating uncertainties in the timing.
- Therefore, 1's complement is not used in practice to do arithmetic operations.
- But it may show up as an intermediary step in doing 2's complement operations.

2's Complement

2's complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2^n , namely

$$\mathbf{K} = 2^n - \mathbf{P}$$

2's complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2^8 , namely

 $K = 2^8 - P = 256 - P$

Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P$$

 $K_2 = 2^n - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Deriving 2's complement

For a positive 8-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P = 255 - P$$

 $K_2 = 2^n - P = 256 - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

0101 1110

1100

0111

0101	1110
1010	0001

1 1 0 0 0 0 1 1 $\begin{array}{c} 0 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 0 \\ \end{array}$

Invert all bits...

.. then add 1.

$1 \ 1 \ 1 \ 0 = -2$
0001
+ 1
0010 = +2
0 1 1 1 = +7
1000
+ 1
$\frac{1001}{7}$

Alternative Circuit

This also works for negating a negative number, thus making it positive

Quick way (for a human) to negate a number stored in 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

0 1 0 1 1 1 1 0

 $1\ 1\ 0\ 0$

0111

 1 1 0 0
 0 1 1 1

 . . 0 0

Copy all bits that are 0 from right to left.
Negate these numbers stored in 2's complement representation

 1 1 0 0
 0 1 1 1

 . 1 0 0
 . . . 1

Stop at the first 1. Copy that 1 as well.

Negate these numbers stored in 2's complement representation

0101	1110
1011	0010

 1 1 0 0
 0 1 1 1

 0 1 0 0
 1 0 0 1

Invert all remaining bits.

Negate these numbers stored in 2's complement representation

[Figure 3.11a from the textbook]

Addition of two numbers stored in 2's complement representation

- (+5) + (+2)
- (-5) + (+2)
- (+5) + (-2)
- (-5) + (-2)

- (+5) + (+2) positive plus positive
- (-5) + (+2) negative plus positive
- (+5) + (-2) positive plus negative
- (-5) + (-2) negative plus negative

A) Example of 2's complement addition

(+ 5)	0101
+ (+ 2)	+ 0010
(+7)	0111

$b_3 b_2 b_1 b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	$^{-1}$

[Figure 3.9 from the textbook]

B) Example of 2's complement addition

(-5)	1011
+ (+ 2)	+ 0010
(-3)	1101

$b_3 b_2 b_1 b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	$^{-8}$
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	$^{-1}$

[Figure 3.9 from the textbook]

C) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

D) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

representation for signed integer numbers

 algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number) take the 2's complement (or negate)

Subtraction of two numbers stored in 2's complement representation

- (+5) (+2)
- (-5) (+2)
- (+5) (-2)
- (-5) (-2)

- (+5) (+2) positive minus positive
- (-5) (+2) negative minus positive
- (+5) (-2) positive minus negative
- (-5) (-2) negative minus negative

- (+5) (+2)
- (-5) (+2)
- (+5) (-2)
- (-5) (-2)

- (+5) (+2) = (+5) + (-2)
- (-5) (+2) = (-5) + (-2)
- (+5) (-2) = (+5) + (+2)
- (-5) (-2) = (-5) + (+2)

- (+5) (+2) = (+5) + (-2)
- (-5) (+2) = (-5) + (-2)
- (+5) (-2) = (+5) + (+2)
- (-5) (-2) = (-5) + (+2)

We can change subtraction into addition ...
There are four cases to consider

- (+5) (+2) = (+5) + (-2)
- (-5) (+2) = (-5) + (-2)
- (+5) (-2) = (+5) + (+2)
- (-5) (-2) = (-5) + (+2)

... if we negate the second number.

There are four cases to consider

- (+5) (+2) = (+5) + (-2)
- (-5) (+2) = (-5) + (-2)
- (+5) (-2) = (+5) + (+2)
- (-5) (-2) = (-5) + (+2)

These are the four addition cases (arranged in a shuffled order)

[Figure 3.10 from the textbook]

Notice that the minus changes to a plus.

means take the 2's complement (or negate)

[Figure 3.10 from the textbook]

[Figure 3.10 from the textbook]

[Figure 3.10 from the textbook]

Graphical interpretation of four-bit 2's complement numbers

(a) The number circle (

(b) Subtracting 2 by adding its 2's complement

[Figure 3.11 from the textbook]

[Figure 3.10 from the textbook]

[Figure 3.10 from the textbook]

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.10 from the textbook]

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	
+0	0000	\Longrightarrow	0000	+0	
-8	1000	\Longrightarrow	1000	-8	
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\implies	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\implies	0001	+1	

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal	
+7	0111	\Rightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\implies	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\implies	1111	$_{-1}$ Th	nis i
+0	0000	=>	0000	+0 ex	cep
-8	1000	\Longrightarrow	1000	-8	
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\Longrightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\implies	0001	+1	

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal	
+7	0111	\Rightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\implies	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\implies	1111	-1	
+0	0000	\Longrightarrow	0000	+0 A	nd this
-8	1000	\Longrightarrow	1000	-8 OT	ne too
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\Longrightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Rightarrow	0001	+1	

But that exception does not matter

But that exception does not matter

But that exception does not matter

Take-Home Message

Take-Home Message

 Subtraction can be performed by simply negating the second number and adding it to the first, regardless of the signs of the two numbers.

 Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

[Figure 3.12 from the textbook]

XOR Tricks

XOR as a repeater

XOR as a repeater

XOR as an inverter

XOR as an inverter

Addition: when control = 0

[Figure 3.12 from the textbook]

Addition: when control = 0

[Figure 3.12 from the textbook]

Addition: when control = 0

[Figure 3.12 from the textbook]

[Figure 3.12 from the textbook]

[Figure 3.12 from the textbook]

[Figure 3.12 from the textbook]

[Figure 3.12 from the textbook]

Addition Examples: all inputs and outputs are given in 2's complement representation

Addition: **5** + **6** = **11**

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

011101

Subtraction Examples: all inputs and outputs are given in 2's complement representation

Detecting Overflow

(+7) + (+2) (+9)	$+ \underbrace{\begin{array}{c} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \end{array}}_{1 & 0 & 0 & 1}$	$\frac{(-7)}{+(+2)}$ (-5)	$+ \frac{1001}{0010} \\ 1011$
(+7) + (-2) (+5)	$+ \begin{array}{c} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 \end{array}$	$\frac{(-7)}{+ (-2)}$	$+ \begin{array}{c} 1 \ 0 \ 0 \ 1 \\ - 1 \ 1 \ 1 \ 0 \\ \hline 1 \ 0 \ 1 \ 1 \ 1 \end{array}$

[Figure 3.13 from the textbook]

(+7) + (+2) (+9)	$+ \frac{\begin{array}{c} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \end{array}$	$\frac{(-7)}{+(+2)}$ (-5)	$ \begin{array}{r} 0 \ 0 \ 0 \ 0 \ 0 \\ + \ 0 \ 0 \ 1 \ 0 \\ \hline 1 \ 0 \ 1 \ 0 \\ \hline 1 \ 0 \ 1 \ 1 \end{array} $
(+7) + (-2) (+5)	$+ \frac{\begin{array}{c}1&1&1&0&0\\&0&1&1&1\\&1&1&1&0\\\hline&1&0&1&0&1\end{array}$		$+ \frac{10000}{1001} + \frac{1001}{10111}$

Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

(+7) + (+2) (+9)	$ \begin{array}{r} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	(-7) + (+ 2) (-5)	$ \begin{array}{r} 0 & 0 & 0 & 0 & 0 \\ & 1 & 0 & 0 & 1 \\ + & 0 & 0 & 1 & 0 \\ \hline & 1 & 0 & 1 & 1 \\ \end{array} $
(+7) + (-2) (+5)	$ \begin{array}{r} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		$ \begin{array}{r} 1 & 0 & 0 & 0 \\ + & 1 & 0 & 0 & 1 \\ + & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 \end{array} $

Include the carry bits:
$$c_4 c_3 c_2 c_1 c_0$$

$c_4 = 0$ $c_3 = 1$	(+7) + (+2) (+9)	$ \begin{array}{r} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\frac{(-7)}{+(+2)}$ (-5)	$ \begin{array}{r} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ + & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \end{array} $	$c_4 = 0$ $c_3 = 0$
$c_4 = 1 \\ c_3 = 1$	(+7) + (-2) (+5)	$ \begin{array}{r} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\frac{(-7)}{+ (-2)}$ (-9)	$ \begin{array}{r} 10000\\ +1001\\ -1110\\ 10111 \end{array} $	$c_4 = 1 \\ c_3 = 0$

Include the carry bits:
$$c_4 c_3 c_2 c_1 c_0$$

$\begin{array}{c} c_4 = 0 \\ c_3 = 1 \end{array}$	(+7) + (+2) (+9)	$+ \frac{\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\$	$\frac{(-7)}{+(+2)}$ (-5)	$ \begin{array}{r} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ + & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \end{array} $	$\begin{array}{l} c_4 = 0 \\ c_3 = 0 \end{array}$
$c_4 = 1$ $c_3 = 1$	(+7) + (-2) (+5)	$ \begin{array}{r} 1 1 1 0 0 \\ + 0 1 1 1 \\ + 1 1 1 0 \\ \hline 1 0 1 0 1 \end{array} $	$\frac{(-7)}{+ (-2)}$ (-9)	$ \begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} c_4 = 1 \\ c_3 = 0 \end{array} $

Overflow occurs only in these two cases.

