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Administrative Stuff

 We are now starting with Chapter 3



Administrative Stuff

« HWS is due today @ 10 pm



Administrative Stuff

« No homework due next week

« HWG will be due on Monday, Oct 9



Quick Review



Number Systems

N =d,B" +dp_1B" '+ -.. +di B! + doB°



Number Systems

N=d,B"+d, (B 1+...+d{B'+ de}O

l

n-th digit O-th digit
(most significant) (least significant)



Number Systems

base power

N/

N=d,B"+d, {B"1+...+dB' + de}O

\

n-th digit O-th digit
(most significant) (least significant)



The Decimal System

52410 = 5x10°+2x 10 +4x10°



The Decimal System

52410 = 5x10%4+2x 10 +4x 10"

= 5x100+4+2x104+4x1

500-+20+4

52410



Another Way to Look at This




Another Way to Look at This

102 10! 10°
5|12 |4




Another Way to Look at This

102 10! 10° <« labels
boxes > 51214

Each box can contain only one digit and has only one label. From right
to left, the labels are increasing powers of the base, starting from O.



Base 7

524» = 5x T4+ 2x 7 +4x 7"



Base 7

base power

.,/

524» = 5X T4+ 2x T +4x7°



Base 7

base power

N,/

524r = 5X T4+ 2x T 44 x7°

most significant least significant
digit digit



Base 7

524r =5 X T2 4+2x 7 +4x7°
— Hx494+2xT7T4+4x1

=245+ 14+4

— 26310



Another Way to Look at This

7?77 102 10! 10°
5|12 |4 = 2163




Binary Numbers (Base 2)

1001, = 1x2% + 0x2¢2 + 0x2! + 1x2°



Binary Numbers (Base 2)

base power

N/

1001 = 1x23 4+ 0x2%2 4+ 0x2! 4+ 1x2°

most significant bit least significant bit



10012

Binary Numbers (Base 2)

1x22 + 0x22 + 0x2! + 1x2°
1x8 4+ 0O0x4 + 0x2 + 1x1
& + 0 + 0 + 1



111015

1 x 24

Another Example

+ 1x23

1x16 + 1x8

16

+ 8

+ 1 x 22
+ 1x4
+ 4

+ 0x21
+ 0x?2
+ 0

+ 1x2Y
+ 1x1
+ 1




Powers of 2

210 = 1024
27 = 512
2° = 256
2T = 128
20 = 64
2> = 32
20 = 16
23 = 3
22 = 4
2! = 2
20 = 1



What is the value of this binary number?

00101100

0*27 + 0*25+1*25 + 0*24+ 1*23 + 1*22 + 0*21 + 0*20

0*128 + 0*64 + 1*32 + 016 + 1*8 +1*4 + 0*2 + 0*1

0128 + 0"64 +1*32 + 0"16 +1*8 +1*4 + 0°2 + 0™1

32+ 8 + 4 = 44 (in decimal)



Another Way to Look at This




Another Way to Look at This




Signed v.s. Unsigned Numbers



Signed v.s. Unsigned Numbers

\ J \ J
Y Y
positive only
and positive
negative integers

integers



Signed v.s. Unsigned Numbers

\ Y J \ v J
positive only
and positive
negative integers
integers

and zero and zero



Two Different Types of Binary Numbers

Unsigned numbers
e All bits jointly represent a positive integer.
e Negative numbers cannot be represented this way.

Signed numbers

e The left-most bit represents the sign of the number.
e |f that bit is 0, then the number is positive.
e |f that bit is 1, then the number is negative.

e The magnitude of the largest number that can be
represented in this way is twice smaller than the
largest number in the unsigned representation.



Unsighed Representation

27 2600 2> 2% 23 22 20 20

This represents + 44.



Unsighed Representation

27 2600 2> 2% 23 22 20 20

This represents + 172.



Signed Representation
(using the left-most bit as the sign)

sign 96 95 94 93 92 9l A0

This represents + 44.



