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Administrative Stuff

* No HW is due next Monday

« HW 6 will be due on Monday Oct. 11.



Administrative Stuff

Labs next week
Mini-Project
This is worth 3% of your grade (x2 labs)

https://lwww.ece.iastate.edu/~alexs/classes/
2021_Fall_281/labs/Project-Mini/



Quick Review



The problems in which row are easier to calculate?

82 48 32
61 26 11
77 %, 77

82 48 32
64 29 13

77 77 77



The problems in which row are easier to calculate?

82 - 48 - 32

61 26 11

21 22 21
Why?

82 - 48 - 32

64 29 13

18 19 19



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

= 82+ (100 — 64) - 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

32 + (100 — 64) - 100

32+ (99 +1-64)- 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

32 + (100 — 64) - 100

32+ (99 +1-64)- 100

32 + (99 —64) +1 - 100



Another Way to Do Subtraction

32 —64 = 82+ 100 — 100 - 64

= 82+ (100 — 64) - 100

= 82+O9+1-64)-100

Does not require borrows

= 82 +((99 — 64))+1 - 100



9’s Complement
(subtract each digit from 9)

99
64

335




10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64

354+ 1 =36




Another Way to Do Subtraction

32 —64= 82+ (99 -64) +1 - 100



Another Way to Do Subtraction

9’s complement

82 _ 64 = 82 +@—@+1 - 100




Another Way to Do Subtraction

9’s complement

82 _ 64 = 82 +@—@+1 - 100

= 82+35+1-100




Another Way to Do Subtraction

9’s complement

82 _ 64 = 82 +@—@+1 - 100
10’s complement
— 82 +@- 100




Another Way to Do Subtraction

9’s complement

82 _ 64 = 82 +@—@+1 - 100
10’s complement
— 82 +@- 100

32 + 36 - 100




Another Way to Do Subtraction

9’s complement

82— 64= 82 +(99 - 64)+1 - 100
10’s complement
= X2 +@- 100
- 100 // Add the first two.

118 - 100




Another Way to Do Subtraction

9’s complement

82— 64= 82 +(99 - 64)+1 - 100
10’s complement
= X2 +@- 100
- 100 // Add the first two.

@1 8 ~ 100 // Just delete the leading 1.

// No need to subtract 100.




1’s Complement



1" s complement
(subtract each digit from 1)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1’ s complement representation K is obtained by
subtracting P from 2" — 1, namely

K=(Q2"-1)- P

This means that K can be obtained by inverting all bits of P.



1" s complement
(subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1’ s complement representation K is obtained by
subtracting P from 2% — 1, namely

K=@Q%-1)- P=255-P

This means that K can be obtained by inverting all bits of P.

Provided that P 1s between 0 and 127, because the most
significant bit must be zero to indicate that 1t 1s positive.



1" s complement
(subtract each digit from 1)




Circuit for negating a number stored in
1’s complement representation

Y7 Yo Ys Y4 ¥3 N) Y1 Yo

YYY Y VY VYYY




Circuit for negating a number stored in
1’s complement representation




2’s Complement



2’ s complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2° s complement representation K is obtained by
subtracting P from 2" , namely

K=2n — P



Deriving 2’ s complement

For a positive n-bit number P, let K, and K, denote its 1 s
and 2" s complements, respectively.

K,=2"-1)-P

K2 — 2n —P
Since K, = K, + 1, it is evident that in a logic circuit the 2" s

complement can computed by inverting all bits of P and then
adding 1 to the resulting 1’ s-complement number.



Deriving 2’ s complement

For a positive 8-bit number P, let K; and K, denote its 1 s

and 2" s complements, respectively.
K,=2"-1)—-P=255-P
K,=2"—-P=256-P

Since K, = K, + 1, it is evident that in a logic circuit the 2" s

complement can computed by inverting all bits of P and then
adding 1 to the resulting 1’ s-complement number.



Find the 2’ s complement of ...

0101 0010

0100 0111



Find the 2’ s complement of ...

0101 0010
1010 1101
0100 0111

1011 1000

Invert all bits.



Find the 2’ s complement of ...

0101 00160
1010 1101
T 1 T 1
1011 1110
0100 O111
1011 1000
—+ 1 + 1

1100 1001

Then add 1.



