

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Binary Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

This is the official class web page:

http://www.ece.iastate.edu/~alexs/classes/2023_Fall_281/

If you missed the first lecture, the syllabus and other class materials are posted there.

Administrative Stuff

HW1 is out

It is due on Monday Aug 28 @ 10 pm.

Submit it on Canvas before the start of the lecture

Did you get the textbook?

Required Textbook

Title: Fundamentals of Digital Logic with Verilog Design [3-rd edition]

Author: Stephen Brown and Zvonko Vranesic

Edition: Copyright 2013, 3-rd edition

ISBN: 978-0073380544 Publisher: McGraw-Hill

Required Textbook

Title: Fundamentals of Digital Logic with Verilog Design [3-rd edition]

Author: Stephen Brown and Zvonko Vranesic

Edition: Copyright 2013, 3-rd edition

ISBN: 978-0073380544 Publisher: McGraw-Hill

Required Textbook

Title: Fundamentals of Digital Logic with Verilog Design [3-rd edition]

Author: Stephen Brown and Zvonko Vranesic

Edition: Copyright 2013, 3-rd edition

ISBN: 978-0073380544 Publisher: McGraw-Hill

Where is the eBook?

Where is the eBook?

Where is the eBook?

DIGITAL LOGIC	Fundamentals of Digital Logic with Verilog Design Brown, Stephen; Vranesic, Zvonko	•••
Expand Coll	apse	
	3 Number Representation and iic Circuits	121
Chapter Blocks	4 Combinational-Circuit Building	189
ChapterCounters	5 Flip-Flops, Registers, and s	247
Chapter Circuits	6 Synchronous Sequential	331
Chapter	7 Digital System Design	421
Chapter Logic Fu	8 Optimized Implementation of nctions	491
Chapter Circuits	9 Asynchronous Sequential	551

chapter

5

FLIP-FLOPS, REGISTERS, AND COUNTERS

CHAPTER OBJECTIVES

In this chapter you will learn about:

- · Logic circuits that can store information
- · Flip-flops, which store a single bit
- Registers, which store multiple bits
- · Shift registers, which shift the contents of the register
- · Counters of various types
- Verilog constructs used to implement storage elements

Administrative Stuff

The labs and recitations start next week:

```
Section 6: Wednesday 7:45 AM - 10:35 AM (Coover Hall, room 2042) Section 7: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 2042) Section 8: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 2042) Section 9: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2042) Section 10: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 2042) Section 11: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 2042) Section 12: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 2042) Section 14: Thursday 8:00 AM - 10:50 AM (Coover Hall, room 2042) Section 16: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
```

The lab schedule is also posted on the class web page

The Labs Start Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must print the answer sheet for each lab ahead of time.
- Then answer the pre-lab questions <u>before</u> the start of the lab.
- The TAs will check your answers at the beginning of the lab.

Grading Scale

95	_	100	=		Α
90	_	94	=		A –
87	_	89	=		B+
83	_	86	=		В
80	_	82	=		B-
77	_	79	=	i	C+
73	_	76	=		C
70	_	72	=		C-
67	_	69	=	i	D+
63	_	66	=	i	D
60	_	62	=	i	D-
0	_	59	=		F

Grading Percentages

The Labs Start Next Week

Figure 1.5 in the textbook: An FPGA board.

The Decimal System

The Decimal System

What number system is this one?

[http://freedomhygiene.com/wp-content/themes/branfordmagazine/images/backgrounds/Hands_141756.jpg]

The Binary System

The Binary System

Number Systems

$$N = d_n B^n + d_{n-1} B^{n-1} + \dots + d_1 B^1 + d_0 B^0$$

Number Systems

Number Systems

The Decimal System

$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

The Decimal System

$$524_{10} = 5 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0}$$
$$= 5 \times 100 + 2 \times 10 + 4 \times 1$$
$$= 500 + 20 + 4$$
$$= 524_{10}$$

5 | 2 | 4

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$

$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$
$$= 5 \times 49 + 2 \times 7 + 4 \times 1$$
$$= 245 + 14 + 4$$
$$= 263_{10}$$

Binary Numbers (Base 2)

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Binary Numbers (Base 2)

Binary Numbers (Base 2)

Another Example

Powers of 2

```
2^{10}
             1024
2^{9}
              512
2^{8}
              256
2^{7}
              128
2^{6}
                64
2^5
                32
2^{4}
                16
2^3
                 8
2^2
2^1
2^{0}
```

What is the value of this binary number?