Signed Representation
(using the left-most bit as the sign)

sign 96 95 94 93 92 9l A0

This represents — 44.



Today’s Lecture is About
Addition of Unsigned Numbers



Important Clarification:
There are two types of addition

« Addition of Boolean variables, e.g.,

xX+y where x, y € {0, 1}

« Addition of n-bit Binary numbers, e.g.,

X4X3X2X1Xg * YaY3Y2Y1Yo where each xy, yi € {0, 1}



Important Clarification:
There are two types of addition

« Addition of Boolean variables, e.g.,

1+0=1

« Addition of n-bit Binary numbers, e.g.,

00101 + 00110 = 01011



Important Clarification:
There are two types of addition

« Addition of Boolean variables, e.g.,




Important Clarification:
There are two types of addition

« Addition of Boolean variables, e.g.,

=D
0_

« Addition of n-bit Binary numbers, e.g.,

0 o0 1 1 0

0 0 1 0 1
we will derive this
| L] ] L]

w n L 5 n N\ % non o/ adder circuit today
0 cs 5-bit adder c o




Important Clarification:
There are two types of addition

« Addition of Boolean variables, e.g.,

1+1=1 (according to the rules of Boolean algebra)

« Addition of n-bit Binary numbers, e.g.,

1+1=10 (because in decimal1+1=2)



Addition of 1-bit Unsigned Numbers



Addition of two 1-bit numbers

X
+y

C S
Carry ? f Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(there are four possible cases)

C S
Carry $ f Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(there are four possible cases)

X 0 |
+y + 1 0

C S 0 01 01 10

— N~

* f 0, 149 Lo 210

Carry Sum

-

0
0
0

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers

(the truth table)
Carry Sum
X Yy C )
0 0 0 0
0 1 0 I
1 0 0 1
11 1 0

[ Figure 3.1b from the textbook ]



Addition of two 1-bit numbers

]
+ (0 + 1

C S 00 O1 01 1

[ Figure 2.12 from the textbook ]



Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 O1 1

X Yy C )




Addition of two 1-bit numbers

X 0 0 1 1
+y +0 1 +0 + 1
C S 00 O1 01 1

X Yy C )




Addition of two 1-bit numbers

X 0 0 | 1
+y + 0 1 +0 + 1
C S 00 01 01 1

X Yy C )
0 0 0 0
0 | 0 1
1 0 0 1
I 1 1 0




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 O1 1

X Yy C )




Addition of two 1-bit numbers

X 0 0 | |
+y +0 | +0  +1
C S 00 01 O1 1

X y C )




Addition of two 1-bit numbers

X 0 0 ] 1
+y +0 | +0 +1
C S 00 01 O1 1




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 O1 1

X Yy C )




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 01 1

X 'y C )




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 01 1

X 'y C )

-
-0 O O
S = = O




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 O1 1

X Yy C )




Addition of two 1-bit numbers

X 0 0 | ]
+y +0 ] +0  +1
Cc'S 00 01 01 |

Xy C )




Addition of two 1-bit numbers

X 0 0 | ]
+y +0 ] +0  +1
Cc'S 00 01 01 |

Xy C )

-
-
C = = O




Addition of two 1-bit numbers

X 0 0 | |
+y +0 ] +0  +1
C S 00 01 O1 1

X Yy C )




Addition of two 1-bit numbers




Addition of two 1-bit numbers

Xy C )

0+0 [=] 0 0| =0y
0+1 — 0 | :110
l+0 —_ O 1 :110
l+l — l 0 :210




Addition of two 1-bit numbers

=
~
o
G

-
_—_0 O O




Addition of two 1-bit numbers

AND

=
~
o
G

-
_—_0 O O




Addition of two 1-bit numbers




Addition of two 1-bit numbers

-
-
C = = O




Addition of two 1-bit numbers

XOR

-
-
C = = O




Addition of two 1-bit numbers




Addition of two 1-bit numbers

—FLo-
B

\)

