CprE 2810 HW06 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Representation and Arithmetic Assigned: Week 7 Due Date: Oct. 14, 2024

P1 (8 points): Express -34₁₀ in the following binary formats. If it is not possible simply write **Not Possible**. Indicate how many bits are needed.

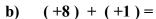
- a. Unsigned
- b. Sign & Magnitude
- c. 1's Compliment
- d. 2's Compliment

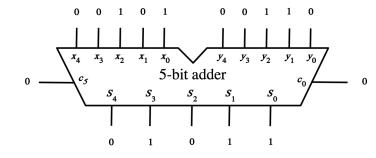
P2 (12 points): Perform the following operations on the numbers and indicate if overflow occurs for each operation. All numbers are 6 bits wide (stored in 2's complement). Show your work and all carry bits.

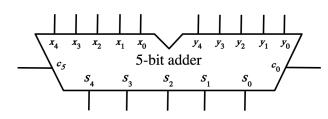
+000001 011000	+001110 110001	+111110 111010
-010000	-001011	-101100
110111	101101	010100

P3 (10 points) Draw the complete circuit diagram for a 2-bit ripple-carry adder. You are allowed to use 2-input and 3-input logical gates (of any type), but you can't use any higher-level abstractions (e.g., can't use half-adders or full-adders as black boxes in your circuit).

P4 (10 Points): You are given a 2-bit adder as a black box (say a microchip that you can't modify). The adder is too small for what you need to do and also does not compute an overflow bit. Draw a circuit that uses the 2-bit adder and any additional elements that you think are necessary to implement a 4-bit ripple-carry adder that also computes an overflow bit. Label all inputs, outputs and components.

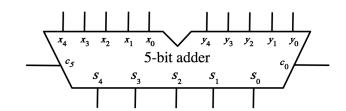

CprE 2810 HW06 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

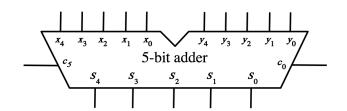

Representation and Arithmetic Assigned: Week 7

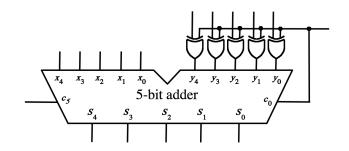

Due Date: Oct. 14, 2024

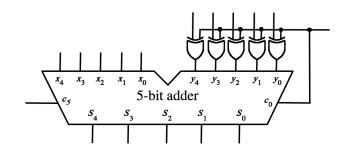
P5 (15 Points): In all problems below, the binary numbers are in 2's complement representation. Assign either a 0 or a 1 to each input and output of the 5-bit adder such that it computes the given expression. The problem in a) is already solved.

a) (+5) + (+6) = +11






c)
$$(5) + (-15) =$$


d)
$$(-12) + (-6) =$$

e)
$$(+9) + (+10) =$$

Representation and Arithmetic Assigned: Week 7 Due Date: Oct. 14, 2024

P6 (15 Points): Perform the following multiplications using 2's complement binary numbers. Show all your work using binary numbers:

- a. 100₂ * 001₂
- b. 1001₂ * 1111₂
- c. $10101_2 * 01010_2$
- d. -2₁₀ * 7₁₀
- e. 15₁₀ * 9₁₀

P7 (15 points): Convert the following numbers to IEEE 754 Single-Precision Floating Point format. Write your answer as a 32-bit number. Show your derivations.

- a) 52
- b) -23
- c) -81
- d) 96
- e) 111

P8 (15 points): Convert the following numbers from IEEE 754 Single-Precision Floating Point format to **decimal**. Show your derivations.

- c) C2810000₁₆
- d) 42860000₁₆
- e) C0DE0000₁₆