
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Synthesis
Using AND, OR, and NOT Gates

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
• HW2 is due on Monday Aug @ 4pm

• Please write clearly on the first page the following
three things:

§ Your First and Last Name
§ Your Student ID Number
§ Your Lab Section Letter

§ Submit on Canvas as *one* PDF file.

• Please orient your pages such that the text can be
read without the need to rotate the page.

Administrative Stuff

• Next week we will start with Lab2

• Read the lab assignment and do the prelab at home.

• Upload the prelab on Canvas before you go to the lab.
Otherwise you’ll lose 20% of your grade for that lab.

• Upload the rest of your lab report in Canvas by the
end of that day (11:59 pm).

Quick Review

x 1
x 2

x 1 x 2 +

AND gate

x x
x 1
x 2

x 1 x 2 •

The Three Basic Logic Gates

[Figure 2.8 from the textbook]

OR gateNOT gate

Truth Table for NOT

x x

0
1

1
0

x x

x 1
x 2

x 1 x 2 •

Truth Table for AND

Truth Table for OR

x 1
x 2

x 1 x 2 +

[Figure 2.6b from the textbook]

Truth Tables for AND and OR

Boolean Algebra

George Boole
1815-1864

• An algebraic structure consists of
§ a set of elements {0, 1}
§ binary operators {+, �}
§ and a unary operator { � } or { } or { ~ }

• Introduced by George Boole in 1854

• An effective means of describing circuits
built with switches

• A powerful tool that can be used for
designing and analyzing logic circuits

Different Notations for Negation

• All three of these mean “negate x”

§ x�

§ x

§ ~x

Operator Precedence

• In regular arithmetic and algebra, multiplication
takes precedence over addition.

• This is also true in Boolean algebra.

• For example, x + y • z means
multiply y by z and add the product to x .

• In other words, x + y • z is equal to x + (y • z) ,
not (x + y) • z .

The multiplication dot is optional

• In regular algebra, the multiplication operator is
often omitted to shorten the equations.

• This is also true in Boolean algebra.

• Both of these mean the same thing:
xy is equal to x • y

Operator Precedence
(three different ways to write the same)

Operator Precedence

• Negation of a single variable takes precedence over
multiplication of that variable with another variable.

• For example,

A B means negate A first and then multiply A by B

Operator Precedence

• However, a horizontal bar over a product of two
variables means that the negation is performed after
the product is computed.

• For example,

A B means multiply A and B and then negate

Operator Precedence

• Note that these two expressions are different:

A B is not equal to A B

A B means multiply A and B and then negate

A B means negate A and B separately and then multiply

Operator Precedence

• Note that these two expressions are different:

A B is not equal to A B

A B AB
0 0 1

0 1 1

1 0 1

1 1 0

A B AB
0 0 1

0 1 0

1 0 0

1 1 0

DeMorgan’s Theorem

Proof of DeMorgan’s theorem

Proof of DeMorgan’s theorem

These two columns are equal. Therefore, the theorem is true.

How to remember DeMorgan’s theorem

x • y start with the
left-hand side

How to remember DeMorgan’s theorem

x • y divide the bar
into 3 equal parts

How to remember DeMorgan’s theorem

x • y erase the
middle segment

How to remember DeMorgan’s theorem

x + y change the
product to a sum

How to remember DeMorgan’s theorem

x + y this is the
right-hand side

How to remember DeMorgan’s theorem

x • y = x + y

0
1
1
1

1
0
0
0

1
1
0
0

1
0
1
0

1
0
0
0

Proof of the other DeMorgan’s theorem

0
1
1
1

1
0
0
0

1
1
0
0

1
0
1
0

1
0
0
0

These two columns are equal. Therefore, the theorem is true.

Proof of the other DeMorgan’s theorem

A Short Digression

The 2D Plane

x

y

The 2D Plane

x

y

i = (1, 0)

The 2D Plane

x

y

j = (0, 1)

The 2D Plane

x

y

point p

The 2D Plane

x

y

p = 3i + 2j

The unit vectors i and j form a basis
• Any point in the 2D plane can be represented as a

linear combination of these two vectors.

• In 3D we have i, j, and k

i=(1, 0, 0)
j=(0, 1, 0)
k=(0, 0, 1)

Note that there is only one 1 in each.

Function Synthesis

Synthesize the Following Function

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

1) Split the function into a sum of 4 functions

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

1) Split the function into a sum of 4 functions

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

2) Write the expressions for all four

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

2) Write the expressions for all four

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

3) Then just add them together

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

3) Then just add them together

[Figure 2.19 from the textbook]

A function to be synthesized

Let’s look at it row by row.
How can we express the last row?