0 0 0 0




Addition of two 1-bit numbers

D -
Y —1 17
D
X Yy C )
0 O 0 0
0 1 0 1




Addition of two 1-bit numbers
(the logic circuit)

X
S
Y

— C
L/

[ Figure 3.1c from the textbook ]



y

The Half-Adder

D_c

(c) Circuit

X —p

Y —-

— S

HA

—— i

(d) Graphical symbol

[ Figure 3.1c-d from the textbook |]



Addition of Multibit Unsigned Numbers



Analogy with addition in base 10

X, X; X,

Y> Y1 Yo
S, S1 Sy




Analogy with addition in base 10

ol — W
= U1 00
o J \O



Analogy with addition in base 10

+

ol — W
= U1 00
O J \O



Analogy with addition in base 10

C; C, C; C,




Analogy with addition in base 10

given these

C3 C2 Cl CO 3 inputs




Analogy with addition in base 10

Cj

C, &,

given these
3 inputs

compute these
2 outputs



Analogy with addition in base 10

C; | C, C; C,




Analogy with addition in base 10

C; C, C; C,




Addition of multibit numbers

Civ1 €

X = Xy XaX) XX, 01111 (15)10 v o 8

t Y = ,"‘.4}‘”‘3,\”’2.“,1.‘“‘O + O 1 0 1 O + (]O)lo 'Vl-
S = 54515755, 11001 (25)10 NN

Bit position i

[ Figure 3.2 from the textbook ]



Problem Statement and Truth Table

Ci X i Citl 5
Ci+1 &
. 000 | 0 | 0
| 0 0 1 0 1
Vi 0O 1 O 0 1
0 1 1 1 0
5 1 00 | 0 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

[ Figure 3.2b from the textbook | [ Figure 3.3a from the textbook |



Problem Statement and Truth Table

G X
0+0+0

. 0+0+1
...... ) FE O+1+0
—_— O+1+1
S 1+0+0
1+0+1

1+1+0

1+1+1

[ Figure 3.2b from the textbook |

e

I+ 1

O -0 O O

— O O e O i e O
[l
\®)
=

[ Figure 3.3a from the textbook ]



S

— e e (O O OO

Ko

ek ek (O O e m O O

Let’s fill-in the two K-maps

Yi Cigl
0 0
1 0
0 0
1 1
0 0
1 |
0 1
1 |

e

—t OO OO b OO e = O

[ Figure 3.3a-b from the textbook |



Note that the textbook switched
to the other way to draw a K-Map

C;

— e e (O O OO

A

—t e (OO - OO

Let’s fill-in the two K-maps

Y ¢

—t O bk (O e O = O

1+ 1

—_—= = O = O O O

Si

—t OO OO b OO e = O

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

Note that the textbook switched
to the other way to draw a K-Map Xy,

C; X; Y; Civl S;

! O > | <«

O 0 O 0 0 1 > | <

0O 0 1 0 1

O 1 O 0 1 S; =

01 1 1 | 0 o

00 0 I ¢; 00 01 11 10

1 0 1 1 0

1 1 0 1 0 0 gdh

1 1 1 1 1 1 > | <
Civ1 =

[ Figure 3.3a-b from the textbook ]



S

— e e (O O OO

Ko

ek ek (O O e m O O

Let’s fill-in the two K-maps

=

—t O bk (O e O = O

R

— et O e O O O

e

—t OO OO b OO e = O

XY
C; 00 O01 11 10
0 1 1
1| 1 1
§; = X;®@Yy;® ¢
XiYi
C; 00 01 11 10
0 1
1 1 1 1
Civ1 = XY T X6+ Yic;

[ Figure 3.3a-b from the textbook |



S

— e e (O O OO

Ko

—t e (OO - OO

Let’s fill-in the two K-maps

<

—t O bk (O e O = O

R

—_—= = O = O O O

e

—t OO OO b OO e = O

XiYi
¢ 00 01 11 10
0 1 1
1] 1 1
3-input XOR
Si —_ xl' @® yl @® Ci
XiYi
¢ 00 01 11 10
0 0

oD

[ Figure 3.3a-b from the textbook |



The circuit for the two expressions

)Cl L
Vi t j) ) Si = X @ Y; D¢
Cl o
L —
\ C. = X.V.+ X.C:-+ V.C:
)| ) D_ I+ 1 iYi A A

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

xl !
Cl o
L —
\ C. = X.V.+ X.C:-+ V.C:
)| ) D_ I+ 1 iYi A A

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

Let's take a closer look at this.