Circuit for negating a number stored in
2’s complement representation

0 0 0 1 0 1 0




Circuit for negating a number stored in
2’s complement representation

0 0 0O O 0 1 0




Addition of two numbers stored
in 2’s complement representation



There are four cases to consider

(+5) + (+2)
(-3) + (+2)
(+3) + (-2)

(-3) + (-2)



There are four cases to consider

(+3)

(-3)

(+3)

(-3)

(+2)

(+2)

(-2)

(-2)

positive

negative

positive

negative

plus

plus

plus

plus

positive

positive

negative

negative



Positive plus positive

bsbabibg | 2’s complement
o1l | 47
0110 +6
0101 | 45
(+5) 0101 0100 +4
+ (+2) + 0010 0011 +3
0010 | 42
(+7) U 0001 +1
0000 +0
1000 ~8
1001 _7
1010 6
1011 -5
1100 4
1101 —3
1110 —9
1111 1

[ Figure 3.9 from the textbook ]



Negative plus positive

(-5)
+ (+2)

(=3)

[ Figure 3.9 from the textbook ]

bsbabibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0001 +1
0000 +0
1000 —8
1001 —7
1010 —6
1100 —4
1110 —2
1111 —1




Positive plus negative

bsbabibg | 2’s complement
0111 +7
0110 +6
(+5) 0101 0100 +4
+ (=2) + 1110 001t | 43
0010 +2
(+3) 10011 0001 +1
A 0000 +0
| 1000 g
ignore 1001 -7
1010 —6
1011 —5H
1100 —4
1101 -3
1111 —1

[ Figure 3.9 from the textbook ]



Negative plus negative

[ Figure 3.9 from the textbook ]

ignore

bsbabibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 +0
1000 -8
1010 —6
1100 —4
1101 -3
1111 —1




Subtraction of two numbers stored
in 2’s complement representation



There are four cases to consider

(#5) - (+2)
(-3) - (+2)
(+3) - (-2)

(-3) - (-2)



There are four cases to consider

(+3)

(-3)

(+3)

(-3)

(+2)

(+2)

(-2)

(-2)

positive

negative

positive

negative

minus

minus

minus

minus

positive

positive

negative

negative



There are four cases to consider

(#5) - (+2)
(-3) - (+2)
(+3) - (-2)

(-3) - (-2)



There are four cases to consider

(+3)

(-3)

(+3)

(-3)

(+2)

(+2)

(-2)

(-2)

(+3)

(-3)

(+3)

(-3)

(-2)

(-2)

(+2)

(+2)



There are four cases to consider

(+5) - (+2) = (+5) + (-2)
(-3) - (+2) = (-35) + (=2)
(#5) - (-2) = (+5) + (+2)

(-3) - (-2) (-3) + (+2)

We can change subtraction into addition ...



There are four cases to consider

(+5) - (+2) = (+5) + (-2)
(-3) - (+2) = (-35) + (-2)
(#5) - (-2) = (+5) + (+2)

(-3) - (-2) (-3) + (+2)

... 1f we negate the second number.



There are four cases to consider

(+5) - (+2) = (+5) + (-2)
(-3) - (+2) = (-35) + (-2)
(#5) - (-2) = (+5) + (+2)

(-3) - (-2) (-3) + (+2)

There are the four addition cases
(arranged 1n a shuffled order)



Positive minus positive

(+5) 0101
—(+2) ~ 0010
(+3)

[ Figure 3.10 from the textbook ]

bababibo | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —T7
1010 —6
1011 —5
1100 —4
1101 -3
1110 —2
1111 —1




Convert to: Positive plus negative

(+5) 0101
—(+2) ~ 0010
(+3)

[ Figure 3.10 from the textbook ]

m—

0101 (+5)
+1110 +(=2
10011 (+3)
]

ignore

bababibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —T7
1010 —6
1011 —5
1100 —4
1101 —3
1110 —2
1111 —1




Convert to: Positive plus negative

(+5) 0101
—(+2) ~ 0010
(+3)

[ Figure 3.10 from the textbook ]

m—

0101 (+5)
+TrrTe +(-2)
10011 (+3)
]

ignore

bababibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —T7
1010 —6
1011 —5
1100 —4
1101 —3
1110 -2
1111 —1




Graphical interpretation of four-bit
2’s complement numbers

(a) The number circle (b) Subtracting 2 by adding its 2's complement

[ Figure 3.11 from the textbook |



Negative minus positive

(-5) 1011
~(+2) ~ 0010
=7)