Let’s look at it row by row.
How can we express the last row?

Let’s look at it row by row.
How can we express the last row?

x2
x1

What about this row?

x2
x1

What about this row?

x2
x1

What about this row?

x2
x1

x1
x2

What about the first row?

x2
x1

x1
x2

What about the first row?

x2
x1

x1
x2

What about the first row?

x2
x1

x1
x2

x1
x2

Finally, what about the zero?

x2
x1

x1
x2

x1
x2

Putting it all together

f

x 1
x 2

Let’s verify that this circuit implements
correctly the target truth table

f

x 1
x 2

Let’s verify that this circuit implements
correctly the target truth table

f

x 1
x 2

Putting it all together

f

x 1
x 2

Canonical Sum-Of-Products (SOP)

[Figure 2.20a from the textbook]

f

x 1
x 2

Summary of This Procedure

• Get the truth table of the function

• Form a product term (AND gate) for each row of
the table for which the function is 1

• Each product term contains all input variables

• In each row, if xi =1 enter it as xi , otherwise use xi

• Sum all of these products (OR gate) to get the
function

Simplification Steps

Simplification Steps

replicate
this term

Simplification Steps

group
these terms

Simplification Steps

These two terms are trivially equal to 1

Simplification Steps

Drop the 1’s

Minimal-cost realization

f x 2

x 1

[Figure 2.20b from the textbook]

Two implementations for the same function

[Figure 2.20 from the textbook]

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x 2

x 1

f

x 1
x 2

[Figure 2.21 from the textbook]

Let’s look at another problem

Let’s look at another problem

[Figure 2.21b from the textbook]

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem

Let’s look at another problem
(minimization)

Let’s look at another problem
(minimization)

fs3

s2
s1

Minterms and Maxterms

Minterms and Maxterms

Use these for
Sum-of-Products
Minimization
(1’s of the function)

Use these for
Product-of-Sums
Minimization
(0’s of the function)

Sum-of-Products Form
(uses the ones of the function)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

f (x1, x2) = m3 = x1 x2

(In this case there is just one product and there is no need for a sum)

Another Example

Sum-of-Products Form

f (x1, x2)

Sum-of-Products Form

f (x1, x2)

Sum-of-Products Form

f (x1, x2)

Product-of-Sums Form
(uses the zeros of the function)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

f (x1, x2) = M0 = x1 + x2

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form
(for this logic function)

f (x1, x2)

Product-of-Sums Form
(for this logic function)

f (x1, x2)

Product-of-Sums Form
(for this logic function)

f (x1, x2)

f (x1, x2) = M0 • M2 = (x1 + x2) • (x1 + x2)

Yet Another Example

Product-of-Sums Form

f (x1, x2)

We need to minimize using the zeros of the function f.
But let’s first minimize the inverse of f, i.e., f.

Product-of-Sums Form

f (x1, x2) f (x1, x2)

Product-of-Sums Form

f (x1, x2) f (x1, x2)

Product-of-Sums Form

f (x1, x2) f (x1, x2)

Product-of-Sums Form

f (x1, x2) f (x1, x2)

Product-of-Sums Form

f (x1, x2) f (x1, x2)

Examples with
three-variable functions

Minterms and Maxterms
(with three variables)

[Figure 2.22 from the textbook]

A three-variable function

[Figure 2.23 from the textbook]

Sum-of-Products (SOP)

Sum-of-Products (SOP)

Sum-of-Products (SOP)

Sum-of-products realization
of this function

[Figure 2.24a from the textbook]

f

x1

x2

x3

f = x2 x3 + x1 x3

A three-variable function

[Figure 2.23 from the textbook]

Product-of-Sums (POS)

Product-of-Sums (POS)

Product-of-Sums (POS)

Product-of-sums realization
of this function

[Figure 2.24b from the textbook]

f

x2

x1
x3

f = (x1 + x3) • (x2 + x3)

Two realizations of this function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization [Figure 2.24 from the textbook]

f

x2

x1
x3

f

x1

x2

x3

Shorthand Notation for SOP

or

Shorthand Notation for POS

or

Shorthand Notation
• Sum-of-Products (SOP)

or

• Product-of-Sums (POS)

or

The Cost of a Circuit

• Count all gates

• Count all inputs/wires to the gates

• Add the two partial counts. That is the cost.

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

f

x2

x1
x3

f

x1

x2

x3

What is the cost of each circuit?

What is the cost of this circuit?

f

x 1

x 2

Questions?

THE END