• 00101100

· 0 0 1 0 1 1 0 0

• $0*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0$

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

32+8+4=44 (in decimal)

Another Way to Look at This

							2^0
0	0	1	0	1	1	0	0

Some Terminology

A binary digit is called a bit

A group of eight bits is called a byte

 One bit can represent only two possible states, which are denoted with 1 and 0

Relationship Between a Byte and a Bit

1	0	1	0	1	1	1	0
---	---	---	---	---	---	---	---

Relationship Between a Byte and a Bit

Relationship Between a Byte and a Bit

Bit Permutations

<u>1 bit</u>	2 bits	3 bits	4 b	bits	
0	00	000	0000	1000	
1	01	001	0001	1001	
	10	010	0010	1010	
	11	011	0011	1011	
		100	0100	1100	
		101	0101	1101	
		110	0110	1110	
		111	0111	1111	

Each additional bit doubles the number of possible permutations

Bit Permutations

- Each permutation can represent a particular item
- There are 2^N permutations of N bits
- Therefore, N bits are needed to represent 2^N unique items

```
How many items can be represented by

\begin{cases}
1 & \text{bit ?} \\
2 & \text{bits ?} \\
3 & \text{bits ?} \\
4 & \text{bits ?}
\end{cases}

2^{1} = 2 \text{ items}

2^{2} = 4 \text{ items}

2^{3} = 8 \text{ items}

4 & \text{bits ?}

2^{4} = 16 \text{ items}

5 & \text{bits ?}

2^{5} = 32 \text{ items}
```

What is the maximum number that can be stored in one byte (8 bits)?

What is the maximum number that can be stored in one byte (8 bits)?

- 11111111
- ·1 1 1 1 1 1 1
- $1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0$
- 1*128 + 1*64 + 1*32 + 1*16 + 1*8 + 1*4 + 1*2 + 1*1
- 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (in decimal)
- Another way is: $1*2^8 1 = 256 1 = 255$

What would happen if we try to add 1 to the largest number that can be stored in one byte (8 bits)?

Analogy with car odometers

Analogy with car odometers

Decimal to Binary Conversion (Using Guessing)

$$17 = 16 + 1 \rightarrow 10001_2$$

$$2^{7} = 128$$
 $2^{6} = 64$
 $2^{5} = 32$
 $2^{4} = 16$
 \checkmark
 $2^{3} = 8$
 $2^{2} = 4$
 $2^{1} = 2$
 $2^{0} = 1$

Decimal to Binary Conversion (Using Guessing)

$$212 = 128 + 64 + 16 + 4 \rightarrow 11010100_2$$

$$2^{7} = 128 \checkmark$$
 $2^{6} = 64 \checkmark$
 $2^{5} = 32$
 $2^{4} = 16 \checkmark$
 $2^{3} = 8$
 $2^{2} = 4 \checkmark$
 $2^{1} = 2$
 $2^{0} = 1$

Converting from Decimal to Binary

result remainder

235	/	2	=	117	1
117	/	2	=	58	1
58	/	2	=	29	0
29	/	2	=	14	1
14	/	2	=	7	0
7	/	2	=	3	1
3	/	2	=	1	1
1	/	2	=	0	1

Converting from Decimal to Binary

result remainder

$$235_{10} = 11101011_2$$

Convert (857)₁₀

			Remainder	
$857 \div 2$	=	428	1	LSB
$428 \div 2$	=	214	0	
$214 \div 2$	=	107	0	
$107 \div 2$	=	53	1	
$53 \div 2$	=	26	1	
$26 \div 2$	=	13	0	
$13 \div 2$	=	6	1	
6 ÷ 2	=	3	0	
$3 \div 2$	=	1	1	
1 ÷ 2	=	O	1	MSB

Result is (1101011001)₂

Octal System (Base 8)