[ Figure 3.10 from the textbook ]

bababibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —T7
1010 —6
1011 —5H
1100 —4
1101 -3
1110 —2
1111 —1




Convert to: Negative plus negative

(-5) 1011
~(+2) ~ 0010
=7)

[ Figure 3.10 from the textbook ]

m—

1011 (-5)
+ 0 +(-2
11001 (=7)
|‘
ignore

bababibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —7
1010 —6
1011 —5H
1100 —4
1101 —3
1110 -2
1111 —1







Positive minus negative

(+5) 0101
- (-2) ~ 1110
(+7)

[ Figure 3.10 from the textbook ]

bsbabibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 +0
1000 —8
1001 -7
1010 —6
1011 —5
1100 —4
1101 —3
1110 2
1111 —1




Convert to: Positive plus positive

(+5) 0101
- (-2) ~ 1110
(+7)

[ Figure 3.10 from the textbook ]

m—

0101 (+5)
+ 0010 + #+2)
0111 (+7)

bsbabibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 +0
1000 —8
1001 -7
1010 —6
1011 —5
1100 —4
1101 -3
1110 2
1111 —1







Negative minus negatie

(=5) 1011
~ (<2 ~1110
(-3)

[ Figure 3.10 from the textbook |

bsbabibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0001 +1
0000 +0
1000 -8
1001 —7
1010 —6
1100 —4
1110 —2
1111 —1




Convert to: Negative plus positive

(=5) 1011
~ (-2) ~ 1110
(=3)

[ Figure 3.10 from the textbook ]

m—

1011 (-5)
+0010 + +2)
o1 (-3)

bababibg | 2’s complement
0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 40
1000 —8
1001 —T7
1010 —6
1011 —5H
1100 —4
1101 -3
1110 2
1111 —1




Take Home Message

« Subtraction can be performed by simply negating
the second number and adding it to the first,
regardless of the signs of the two numbers.

 Thus, the same adder circuit can be used to perform
both addition and subtraction !!!




Adder/subtractor unit

X]

Y

y]]—l -yl

Add /Sub

Py

<@
l control

\/ /L

[ Figure 3.12 from the textbook ]



XOR Tricks

control Y out

control



XOR as a repeater




XOR as a repeater




XOR as an inverter




control y

out

XOR as an inverter

<]



Addition: when control =0

X]

Y

y]]—l -yl

Add /Sub

Py

<@
l control

\/ /L

[ Figure 3.12 from the textbook ]



Addition: when control =0

X]

Y

.y]]—l -yl

Add /Sub

LEMJO
Py

1 control
0

\/ /L

[ Figure 3.12 from the textbook ]



Addition: when control =0

0o
.o o - Add / Sub
control
T

\/yn-l Y1 Yo
Cp n-bit adder i)

[ Figure 3.12 from the textbook ]




Subtraction: when control = 1

X]

Y

Yn-1 N

Add /Sub

Py

<@
l control

\/ /L

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

X]

Y

Yn-1 N

Add /Sub

UMJ
Py

1 control
1

\/ /L

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

n— 1 -
Add /Sub
*e 1 control
I

[ Figure 3.12 from the textbook ]



Subtraction: when control = 1

1
Add / Sub
*e 1 control
0 T0

Y Y Y
Yn-1 Y1 Yo
C, -bit adder =0

carry for the
first column!

[ Figure 3.12 from the textbook ]



Overflow Detection



Examples of determination of overflow

(+7)
+ (+2)

(+9)

(+7)
+ (=2)

(+5)

O111
0010

1001

. 011l

1110

10101

7) , 1001
+(+2) 0010
(=5) 1011
-7) , 1001
+ (=2) 1110
(-9) 10111

[ Figure 3.13 from the textbook ]



Examples of determination of overflow

+7 . 0111 -7) , 1001
+ (+2) 0010 + (+2) 0010

1001 (-5) 1011

+7) , 0111 -7
+(-2) 1110 + (-2) 1110

(+5) 10101 10111

In 2's complement, both +9 and -9 are not representable with 4 bits.

