

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW2 is due on Monday Aug @ 4pm
- Please write clearly on the first page the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Administrative Stuff

- Next week we will start with Lab2
- Read the lab assignment and do the prelab at home.
- Upload the prelab on Canvas before you go to the lab.
 Otherwise you'll lose 20% of your grade for that lab.
- Upload the rest of your lab report in Canvas by the end of that day (11:59 pm).

Quick Review

The Three Basic Logic Gates

$$X_1$$
 X_2
 $X_1 \cdot X_2$

$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate

AND gate

OR gate

Truth Table for NOT

<i>X</i>	\overline{x}
0	1
1	0

Truth Table for AND

x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1
		I .

Truth Tables for AND and OR

x_1	x_2	$oxed{x_1 x_2}$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

AND OR

Boolean Algebra

George Boole 1815-1864

- An algebraic structure consists of
 - a set of elements {0, 1}
 - binary operators {+, •}
 - and a unary operator { ' } or { } or { ~ }
- Introduced by George Boole in 1854
- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Different Notations for Negation

- All three of these mean "negate x"
 - X
 - X

■ ~X

- In regular arithmetic and algebra, multiplication takes precedence over addition.
- This is also true in Boolean algebra.
- For example, x + y z means
 multiply y by z and add the product to x .
- In other words, x + y z is equal to x + (y z),
 not (x + y) z.

The multiplication dot is optional

- In regular algebra, the multiplication operator is often omitted to shorten the equations.
- This is also true in Boolean algebra.
- Both of these mean the same thing:
 xy is equal to x y

Operator Precedence (three different ways to write the same)

$$x_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2$$

$$(x_1 \cdot x_2) + ((\bar{x}_1) \cdot (\bar{x}_2))$$

$$x_1x_2 + \bar{x}_1\bar{x}_2$$

 Negation of a single variable takes precedence over multiplication of that variable with another variable.

For example,

A B means negate A first and then multiply A by B

 However, a horizontal bar over a product of two variables means that the negation is performed after the product is computed.

For example,

A B means multiply A and B and then negate

Note that these two expressions are different:

A B is not equal to A B

A B means multiply A and B and then negate

A B means negate A and B separately and then multiply

Note that these two expressions are different:

A B is not equal to A B

A	В	AB		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Α	В	AB
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem

15a.
$$\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} + \overline{y}}{\overline{x}}$$

15b. $\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} \cdot \overline{y}}{\overline{y}}$

Proof of DeMorgan's theorem

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0	0	1	1	1	1
0 1	0	1	1	0	1
1 0	0	1	0	1	1
1 1	1	0	0	0	0

LHS

RHS

Proof of DeMorgan's theorem

x
 y
 x
 y

$$\bar{x}$$
 \bar{y}
 \bar{x}
 \bar{y}
 \bar{x}
 \bar{y}

 0
 0
 0
 1
 1
 1
 1

 0
 1
 0
 1
 1
 0
 1

 1
 0
 0
 1
 0
 1
 1

 1
 0
 0
 0
 0
 0

 1
 1
 0
 0
 0
 0

These two columns are equal. Therefore, the theorem is true.

x • y

start with the left-hand side

divide the bar into 3 equal parts

x • y

erase the middle segment

$$\frac{1}{x} + y$$

change the product to a sum

$$x + y$$

this is the right-hand side

$$x \cdot y = x + y$$

Proof of the other DeMorgan's theorem

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	ÿ	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0	1 1 0 0	1 0 1 0	1 0 0 0
LHS RHS						

 α

Proof of the other DeMorgan's theorem

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

x y	x + y	$\overline{x} + \overline{y}$	\bar{x}	\bar{y}	$\bar{x} \cdot \bar{y}$
0 0	0 1 1 1 1	1	1	1	1
0 1		0	1	0	0
1 0		0	0	1	0
1 1		0	0	0	0

LHS RHS
These two columns are equal. Therefore, the theorem is true.

A Short Digression

The 2D Plane

The unit vectors i and j form a basis

 Any point in the 2D plane can be represented as a linear combination of these two vectors.

In 3D we have i, j, and k

$$i=(1, 0, 0)$$

 $j=(0, 1, 0)$
 $k=(0, 0, 1)$

Note that there is only one 1 in each.

Function Synthesis

Synthesize the Following Function

x ₁	X ₂	f(x ₁ , x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

$$\overline{x}_1 \overline{x}_2 \qquad \overline{x}_1 x_2 \qquad 0 \qquad x_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \underline{1} \cdot f_{00} + \underline{1} \cdot f_{01} + \underline{0} \cdot f_{10} + \underline{1} \cdot f_{11}$$

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \underline{0} + \underline{x}_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$$

A function to be synthesized

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Let's look at it row by row. How can we express the last row?