0	1	2	3	4	5	6	7
10	11	12	13	14	15	16	17
20	21	22	23	24	25	26	27
30	31	32	33	34	35	36	37
40	41	42	43	44	45	46	47
50	51	52	53	54	55	56	57
60	61	62	63	64	65	66	67
70	71	72	73	74	75	76	77

```
\begin{array}{cccc} 000 & \rightarrow & 0 \\ 001 & \rightarrow & 1 \\ 010 & \rightarrow & 2 \\ 011 & \rightarrow & 3 \\ 100 & \rightarrow & 4 \\ 101 & \rightarrow & 5 \\ 110 & \rightarrow & 6 \\ 111 & \rightarrow & 7 \end{array}
```

$$101110010111_2 = ?_8$$

$$101110010111_2 = ?_8$$

101 110 010 111

$$101110010111_2 = ?_8$$

$$101110010111_2 = ?_8$$

Thus, $101110010111_2 = 5627_8$

Hexadecimal System (Base 16)

$$52_{16} = 5 \times 16^{1} + 2 \times 16^{0} =$$

$$5 \times 16 + 2 \times 1 =$$

$$80 + 2 = 82_{10}$$

The 16 Hexadecimal Digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

The 16 Hexadecimal Digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

10, 11, 12, 13, 14, 15

Hexadecimal to Decimal Conversion

$$C3_{16} = C \times 16^1 + 3 \times 16^0$$

$$= 12 \times 16 + 3 \times 1$$

$$= 192 + 3$$

$$=195_{10}$$

Hexadecimal to Decimal Conversion

$$BEEF_{16} = ?_{10}$$

Hexadecimal to Decimal Conversion

```
BEEF_{16} = B_{16} \times 16^{3} + E_{16} \times 16^{2} + E_{16} \times 16^{1} + F_{16} \times 16^{0}
= 11 \times 16^{3} + 14 \times 16^{2} + 14 \times 16^{1} + 15 \times 16^{0}
= 11 \times 4096 + 14 \times 256 + 14 \times 16 + 15 \times 1
= 45056 + 3584 + 224 + 15
= 48879_{10}
```

Binary to Hexadecimal Conversion

```
0000 \rightarrow 0
0001 \rightarrow 1
0010 \rightarrow 2
0011 \rightarrow 3
0100 \rightarrow 4
0101 \rightarrow 5
0110 \rightarrow 6
0111 \rightarrow 7
1000 \rightarrow 8
1001 \rightarrow 9
1010 \rightarrow A
1011 \rightarrow B
1100 \rightarrow C
1101 \rightarrow D
1110 \rightarrow E
1111 \rightarrow F
```

Binary to Hexadecimal Conversion

```
0000
         \rightarrow 1 \rightarrow
0001
0010 \rightarrow 2 \rightarrow
0011 \rightarrow 3 \rightarrow
0100 \rightarrow 4 \rightarrow
0101 \rightarrow 5 \rightarrow 5
0110 \rightarrow 6 \rightarrow 6
0111 \rightarrow 7 \rightarrow 7
1000 \rightarrow 8 \rightarrow
1001 \rightarrow 9 \rightarrow
1010 \rightarrow 10 \rightarrow A
1011 \rightarrow 11 \rightarrow B
1100 \rightarrow 12 \rightarrow C
1101 \rightarrow 13 \rightarrow D
1110 \rightarrow 14 \rightarrow E
1111 \rightarrow 15 \rightarrow F
```

$$101110010111_2 = ?_{16}$$

$$101110010111_2 = ?_{16}$$

1011 1001 0111

$$101110010111_2 = ?_{16}$$

$$101110010111_2 = ?_{16}$$

Thus,
$$101110010111_2 = B97_{16}$$

Decimal to Hexadecimal Conversion

$$1396_{10} = 574_{16}$$

7,	•	•
result	remaind	er

Decimal to Hexadecimal Conversion

$$502_{10} = 1F6_{16}$$

				result	remainder	
						•
502	/	16	=	31	6	1
31	/	16	=	1	15	
1	/	16	=	0	1	

Sample Midterm 1 Questions on Number Systems

4. Number Conversions (4 x 5p each = 20p)
(a) Convert 101011012 to decimal

$$1 \times 2^{\frac{7}{4}} + 0 \times 2^{\frac{6}{4}} + 1 \times 2^{\frac{5}{4}} + 0 \times 2^{\frac{7}{4}} + 1 \times 2^{\frac{3}{4}} + 1 \times 2^{\frac{7}{4}} + 0 \times 2^{\frac{7}{4}} + 1 \times 2^{\frac{9}{4}} = 128 + 0 + 32 + 0 + 8 + 9 + 9 + 9 + 1 = 128 + 90 + 5 = 173$$