[ Figure 3.13 from the textbook ]



Examples of determination of overflow

01100 00000

+7 . 0111 <7) , 1001
+ (+2) 0010 + (+2) 0010
(+9) 1001 (-5) 1011
11100 10000

(+7) L, 0111 -7) ., 1001
+(-2) 1110 + (2) 1110
(+5) 10101 (-9) 10111

Include the carry bits: ¢4 ¢3¢, ¢ ¢



Examples of determination of overflow

01[100 00000

+7 . 0111 <7) , 1001
+ (+2) 0010 + (+2) 0010
(+9) 1001 (-5) 1011
111100 10000

(+7) L, 0111 (-7) L, 1001
+(-2) 1110 + (2) 1110
(+5) 10101 (-9) 10111

Include the carry bits: | c4 c3[c, € €




Examples of determination of overflow

C4 =0
C3 =1
C4 =1
C3 =1

(+7)
+ (+2)

(+9)

01100

O111
0010

1001

11j100

O111
1110

10101

Include the carry bits:

(-7)
+ (+2)

(=5)

(-9)

00000

1001
0010

1011

10j000

1001
1110

C4 C3

10111

Cr €1 Cp

C4 =0
03 =0
C4 1
C3 =0



Examples of determination of overflow

(+7)
+ (+2)

(+9)

=1 (+7)
+ (=2)

(+5)

01100

O111
0010

1001

11j100
O111
1110

10101

Overflow occurs only in these two cases.

(-7)
+ (+2)

(=5)

(-9)

00000

1001
0010

1011

10j000

1001
1110

10111

C4=0
C3=O



Examples of determination of overflow

01]100 00]000 i_“zg
(+7) 0111 (=7) 1001 3
+ +

+ (+2) 0010 + (+2) 0010
(+9) 1001 (=5) 1011
E“fi 111100 10000
3 +7 , 0111 (-7) L, 1001
+(-2) 1110 + (2) 1110
(+5) 10101 (-9) 10111

Overflow = ¢3¢, + C3Cy



Examples of determination of overflow

(+7)
+ (+2)

(+9)

=1 (+7)
+ (=2)

(+5)

01100

O111
0010

1001

11j100

O111
1110

10101

(-7)
+ (+2)

(=5)

(-9)

Overflow = ¢3¢, + C3Cy

\ J
|
XOR

00000

1001
0010

1011

10j000

1001
1110

10111

C4=0
C3=O



Calculating overflow for 4-bit numbers
with only three significant bits

Overflow = c3cs + C3C4

~
~



Calculating overflow for n-bit numbers
with only n-1 significant bits

Overflow = ¢, 6 ¢,



Detecting Overflow

Xn-1 Jn-1 X] N X M
Y

FA - Cp.] eee O w— FA <+— FA i)




Detecting Overflow
(with one extra XOR)

Xn-1 Vn-1 1N X N
] 1
Y v NV 1 v .
Cn FA <-4 (.1 ee e () w—] FA ‘1— FA i)
Y ' Y
Sp—1 5] 50

overflow j




A ripple-carry adder



How long does it take to compute ali
sum bits and all carry bits?

Xn-1 Jn-1 X] N X M
Y




Delays through the modular
implementation of the full-adder circuit

o

X’ g HA c !

. — |

1 HA 37, Civ1
)/1- ——

(a) Block diagram

S
|/

(b) Detailed diagram

[ Figure 3.4 from the textbook ]



Delays through the modular
implementation of the full-adder circuit

X’ g HA c !

. — |

1 HA C 37, CI'+ 1
}/I- ——

(a) Block diagram

c, E 2 gate delays through this route

(b) Detailed diagram

U

[ Figure 3.4 from the textbook ]



Delays through the modular
implementation of the full-adder circuit

XJ p HA . 1

. — —

i HA c Dﬁ Civ1
Vi ——

(a) Block diagram
i AD s

XI' !
Yi ﬁD \ : 3 gate delays 1n total
Ci+1

)
|/

(b) Detailed diagram
[ Figure 3.4 from the textbook ]



How long does it take to compute ali
sum bits and all carry bits in this case?

Xn-1 Jn-1 X] N X M
Y

It takes 3n gate delays?