Dﬁ Cipl = XY T X6+ YC

L]

[ Figure 3.3c from the textbook ]



XOR Magic

Y ;
X
00 Ol 11 10
0 1 1
1| 1 1




XOR Magic




XOR Magic

(X;yi + xiy;)ci + (x;y; + Xiyi)cCi

(x; @ yi)ci + (Xi © yi)Ci

(X; D Yyi) © ¢



XOR Magic




XOR Magic

;i;i_l_xiyi = X @y,



XOR Magic

XNOR




XOR Magic

?iy_i_l_xiyi @

XOR




XOR Magic

;i;i_l_xiyi % X @Yy,



XOR Magic

;i;i_l_xiyi = X @y,

You can also prove this using the theorems of Boolean algebra.
Try that at home.



The Full-Adder Circuit

— D

Therefore, a 3-input XOR gate can be
implemented with two 2-input XOR gates.

D— Civ1l = XY T X6+ Y€

L]

[ Figure 3.3c from the textbook ]



s; can be implemented in two different ways

original version

. D alternative version
I
S;




The Full-Adder Circuit
(alternative drawing)

) >

T o1 |
.
-/

[ Figure 3.4b from the textbook |



The Full-Adder Circuit
(alternative drawing)

X, —

>
—

L
v,

HA

HA

U U

i+1

[ Figure 3.4b from the textbook |



The Full-Adder Circuit
(alternative drawing)

HA

C I -
S
Xf B —— -]
HA C
-yi —_—
C. .A
1

(a) Block diagram

/

) >

y ) >
.
-/

(b) Detailed diagram

[ Figure 3.4 from the textbook |



The Full-Adder Circuit

(alternative drawing)

HA

HA R d
|

(a) Block diagram

CI-
X. ——=
1
-yi ——
C.

1

)

/

(X;@y;)c; + x; y;

C.

/ i+1

)
_/

Let's take a closer look at this.

(b) Detailed diagram
[ Figure 3.4 from the textbook |



The Full-Adder Circuit

Pr—

o) O
o

It must be equivalent to this.

Si - Xl@yl@ Ci

) D— Cipl = XY T X6+ YC

Figure 3.3c from the textbook ]



Let’s Prove This

?

(X, @y;)c;+x;y; = XY +X.¢ +¢C; Y




Let’s Prove This

(X;@y;)c; +x;y; =



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

= X; Vi G+ X y; C; X Y, T XY,

double
this term



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

X; Y C;

+

X Vi €

l

+

X; Vi

+




Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

= X Vi G X Y 6T X Y X Y,

l

= (;ici_l_xi) Vi + X (y;ic;+y)



Let’s Prove This
(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),
= X, Y i+ X Vi A X Y+ X, Y,

= (Z’Ci"‘xi) Vi + X (y;ic;+y)

use Theorem 16a twice

=(c;+x)y; +Xx;(c;+y;)



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

= X;Y; G+ X y; G+ X Y+ X Y,

= (Z’Ci"‘xi) Vi + X (y;ic;+y)

=(c;+x)y; +Xx;(c;+y;)

=C Yy, T XY

l

+ X, C; + X,



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

= X;Y; G+ X y; G+ X Y+ X Y,

= (;ici_l_xi) Vi + X (y;ic;+y)