(b) Convert 123_{10} to binary

$$123/2 = 61$$
 1
 $61/2 = 30$ 1
 $30/2 = 15$ 0
 $15/2 = 7$ 1
 $7/2 = 3$ 1
 $3/2 = 1$ 1
 $1/2 = 0$ 1

(c) Convert 227₁₀ to hexadecimal

$$227/16 = 14$$
 3 4 $E3_{18}$

4. Number Conversions $(5 \times 4p \text{ each} = 20p)$

(a) Convert 101110012 to decimal

$$1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{7} + 1 \times 2^{7} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{4} + 1 \times 2^{5} = 185$$

(b) Convert
$$135_{10}$$
 to binary

$$135/2 = 67$$
 1
 $67/2 = 33$ 1
 $33/2 = 16$ 1
 $16/2 = 8$ 0
 $8/2 = 4$ 0

remainder

$$9/2 = 2 0$$

 $2/2 = 1 0$
 $1/2 = 0 1$

100001112

to Binary 111 101 001

000111101001 1 E 9

then convert from Einary to hexadecimal

$$219/16 = 13$$
 11 1
13/16 = 0 13

$$13/16 = 0$$

remainder

(e) Convert 1346 to binary

$$\frac{1 \times 6^2 + 3 \times 6^4 + 4 \times 6^9 = 58_{10}}{36}$$

1110102

remain der First Convert 1346 to binary

First Convert $1 \times 6^2 + 3 \times 6^1 + 4 \times 6^0 = 58_{10}$ to decimal 36 18 4 14/2 = 7 14/2 = 3 1 14/2 = 3 1 14/2 = 1 1 1/2 = 0 1 1/2 = 0 1

Signed integers are more complicated

We will talk more about them when we start with Chapter 3 in a couple of weeks.

The story with floats is even more complicated IEEE 754-1985 Standard

[http://en.wikipedia.org/wiki/IEEE_754]

s = +1 (positive numbers and +0) when the sign bit is 0

s = -1 (negative numbers and -0) when the sign bit is 1

e = exponent - 127 (in other words the exponent is stored with 127 added to it, also called "biased with 127")

In the example shown above, the *sign* is zero so s is +1, the *exponent* is 124 so e is -3, and the significand m is 1.01 (in binary, which is 1.25 in decimal). The represented number is therefore +1.25 \times 2⁻³, which is +0.15625.

[http://en.wikipedia.org/wiki/IEEE_754]

On-line IEEE 754 Converter

https://www.h-schmidt.net/FloatConverter/IEEE754.html

More about floating point numbers in Chapter 3.

Storing Characters

 This requires some convention that maps binary numbers to characters.