Delays through the Full-Adder circuit

Xl |
\\i >
Yi g ,I Si _ 'xl®«\l®cl
C; ®
> —
¢
\ C. = X.V.+X.C-+ V.C:
)| / D_ I+ 1 1-)1 T A

[ Figure 3.3c from the textbook |



Delays through the Full-Adder circuit

X

yi_.;)D—si = 5®y;®c

l

C.:

l

/

1 gate delay through this route

D— Cip1 = XY T X6 TV

ok

[ Figure 3.3c from the textbook |



Delays through the Full-Adder circuit

Xl- ®
Vi J)) > S;p = X @ Y;® ¢
Ci P

2 gate delays in total

C.

i+1 = XY T X ¢+ yC;

D
—

[ Figure 3.3c from the textbook |



How long does it take to compute ali
sum bits and all carry bits?

Xn-1 Jn-1 X] N X M
| L L
Y Y \/ | A | - Y Y
Cn FA -+ (1] e e e O w—] FA <1— FA (1)
Y Y Y
Sn—1 S1 S0

It takes 2n gate delays?



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the
full-adder circuit yet again.



The Full-Adder Circuit

S; = X, @ Yy; D C;

D— Ciy1 = XY+ X+ YC;

ok

[ Figure 3.3c from the textbook |



The Full-Adder Circuit

Si — X,@y,@ Ci

_—

D
~
__J

Di Cip1 = XY T X6 TV

}

Let's

take a closer look at this.

Figure 3.3c from the textbook ]



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X;y; + (x; + Y;)C;



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X;y; + (x; + Y;)C;

.
. D




Another Way to Draw the Full-Adder Circuit
Cir1=X;Yi+ X; C; T ); C;

Cir1=X;y; + (x; + Y;)C;

Vi t HD Si
Xi t ® }
—
|/




Another Way to Draw the Full-Adder Circuit

Cir1=X;y; + (x; + Y;)C;

Xi '® }
D




Another Way to Draw the Full-Adder Circuit

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi

Vi t HD Si
Xi t ® }
—
|/




Another Way to Draw the Full-Adder Circuit

g - generate p - propagate

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi

Vi t HD Si
Aj ' '—Dpi }
Dgi _Di Cit+]




Yet Another Way to Draw It (Just Rotate It)
Aj Yi

oly

8i Di

Cit1 S;



Now we can Build a Ripple-Carry Adder

X] N

vivh|

X0 Q0

<

&1 P1
€1
)
Stage 1
C1 = £o T PocCo S

=5 _Lx_/)l{‘\'ﬂ T P1P0oCo

vl

|
U

Stage O

50

[ Figure 3.14 from the textbook ]



Now we can Build a Ripple-Carry Adder

X] N

vivh|

X0 Q0

<

&1 P1
¢
%)
Stage 1
C1 = £o T PoCo S1

€2 — 81 _11_1)1\1\:” T P1P0oCo

vl

|
WAV

Stage O

50

[ Figure 3.14 from the textbook ]



2-bit ripple-carry adder: 5 gate delays (1+2+2)

N X0 B4}

b

IS
)

Al v/

Cy = /\

Stage 1




n-bit ripple-carry adder: 2n+1 gate delays

N X0 J0

b

IS
)

Al v/

Cy = /\

Stage 1




n-bit Ripple-Carry Adder
It takes 1 gate delay to generate all g; and p; signals

+2 more gate delays to generate carry 1

+2 more gate delay to generate carry 2

+2 more gate delay to generate carry n

Thus, the total delay through an
n-bit ripple-carry adder is 2n+1 gate delays!



n-bit Ripple-Carry Adder
It takes 1 gate delay to generate all g; and p; signals

+2 more gate delays to generate carry 1

+2 more gate delay to generate carry 2

+2 more gate delay to generate carry n

Thus, the total delay through an
n-bit ripple-carry adder is 2n+1 gate delays!

This is slower by 1 than the original design?!



A carry-lookahead adder



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi




Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X; ¥;i + (X; + ¥;)C;
\_'_l \ Y J

8i Pi
(1 gate delay) (1 gate delay)




It takes 1 gate delay to compute all p; signals

N X0 J0

v

|
0 I 0L

Q'Qr_
-
/_' 3
@S
{
\_

i}
IS

Stage 1 Stage O

[ Figure 3.14 from the textbook ]



It takes 1 gate delay to compute all g; signals

N X0 J0

g
i}
uS

Stage 1 Stage O

[ Figure 3.14 from the textbook ]



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi




Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi

Ci;1=8; TDiC;



Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X;y; + (x; + Y;)C;