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Let's look at it row by row. How can we express the last row?

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	$1 x_1 x$

Let's look at it row by row. How can we express the last row?

$\mathfrak{r}_2)$	$f(x_1, x_2)$	x_2	x_1
	1	0	0
	1	1	0
	0	0	1
$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	1	1	1

What about this row?

x_2)	$f(x_1, y_1)$	x_2	x_1
	1	0	0
	1	1	0
	0	0	1
$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	1	1	1

What about this row?

r ₂)	$f(x_1, x_2)$	x_1 x_2		
	1	0	0	
\overline{x}_1x_2	1	1	0	
	0	0	1	
$\begin{array}{c} x_1 \\ x_2 \end{array}$	1	1	1	

What about this row?

What about the first row?

What about the first row?

What about the first row?

Finally, what about the zero?

Putting it all together

Let's verify that this circuit implements correctly the target truth table

Let's verify that this circuit implements correctly the target truth table

Putting it all together

Canonical Sum-Of-Products (SOP)

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

Summary of This Procedure

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_i = 1$ enter it as x_i , otherwise use x_i
- Sum all of these products (OR gate) to get the function

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 \bar{x}_2$$
 replicate this term
$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + \bar{x}_1 x_2$$

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 \qquad \text{group}$$
these terms

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2$$
$$f(x_1, x_2) = (x_1 + \overline{x}_1) x_2 + \overline{x}_1 (\overline{x}_2 + x_2)$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2$$

These two terms are trivially equal to 1

$$f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$$

$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2 + \overline{x}_1x_2$$

$$f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$$

$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$

Drop the 1's

$$f(x_1, x_2) = x_2 + \overline{x}_1$$

Minimal-cost realization

$$f(x_1, x_2) = x_2 + \overline{x}_1$$

Two implementations for the same function

(a) Canonical sum-of-products

(b) Minimal-cost realization

Let's look at another problem

(a) Conveyor and sensors

<i>s</i> ₁	s_2	s_3	f
	0	0	
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(b) Truth table

Let's look at another problem

s_1	s_2	s_3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			l

s_1	s_2	s_3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	0	1	1
1	0	0	0
1	1	0	1
1	1	1	

s_1 s_2 s_3	f	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0	$\overline{s}_1 \overline{s}_2 s_3$ $\overline{s}_1 \overline{s}_2 s_3$ $\overline{s}_1 \overline{s}_2 s_3$ $\overline{s}_1 \overline{s}_2 \overline{s}_3$
1 1 1	1	$S_{1}S_{2}S_{3}$

s_1 s_2 s_3	f	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0	$ \bar{s}_{1} \bar{s}_{2} \bar{s}_{3} $

s_1 s_2 s_3	f	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0	$\begin{array}{c} s_1 s_2 s_3 \\ s_1 s_2 s_3 \\ s_1 s_2 s_3 \\ s_1 s_2 s_3 \\ s_1 s_2 s_3 \end{array}$

s_1 s_2 s_3	f	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0	$S_1 S_2 S_3$ $S_1 S_2 S_3$ $S_1 S_2 S_3$ $S_1 S_2 S_3$ $S_1 S_2 S_3$
	l	

s_1 s_2 s_3	f	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0	$S_1S_2S_3$ $S_1S_2S_3$ $S_1S_2S_3$ $S_1S_2S_3$ $S_1S_2S_3$
	l	

<i>s</i> ₁	s_2	s_3	f	
0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0	0 1 0 1 0	$\bar{s}_{1}\bar{s}_{2}s_{3}$ $\bar{s}_{1}\bar{s}_{2}s_{3}$ $s_{1}\bar{s}_{2}s_{3}$ $s_{1}s_{2}s_{3}$ $s_{1}s_{2}s_{3}$
				1 2 3

 $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 \bar{s}_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$

Let's look at another problem (minimization)

$$f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$$

$$= \bar{s}_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 s_3 (\bar{s}_2 + s_2) + s_1 s_2 (\bar{s}_3 + s_3)$$

$$= \bar{s}_1 s_3 + s_1 s_3 + s_1 s_2$$

$$= s_3 + s_1 s_2$$

Let's look at another problem (minimization)

$$f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$$

$$= \bar{s}_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 s_3 (\bar{s}_2 + s_2) + s_1 s_2 (\bar{s}_3 + s_3)$$

$$= \bar{s}_1 s_3 + s_1 s_3 + s_1 s_2$$

$$= s_3 + s_1 s_2$$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Use these for Sum-of-Products Minimization (1's of the function) Use these for Product-of-Sums Minimization (0's of the function)