ASCII table

Unicode

ASCII Table

```
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
                                                          Dec Hx Oct Html Chr Dec Hx Oct Html Chr
                                      32 20 040   Space
                                                           64 40 100 6#64; 0
                                                                              96 60 140 @#96;
 0 0 000 NUL (null)
                                      33 21 041 6#33; !
                                                           65 41 101 A A
                                                                              97 61 141 6#97;
 1 1 001 SOH (start of heading)
                                      34 22 042 6#34; "
                                                           66 42 102 B B
                                                                              98 62 142 @#98; b
   2 002 STX (start of text)
    3 003 ETX (end of text)
                                                           67 43 103 C C
                                                                              99 63 143 @#99; C
                                      35 23 043 4#35; #
                                      36 24 044 4#36; $
                                                           68 44 104 D D
                                                                             100 64 144 d d
 4 4 004 EOT (end of transmission)
                                                                             101 65 145 e e
                                      37 25 045 4#37; %
                                                           69 45 105 E E
 5 5 005 ENQ (enquiry)
                                                           70 46 106 @#70; F
                                                                             102 66 146 @#102; f
                                      38 26 046 & &
    6 006 ACK (acknowledge)
                                                           71 47 107 @#71; G
                                                                             103 67 147 @#103; g
   7 007 BEL (bell)
                                      39 27 047 4#39; '
                                      40 28 050 @#40; (
                                                           72 48 110 @#72; H
                                                                             104 68 150 @#104; h
   8 010 BS
              (backspace)
                                                           73 49 111 I I
                                                                             105 69 151 i i
    9 011 TAB (horizontal tab)
                                      41 29 051 ) )
                                                                             106 6A 152 @#106; j
                                      42 2A 052 @#42; *
                                                           74 4A 112 @#74; J
10 A 012 LF
              (NL line feed, new line)
                                                                             107 6B 153 @#107; k
                                      43 2B 053 4#43; +
                                                           75 4B 113 6#75; K
11 B 013 VT
              (vertical tab)
                                      44 20 054 @#44;
                                                           76 4C 114 L L
                                                                             |108 6C 154 @#108; <mark>l</mark>
12 C 014 FF
             (NP form feed, new page)
                                                                             109 6D 155 m 10
                                      45 2D 055 6#45;
                                                           77 4D 115 6#77; M
13 D 015 CR
             (carriage return)
14 E 016 SO
                                                                             110 6E 156 n n
                                      46 2E 056 .
                                                           78 4E 116 N N
             (shift out)
15 F 017 SI
              (shift in)
                                      47 2F 057 /
                                                           79 4F 117 @#79; 0
                                                                             |111 6F 157 @#111; 0
16 10 020 DLE (data link escape)
                                      48 30 060 4#48; 0
                                                           80 50 120 P P
                                                                             |112 70 160 p p
                                      49 31 061 4#49; 1
                                                           81 51 121 4#81; 0
                                                                             |113 71 161 q <mark>q</mark>
17 11 021 DC1 (device control 1)
                                                                             114 72 162 @#114; r
18 12 022 DC2 (device control 2)
                                      50 32 062 4#50; 2
                                                           82 52 122 R R
                                                                             115 73 163 s 3
19 13 023 DC3 (device control 3)
                                      51 33 063 3 3
                                                           83 53 123 4#83; 5
                                                                             116 74 164 @#116; t
20 14 024 DC4 (device control 4)
                                      52 34 064 4 4
                                                           84 54 124 T T
                                                                             117 75 165 u <mark>u</mark>
21 15 025 NAK (negative acknowledge)
                                      53 35 065 4#53; 5
                                                           85 55 125 U U
                                      54 36 066 6 6
                                                           86 56 126 V V
                                                                             118 76 166 v ♥
22 16 026 SYN (synchronous idle)
                                      55 37 067 4#55; 7
                                                           87 57 127 @#87; W
                                                                             |119 77 167 w ₩
23 17 027 ETB (end of trans. block)
                                      56 38 070 4#56; 8
                                                           88 58 130 X X
                                                                             |120 78 170 x ×
24 18 030 CAN (cancel)
25 19 031 EM (end of medium)
                                      57 39 071 4#57; 9
                                                           89 59 131 4#89; Y
                                                                             121 79 171 y Y
                                      58 3A 072 @#58; :
                                                           90 5A 132 6#90; Z
                                                                             122 7A 172 z Z
26 lA 032 SUB (substitute)
27 1B 033 ESC (escape)
                                      59 3B 073 &#59; ;
                                                           91 5B 133 [ [
                                                                             123 7B 173 @#123; {
28 1C 034 FS (file separator)
                                      60 3C 074 < <
                                                           92 5C 134 \ \
                                                                             124 7C 174 @#124; |
29 1D 035 GS
              (group separator)
                                      61 3D 075 = =
                                                           93 5D 135 ] ]
                                                                             |125 7D 175 } }
30 1E 036 RS
              (record separator)
                                      62 3E 076 > >
                                                           94 5E 136 @#94; ^
                                                                             126 7E 176 @#126; ~
                                                                             127 7F 177  DEL
31 1F 037 US
             (unit separator)
                                      63 3F 077 ? ?
                                                           95 5F 137 _ _
```

Source: www.LookupTables.com

Extended ASCII Codes

128	Ç	144	É	161	í	177	•••••	193	Т	209	₹	225	В	241	±
129	ü	145	æ	162	ó	178		194	т	210	π	226	Γ	242	≥
130	é	146	Æ	163	ú	179		195	F	211	Ш	227	π	243	≤
131	â	147	ô	164	ñ	180	4	196	_	212	F	228	Σ	244	ſ
132	ä	148	ö	165	Ñ	181	=	197	+	213	F	229	σ	245	J
133	à	149	ò	166	2	182	1	198	F	214	г	230	μ	246	÷
134	å	150	û	167	۰	183	П	199	\mathbb{F}	215	#	231	τ	247	æ
135	ç	151	ù	168	3	184	7	200	L	216	+	232	Φ	248	۰
136	ê	152	_	169	-1	185	4	201	F	217	J	233	⊕	249	
137	ë	153	Ö	170	-	186		202	<u>JL</u>	218	Г	234	Ω	250	
138	è	154	Ü	171	1/2	187	n	203	īΓ	219		235	δ	251	V
139	ï	156	£	172	1/4	188	1	204	F	220		236	00	252	_
140	î	157	¥	173	i	189	Ш	205	=	221		237	ф	253	2
141	ì	158	M	174	«	190	4	206	#	222		238	ε	254	
142	Ä	159	f	175	>>	191	٦	207	<u></u>	223	•	239	\Diamond	255	
143	Å	160	á	176		192	L	208	Ш	224	α	240	=		