— v
8i Pi
_ recursive
Cir1=8i T DiC; expansion of

Ci

Cir1=8i T P81 +Pi-1@




Decomposing the Carry Expression

Cir1=X; Y+ X;C; +)Y;C;

Cir1=X; Y; + (X; + ¥;)c;
\_'_l \ Y ]
8i Pi

Ci;1=8; TDiC;
Civ1=8; +Pi(81 *+DPi1Ci1)

Cir1=8; T Pi8i.1 T PiPi-1Ci-1



Now we can Build a Carry-Lookahead Adder

o %0 Y0

P &0 Py

g

[ Figure 3.15 from the textbook |



The first two stages of a carry-lookahead adder

N

%0 0

Stage (

50

[ Figure 3.15 from the textbook |



Carry for the first stage

C; = 8y tPpCy



Carry for the first stage

!




Carry for the second stage

C; = 81 T D180+ PiPoCo



Carry for the second stage

%0

V0 | 9U]

VY

C2 = &1 +Pi8o1 PiPoCo




Carry for the first two stages

C;1 = 8y tPpCy

C; = 81 T D180+ PiPoCo



Carry for the first two stages

C;1 = 8y tPpCy

C2 = 81 * Pi180+ P1PoCo



Carry for the first two stages

C;1 = 8o T PoCy
C2 = 81 * Pi180+ P1PoCo

= &1 T D (go + pOCO')

Cj




Carry for the first two stages

C;1 = 8o T PoCy
C; = 81 T D180+ PiPoCo

= &1 T D (go + pOCO')

Cj

= g7 tDPi1C;



The first two stages of a carry-lookahead adder

N

%0

)
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[ Figure 3.15 from the textbook |



It takes 3 gate delays to generate c,

o %0 Y0

gs\_\ '

P )

U0 0




It takes 3 gate delays to generate c,

o %0 Y0

U0 0

P )

juv“ v

C2 = &1 tPi8o1 PiPoCo

gs\_\




The first two stages of a carry-lookahead adder

o %0 Y0
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It takes 4 gate delays to generate s,

%0

00 | Oy
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It takes 4 gate delays to generate s,

N %0 Y0

gs\_\ '

P =)

U0 0

-




N-bit Carry-Lookahead Adder

It takes 1 gate delay to generate all g; and p; signals
It takes 2 more gate delays to generate all carry signals

It takes 1 more gate delay to generate all sum bits

Thus, the total delay through an
n-bit carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression
Civi = &i +pz

C; = 8o T PoCo
Cr = &1 T+ P180+t PiPoCo

C3 = &2 + P81t DP2P180+ P2P1PoCo

Cs = 87 T P786 T P7Pc85 T P7PcP584
T PP6PsP483 T P7P6PsP4P 382
T P7P6PsP4P3P28 11 P7PePsPaP3P2P 180
T P7P6PsP4P3P2P 1PoCo



Expanding the Carry Expression
Civi = &i +pl

C; = 8o T PoCo
Cr = &1 T+ P180+t PiPoCo

C3 = &2 + P81t DP2P180+ P2P1PoCo

87 T P86+ P7Ps85 + P7PsP584
Evlen ;hlsttalgels + P7DP6PsP483 T P7PePsP4P382
only 3 gate delays

+ PDP6PsP4P3P28 1+ P7PePsP4P3P2P 180
+ P7D6PsP4P 3P 2P 1PoCo




A hierarchical carry-lookahead adder
with ripple-carry between blocks



A hierarchical carry-lookahead adder with
ripple-carry between blocks

X31-24 J31-24 X3_-16 J23-16

Y Y

Block €24
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€32 ~—

8$31-24

X158  JN5-8
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C
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y Y

Y7i-0



A hierarchical carry-lookahead adder with
ripple-carry between blocks

X31-24 W31-24 X3_-16 I3-16 X15-8 N5-8 X_0 V-0

| |
I ] | | |
y Y vv\/vv Y Y
Cl6

&Y g
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8$31-24 $3_16 $15-8 8§70



A hierarchical carry-lookahead adder with
ripple-carry between blocks

X31-24 W31-24 X3_-16 I3-16 X15-8 N5-8 X_0 Mi-o

| |
| | | | | | | |
Yooy y v\/v y

€16

32

8$31-24 $3_16 S15-8 §7_-0



A hierarchical carry-lookahead adder



A hierarchical carry-lookahead adder with
ripple-carry between blocks

31-24 JN31-24 X15-8  N5-8 X0 V-0
Y Y y Y 4 4
g
C3) B1(3)ck Cry = oo Cig Bl(fck Blgck o
831 -24 $15-8 8§70