=(c;+x)y; +x;(¢c;+y)
=C Yy, T X5V T X C T X)Y,

remove one copy of
this doubled term



Let’s Prove This

(X, @y;)c;+x;y;, = (X, 9, +X, Y, )¢; + X; ),

= X;Y; G+ X y; G+ X Y+ X Y,

= (Z’Ci"‘xi) Vi + X (y;ic;+y)

=(c;+x)y; +Xx;(c;+y;)

=C Yy, T XY

l

+ X, C; + X,

=C Yy, T XY

i T X;



Therefore, these circuits are equivalent

Xi

Vi

S,' = X,@}',@C,

D— Civ1 = XiYit X6+ Vic;

S;i =X @YD ¢

SI-

Civ1 =(X,®DYy;)c; + X, y;

DiD Civl

w% /




The Full-Adder Abstraction

- Civl

:
:




The Full-Adder Abstraction

C I SI-
! FA -> Civl
f




The Full-Adder Abstraction




The Full-Adder Abstraction

C I SI-
! FA -> Civl
f




The Full-Adder Abstraction

HA

HA




The Full-Adder Abstraction

C I SI-
! FA -> Civl
f




We can place the arrows anywhere

Civ] €—— FA e C;




n-bit ripple-carry adder

Xn—l yn—l

MSB position

X

o o 0 (,'2‘—

FA

So

LSB position

[ Figure 3.5 from the textbook |



n-bit ripple-carry adder abstraction

XN X0 N

Y

| | |
A Y Y
€1
FA - FA )

n—-1

MSB position

S1 So

LSB position



n-bit ripple-carry adder abstraction




The x and y lines are typically
grouped together for better visualization,
but the underlying logic remains the same




Example:
Computing 5+6 using a 5-bit adder

O o 1 O 1 0O 0 1 1 0

X, X3 X X Xo\/)’4 Y3z Yo N XN

5-bit adder .




Example:
Computing 5+6 using a 5-bit adder

5 1n decimal 6 1n decimal
A A
[ \ [ \
0o 0o 1 0 1 0 0o 1 1 o0

n X3 I X Xo\/y4 Y3 Y, N X

5-bit adder .

0 Cs 0 0
S4 S3 .5'2 Sl SO
0 1 0 1 1
\ )
Y

11 in decimal



Design Example:

Create a circuit that multiplies a number by 3



How to Get 3A from A?

- 3BA=A+A+A

. 3A = (A+A) + A

« 3JA=2A+A



A:a7°.'a0

X7 X0 v Y7 Yo
Cq
57 S0
0 | .
\ B | Y Y Y
Xg X7 X0 v yg Y7 Yo
Cg
S8 So
P=3A: Py, Pg P,

[ Figure 3.6a from the textbook ]



A:a7.”a0

*7 X0, ¥ 7 0,
A A
57 So
0 | .
\ B | Y | | Y
Xg X7 X0 A4 yg V7 Yo
Cg
58 50
P=3A: Py, Pg P,

[ Figure 3.6a from the textbook ]



:a7”’a0

[ Figure 3.6a from the textbook ]



. a( ¢ o o aIO
*7 *0 7 Y0,
€7 A' A'
57 S0
0 | .
\ B | Y | Y
Xg X7 xo, ‘ys Y7 Yo
|
s QA A
S8 SO
P=3A: Py, Pg P,

[ Figure 3.6a from the textbook ]



A:a7."ao

*7 xo, ¥ 7 Y0,
¢y A' A'
S7 SO
0 | .
\ B | Y | | Y
‘xs X7 xo, A4 ‘)’8 Y7 yo,
|
% QA A'
8 0

|
3 A [ Figure 3.6a from the textbook ]



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10="7?

542 x10="7

1245 x10 =7



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10=40

542 x 10 = 5420

1245 x 10 = 12450



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10=40

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 =7

101 times 2=7

110011 times 2= 7



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number



[ Figure 3.6b from the textbook ]



[ Figure 3.6b from the textbook ]



3A [ Figure 3.6b from the textbook ]



Questions?



THE END