Source: www.LookupTables.com

The Unicode Character Code

- http://www.unicode.org/charts/
- https://en.wikipedia.org/wiki/Unicode

- The original standard uses 16 bits (2 bytes)
- The later extensions use up to 32 bits.

The Greek Alphabet

	037	038	039	03A	03B	03C	03D	03E	03F
0	I -		ί 0390	11 03A0	ΰ 0380	π 03C0	6	3 03E0	X
1	1 -		A 0391	P	Q .	ρ 03C1	9	3) 03E1	Q
2	T		B 0392		β 0382	S	Υ 03D2	Ϣ _{03E2}	C 03F2
3	T 0373		$\Gamma_{_{0393}}$	∑ 03A3	γ 03B3	σ	Υ 03D3	(1) 03E3	j
4	0374	0384	<u>A</u>	T 03A4	8	T 03C4	Ϋ́ 03D4	Q 03E4	O3F4
5	0375	.4	E 0395	Y	E	U cscs	ф 03D5	q	€ 03F5
6	M	A	Z	Ф 03A6	0386	Ф	W	b	Э
7	U	0387	H 0397	X 03A7	η 0387	χ 03C7	7 5	b	Þ
8		Έ	Θ 0398	Ψ 03A8	0388	Ψ	Q 03D8	8	þ 03F8
9		'H	I 0399	Ω	1 0389	ω	Q	S 03E9	O3F9
Α	С 037A	I 038A	K 039A	Ï 03AA	K 03BA	ü 03CA	C	X	M OSFA
В	OS78		1	Ÿ ©SAB	λ osbb	Ü	5 0308	X 03EB	M 03FB
С	© 037C	O 038C	M 039C	ά sac	μ озвс	Ó	F	6 03EC	P DSFC
D	9		N 0390	É	V	Ú	F	6 03ED	OSFD
E	9 037E	Y	1 039E	ή	٤ _{O3BE}	ώ ssce	5	† DSEE	C OSFE
F	J 037F	Ω 038F	O39F	ĺ 03AF	O 03BF	K 03CF	Z OSDF	† 03EF	3

	037	038	039	03A	03B	03C	03D	03E	03F
0	ŀ		ί	П	ΰ	π	б	3	н
	0370		0390	03A0	03B0	03C0	03D0	03E0	03F0
1	1-		A	P	α	ρ	$\boldsymbol{\vartheta}$	3	Q
	0371		0391	03A1	03B1	03C1	03D1	03E1	03F1
2	Т		В		β	ς	Υ	0)	С
	0372		0392		03B2	03C2	03D2	03E2	03F2
3	T		Γ	$\sum_{\alpha_{2},\alpha_{2}}$	γ	σ	Υ	a	j
	0373	////////	0393	03A3	03B3	03C3	03D3	03E3	03F3

This is the Hexadecimal number for the Greek letter alpha: 03B1

	037	038	039	03A	03B	03C	03D	03E	03F
0	F		ί	П	ΰ	72	б	3	X
1	0370		A	03A0 P	03B0		9) 3)	03F0 Q
2	0371 T 0372		0391 B	03A1	03B1 B 03B2	03C1 S	03D1 Y 03D2	03E1 03E2	03F1 C 03F2
3	T		I	∑ 03A3	γ 03B3	O	Υ 03D3	03E3	j 03F3

This is the Hexadecimal number for the Greek letter beta: 03B2

	037	038	039	03A	03B	03C	03D	03E	03F
0	F		ί	П	ΰ	π/	б	3	н
	0370		0390	03A0	03B0	03C	03D0	03E0	03F0
1	1 -		A 0391	P 03A1	Q	0301	9	3 03E1	Q _{03F1}
2	T		B		B .	S	Υ 03D2	Q	C
3	T		Г	∑	γ _{03B3}	O	Y	Q	j 03F3