(uses the ones of the function)

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \hline \end{array}$

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0 1 2 3	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$ $m_2 = x_1 \overline{x}_2$ $m_3 = x_1 x_2$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}$

$$f(x_1, x_2) = m_3 = x_1 x_2$$

(In this case there is just one product and there is no need for a sum)

Another Example

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0 1 2 3	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ \end{array}$		$\begin{matrix} 1\\1\\0\\1\end{matrix}$

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$ $m_2 = x_1 \overline{x}_2$ $m_3 = x_1 x_2$	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	\parallel Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		0 1 1 1

$$f(x_1, x_2) = M_0 = x_1 + x_2$$

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		0 1 0 1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$0 \\ 1 \\ 0 \\ 1$		0 1 0 1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0 1 2 3	0 0 1 1	$0 \\ 1 \\ 0 \\ 1$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0 1 0 1

$$f(x_1, x_2) = M_0 \bullet M_2 = (x_1 + x_2) \bullet (\overline{x_1} + x_2)$$

Yet Another Example

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0 1 2 3	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		1 1 0 1

We need to minimize using the zeros of the function f. But let's first minimize the inverse of f, i.e., \overline{f} .

Row number	x_1	x_2	Maxter	$ f(x_1, x_2) $	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$M_0 = x_1 - x_1 $	$egin{array}{c c} x_2 & 1 \\ \hline x_2 & 1 \\ \hline x_2 & 0 \\ \hline x_2 & 1 \\ \hline x_2 & 1 \\ \hline \end{array}$	0 0 1 0

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$egin{aligned} I_0 &= x_1 + x_2 \ I_1 &= x_1 + \overline{x_2} \ I_2 &= \overline{x_1} + x_2 \ I_3 &= \overline{x_1} + \overline{x_2} \end{aligned}$	1 1 0 1	0 0 1 0

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1		$egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$	0 0 1 0

$$\overline{f}(x_1, x_2) = m_2$$
$$= x_1 \overline{x}_2$$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ \end{array}$	0 0 1 1	0 1 0 1		1 1 0 1	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

$$\bar{f} = f = \overline{x_1 \overline{x_2}} \qquad \bar{f}(x_1, x_2) = m_2
= \overline{x_1} + x_2 \qquad = x_1 \overline{x_2}$$

$$\overline{f}(x_1, x_2) = m_2$$
$$= x_1 \overline{x}_2$$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ \end{array}$	0 0 1	0 1 0	$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$	0	0 0 1

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x}_2}$$
 $\overline{f}(x_1, x_2) = m_2$
= $\overline{x}_1 + x_2$ = $x_1 \overline{x}_2$

$$f = \overline{m}_2 = M_2$$

Examples with three-variable functions

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

A three-variable function

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products (SOP)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products (SOP)

Row number	<i>x</i> ₁	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \bar{x}_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 \bar{x}_2 x_3 + x_1 x_2 \bar{x}_3$$

Sum-of-Products (SOP)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$$

$$f = (\overline{x}_1 + x_1) \overline{x}_2 x_3 + x_1 (\overline{x}_2 + x_2) \overline{x}_3$$

$$= 1 \cdot \overline{x}_2 x_3 + x_1 \cdot 1 \cdot \overline{x}_3$$

$$= \overline{x}_2 x_3 + x_1 \overline{x}_3$$

Sum-of-products realization of this function

$$f = \overline{x_2} x_3 + x_1 \overline{x_3}$$

A three-variable function

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums (POS)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums (POS)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = \overline{m_0 + m_2 + m_3 + m_7}$$

$$= \overline{m_0} \cdot \overline{m_2} \cdot \overline{m_3} \cdot \overline{m_7}$$

$$= M_0 \cdot M_2 \cdot M_3 \cdot M_7$$

$$= (x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$$

Product-of-Sums (POS)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = ((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(x_1 + (\overline{x}_2 + \overline{x}_3))(\overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$$

$$f = (x_1 + x_3)(\overline{x}_2 + \overline{x}_3)$$

Product-of-sums realization of this function

$$f = (x_1 + x_3) \bullet (\overline{x_2} + \overline{x_3})$$

Two realizations of this function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Shorthand Notation for SOP

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Shorthand Notation for POS

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	_1_
7	1	1	1	0

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Shorthand Notation

Sum-of-Products (SOP)

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Product-of-Sums (POS)

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates
- Add the two partial counts. That is the cost.

What is the cost of each circuit?

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

What is the cost of this circuit?

Questions?

THE END