[ Figure 3.16 from the textbook |



A hierarchical carry-lookahead adder

Second-level lookahead

X31-24 J31-24 X158  J15-8 X1_0 NV1-o0
Block . Block Block c
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[ Figure 3.17 from the textbook |



A hierarchical carry-lookahead adder

X31-24 J31-24

| |

Second-level lookahead
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A hierarchical carry-lookahead adder

X31-24 J31-24 X15-8  N5-8 X7_0 Y1-0

53124 S15-8 57_0
® 0 o
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Second-level lookahead — e e )\ I




A hierarchical carry-lookahead adder

X31-24 J31-24 X15-8  N5-8 X7_0 Y1-0

=0
| > €4
G| P3
S31-24 cee S15-8 $7-0
vV yv I F Yy V. J vy
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Second-level lookahead — e e )\ I




The Hierarchical Carry Expression

Cs = 87 T P786 T P7P685t P7P6P3584
T P7P6PsP483 T P7P6PsP4P 382
T P7P6PsP4P3P28 11 P7PePsPaP3P2P 180
T P7P6PsP4P3P2P 1PoCo



The Hierarchical Carry Expression

Cs =|87 T P786+ P7P685+ P7PcP 584
+ PiPPs5P483 + P7PePsP4P382
+ PDP6PsP4P3P28 1+ P7PePsP4P3P2P 180

+ ‘W7P6P5P4Z73P2PJP5|C0




The Hierarchical Carry Expression

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PDP6PsP4P3P28 1+ P7PePsP4P3P2P 180

‘L‘W7P6P5P4P3P2PJP5F0
P, —




The Hierarchical Carry Expression

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PDP6PsP4P3P28 1+ P7PePsP4P3P2P 180

‘L‘W7P6P5P4P3P2PJP5F0
P, —

Cg = GO +P0C0



The Hierarchical Carry Expression
3-gate delays

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PDP6PsP4P3P28 1+ P7PePsP4P3P2P 180

+
%lp 7P6PsP4P 3PP ]pstO
Py —

2-gate delays

Cg = GO +P0C0



The Hierarchical Carry Expression
3-gate delays

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PiPPsPaP3P28 1t P7PePsP4P3P2P 180

+
4>|p 7P6PsP4P 3PP ]pstO
Py —

2-gate delays

Cg = +0

3-gate  2-gate
delays delays




The Hierarchical Carry Expression
3-gate delays

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PiPPsPaP3P28 1t P7PePsP4P3P2P 180

+
4>|p 7P6PsP4P 3PP ]pstO
Py —

2-gate delays

3-gate 3-gate
delays delays



The Hierarchical Carry Expression
3-gate delays

Cs =|87 T P786+ P7P685+ P7PcP 584
|\t P7PePsP483 + P7PsPsP4P 382
+ PiPPsPaP3P28 1t P7PePsP4P3P2P 180

+
4>|p 7P6PsP4P 3PP ]pstO
Py —

2-gate delays

Cg :@_I_POCO

4-gate
delays




The Hierarchical Carry Expression

= g7 T P78t P7P685 T P7P6sP584
P7P6PsP4&3 + P7PsP5P4P3&2
PsP4P3P2817+ P7PsPsP4P3P2P1&0
P7P6P5P4P3P2P1P0Co

+ + + 0
?Q,
1
)

@)
@
N

Ci6 = 15 T P15814 1+ P15P14813 T P15P14P13&12
+ P15P14P13P12811 T P15P14P13P12P11&10
+ P15P14P13P12P11P10&9 1 P15P14P13P12P11P10P9 &8

+ P15P14P13P12P11P10P9PsCs




The Hierarchical Carry Expression

= &7 T DP786 T P7P685 T P7PcP584
P7P6P5P4L3 + P7PsPs5P4P3&2
P5P4P3P281+ P7PsP5P4P3P2P180

P7P6P5P4P3P2P1P0Co
The same expression, just add 8 to all subscripts

Ci6 = 15 T P15814 1+ P15P14&13 T P15P14P13812
+ P15P14P13P12811 T P15P14P13P12P11&10
+ P15P14P13P12P11P10&9 1 P15P14P13P12P11P10P9 &8