$ \begin{array}{c} c_4 = 0 \\ c_3 = 1 \end{array} $	(+7) + (+2) (+9)	$+ \frac{\begin{array}{c} 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \end{array}$	$\frac{(-7)}{+(+2)}$ (-5)	$ \begin{array}{r} 0 & 0 & 0 & 0 & 0 \\ + & 1 & 0 & 0 & 1 \\ + & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \end{array} $	$\begin{array}{l} c_4 = 0 \\ c_3 = 0 \end{array}$
$c_4 = 1$ $c_3 = 1$	(+7) + (-2) (+5)	$ \begin{array}{r} 1 1 1 0 0 \\ + 0 1 1 1 \\ 1 1 1 0 \\ \hline 1 0 1 0 1 \end{array} $	$\frac{(-7)}{+ (-2)}$ (-9)	$ \begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} c_4 = 1 \\ c_3 = 0 \end{array} $

Overflow = $c_3 \overline{c}_4 + \overline{c}_3 c_4$

$\begin{array}{c} c_4 = 0 \\ c_3 = 1 \end{array}$	(+7) + (+2) (+9)	$+ \frac{\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\$	$\frac{(-7)}{+(+2)}$ (-5)	$ \begin{array}{r} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ + & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \end{array} $	$\begin{array}{l} c_4 = 0 \\ c_3 = 0 \end{array}$
$c_4 = 1$ $c_3 = 1$	(+7) + (-2) (+5)	$ \begin{array}{r} 1 1 1 0 0 \\ + 0 1 1 1 \\ - 1 1 1 0 \\ \hline 1 0 1 0 1 \end{array} $	$\frac{(-7)}{+ (-2)}$ (-9)	$ \begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} c_4 = 1 \\ c_3 = 0 \end{array} $

Overflow =
$$c_3 \overline{c}_4 + \overline{c}_3 c_4$$

Calculating overflow for 4-bit numbers with only three significant bits

Overflow = $c_3\overline{c}_4 + \overline{c}_3c_4$ = $c_3 \oplus c_4$

Calculating overflow for n-bit numbers with only n-1 significant bits

Overflow = $c_{n-1} \oplus c_n$

Detecting Overflow

Detecting Overflow (with one extra XOR)

Detecting Overflow (with one extra XOR)

for both addition and subtraction.

Detecting Overflow (alternative method)

Detecting Overflow (alternative method)

Used if you don't have access to the internal carries of the adder.

Detecting Overflow (with one extra XOR)

Another way to look at the overflow issue

- -

$$+ \begin{array}{c} \mathbf{X} = \mathbf{x}_3 \ \mathbf{x}_2 \ \mathbf{x}_1 \ \mathbf{x}_0 \\ \mathbf{Y} = \mathbf{y}_3 \ \mathbf{y}_2 \ \mathbf{y}_1 \ \mathbf{y}_0 \end{array}$$

$$S = S_3 S_2 S_1 S_0$$

Another way to look at the overflow issue

+
$$\begin{array}{cccc} \mathbf{X} = & \mathbf{x}_3 & \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ \mathbf{Y} = & \mathbf{y}_3 & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \end{array}$$

S = $\begin{array}{cccc} \mathbf{s}_3 & \mathbf{s}_2 & \mathbf{s}_1 & \mathbf{s}_0 \end{array}$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

(+ 7) + (+ 2)	$+ \begin{array}{c} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array}$	(-7) + (+ 2)	$+ \frac{1001}{0010}$
(+9)	1001	(-5)	1011

(+7)	$+ \begin{array}{c} 0 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 0 \end{array}$	(-7)	+ 1001
+ (-2)		+ (-2)	+ 1110
(+ 5)	10101	(-9)	10111

(+7) + (-2)	+	$\begin{array}{c} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{array}$	(-7) + (-2)	+	1 1	001 110
(+ 5)	1	0 1 0 1	(-9)	1	0	111

In 2's complement, both +9 and -9 are not representable with 4 bits.

Overflow occurs only in these two cases.

Overflow = $\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$

Another way to look at the overflow issue

+
$$\begin{array}{cccc} \mathbf{X} = & \mathbf{x}_3 & \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ \mathbf{Y} = & \mathbf{y}_3 & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \end{array}$$

S = $\begin{array}{cccc} \mathbf{s}_3 & \mathbf{s}_2 & \mathbf{s}_1 & \mathbf{s}_0 \end{array}$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Overflow =
$$\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$$

Overflow Detection

Overflow Detection

Overflow Detection Add/Sub control *Y*₃ *x*₂ *Y*₂ *Y*₁ *Y*₀ *x*₃ *x*₁ *x*₀ 4-bit adder *c*₄ c_0 *S*₃ *S*₁ *S*₀ *S*₂ overflow This method also detects overflow for both addition and subtraction.

Questions?

THE END

Additional Material

Alternative Circuit #3 (not used in practice) A former student came up with this circuit during a midterm exam!

Alternative Circuit #3 (not used in practice)