This is the Hexadecimal number for the Greek letter gamma: 03B3

	037	038	039	03A	03B	03C	03D	03E	03F
0	F		ί	П	ΰ	π	б	3	х
	0370		0390	03A0	03B0	03C0	03D0	03E0	03F0
1	}		A 0391	P 03A1	Q	1 3C1	9) 03E1	Q 03F1
2	T		B 0392		β 03B2	S 03C2	Υ 03D2	03E2	C 03F2
3	T		Г	∑	γ 03B3	O	Y	03E3	j 03F3

This is the Hexadecimal number for the Greek letter pi: 03C0

037	038	039	03A	03B	03C	03D	03E	03F
F		ί	П	ΰ	π	б	3	н
0370		0390	03A0	03B0	03C0	03D0	03E0	03F0
}		A	P	α.	ρ	9	3	Q
03/1		0391	U3A1	U3B1	0301	03D1	03E1	03F1
Т		В		β	ς	Υ	(1)	C
0372		0392		03B2	03C2	03D2	03E2	03F2
T		Г	∑ 03A3	γ	O	Y	3	j 03F3
	T 0370 T 0371 T	F 0370 F 0371 T 0372 T	 F i i 0390 F A 0391 T B 0392 T Γ 	 F i Π 0370 A P 0371 T B 0392 T Σ 	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Egyptian Hieroglyphs

	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	130A	130B	130C	130D
0	13000	13010	13020	13030	13040	13050	13060	13070	13080	13090	() 130A0	130B0	13000	0000
1	13001	13011	13021	13031	13041	13051	13061	13071	13081	13091	130A1	130B1	13001	000 000 000 13001
2	13002	13012	13022	13032	13042	13052	13062	13072	13082	13092	130A2	130B2	13002	13002
3	13003	13013	13023	13033	13043	13053	13063	13073	13083	13093	130A3	1111 1111 130B3	13003	УТ) 130D3
4	13004	13014	13024	13034	13044	13054	13064	13074	13084	13094	130A4	000 000 130B4	13004	13004
5	13005	13015	13025	13035	13045	13055	13065	13075	13085	13095	₹0 130A5	111 111 130B5	13005	13005
6	13006	13016	13026	13036	13046	13056	13066	13076	13086	13096	130A6	130B6	13006	13006
7	13007	13017	13027	13037	13047	13057	13067	13077	13087	13097	130A7	13087	2 130C7	13007
8	13008	13018	13028	13038	13048	13058	13068	13078	S	13098	130A8	130B8	13008	13008
9	13009	13019	13029	13039	13049	13059	13069	13079	13089	13099	130A9	13089	O 130C9	13009
Α	1300A	1301A	1302A	1303A	1304A	1305A	1306A	2024 1307A	(Sa)	1309A	130AA	130BA	0 0 130CA	130DA
В	1300B	岁	13028	13038	1304B	1305B	1306B	1307B	13088	1309B	130AB	13088	O O O 130CB	130DB
С	A	3010	1302C	2 13030	1304C	08 1305C	13060	1307C	13080	1309C	€ 38A	308c	00 00 130CC	130DC
D	\$ 1	13010	1302D	13030	1304D	1305D	1306D	1307D	1308D	13090	130AD	130BD	000 00 130CD	13000
Ε	1300E	1301E	1.50) 1302E	1303E	1304E	1305E	1306E	(307E	1308E	∆] 1309E	130AE	∫ 1308E	000 000 130CE	130DE
F	1300F	1301F	1302F	1303F	1304F	1305F	1306F	1307F	1308F	(309F	130AF	30BF	0000 000 130CF	130DF

http://www.unicode.org/charts/

	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	130A	130B	130C	130D
0	13000	13010	13020	13030	13040	13050	13060	13070	13080	13090	130A0	130B0	13000	0000 0000 130D0
1	13001	13011	13021	13031	13041	13051	13061	13071	13081	13091	130A1))) 130B1	130C1	000 000 000 130D1
2	13002	13012	13022	13032	13042	13052	13062	13072	13082	13092	130A2	130B2	130C2	130D2
3	13003	13013	13023	13033	13043	13053	13063	13073	13083	13093	130A3	130B3	13003	130D3
4	13004	13014	13024	13034	13044	13054	13064	13074	13084	13094	130A4	130B4	130C4	130D4

Questions?