+ P15P14P13P12P11P10P9PsCs

+ + + 0
?Q,
1
)

@)
@
N




The Hierarchical Carry Expression

3-gate delays

Cg = 87 + P7g6 T P7Ps85 + P7P6P584

PsP4P3P2P1P(Co

P43 T P7P6cPsP4P3&2
PaP3P281+ P7P6sP5P4P3P2P180

2-gate delays

Cie = £15 T P15814 T P15P14813 T P15P14P13812

+ T
A
+ T
A
+ T
A

P12811 T P15P14P13P12P11&10
P12P11P1089+ P15P14P13P12P11P10P9&s

P12P11P10P9PsCs



The Hierarchical Carry Expression

= g7 T P78t P7P685 T P7P6sP584
P7P6PsP4&3 + P7PsP5P4P3&2
PsP4P3P2817+ P7PsPsP4P3P2P1&0
P7P6P5P4P3P2P1P0Co

+ + + 0
?Q,
1
)

@)
@
N

3-gate delays

Ci6 =| 815 T P15814 1+ P15P14&13 T P15P14P13812
_—1t P15P14P13P12811 T P15P14P13P12P11&10
Gy + P15P14P13P12P11P10&9 1 P15P14P13P12P11P10P9 &8

/'b| P15P14P13P12P11P10PoPgCs
P, 2-gate delays




The Hierarchical Carry Expression

Cg = GO +POC0



The Hierarchical Carry Expression

Cs :+ POCO

3-gate delays



The Hierarchical Carry Expression

4-gate delays



The Hierarchical Carry Expression
Cg = GO + POCO

Cig — G] +P]C8
= G] +P]G0+P]P0C0



The Hierarchical Carry Expression

Cs :+ POCO

3-gate delays

Cig — G] + P] Cg
= G] +P]+P]POC0
3-gate delays



The Hierarchical Carry Expression
Cg = GO + POCO

Cig — G] + P] Cg
= G] +P]+P]POC0
3-gate delays



The Hierarchical Carry Expression
Cg = GO + POCO

Cig — G] +P]C8

= G, + P, P,c,

4-gate delays



The Hierarchical Carry Expression
Cg = GO + POCO

Cig — G] +P]C,Q

:@ P1Go+ P Pycy

5-gate delays




The Hierarchical Carry Expression
Cg = GO + POCO

Cig — G] +P]C8
= G] +P]G0+P]P0C0

C24:G2 +P2G1+P2P1G0+P2P1P0CO

C32:G3 +P3G2 +P3P2G1+P3P2P1G0+P3P2P1P0C0



The Hierarchical Carry Expression

4-oate delays
C8 = GO + POCO S Y

cis = G +Pjcg 5-gate delays

:G] +P]G0+P]P0C0
S-gate delays
C24:G2 +P2G]+P2P]G0+P2P]P0CO

5-gate delays

C32:G3 +P3G2 +P3P2G1+P3P2P1G0+P3P2P1P0C0



A hierarchical carry-lookahead adder

Second-level lookahead

X31-24 J31-24 X158  J15-8 X1_0 NV1-o0
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[ Figure 3.17 from the textbook |



A hierarchical carry-lookahead adder

X31-24 J31-24 X158  N5-38 X7_0 JV7-0
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[ Figure 3.17 from the textbook |



Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

 The total delay is 8 gates:

3 to generate all Gi and Pi signals

= +2 to generate c8, ¢16, c24, and c32

= +2 to generate internal carries in the blocks

+1 to generate the sum bits (one extra XOR)
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Block 2 Block 1

Hierarchical
CLA
Critical Path
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Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

 The total delay is 8 gates:

= 3 to generate all Gi and Pi signals
= +2 to generate c8, ¢16, c24, and c32
= +2 to generate internal carries in the blocks

= +1 to generate the sum bits (one extra XOR)



2 more gate delays for the internal carries within a block

X o %0 Y0




2 more gate delays for the internal carries within a block
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Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

 The total delay is 8 gates:

3 to generate all Gi and Pi signals

= +2 to generate c8, ¢16, c24, and c32

= +2 to generate internal carries in the blocks

+1 to generate the sum bits (one extra XOR)



Questions?



THE END



