
Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

1

PRELAB!
Read the entire lab and complete the prelab questions (Q1-Q4) on the report template
and submit your completed questions on Canvas before your lab time. You will submit
this report again once you have completed the lab.

1.0 Objectives
In this lab you will create a register file to store data. Once the data has been stored,
further data processing may be used to conduct operations based on the stored data. Re-
read the lecture slides on registers and register files and complete the prelab before you
come to the lab.

2.0 Setup
Begin by extracting the lab file to U:\CPRE281\Lab12. This folder includes skeleton code
to get you started.

A register file is a series of interconnected parallel-access registers. Here, we will use a
Block Design File to create the one-bit parallel-access register, then use Verilog to create
larger registers to suit our needs.

While it is entirely possible to create a register file using only Schematic Captures or with
only Verilog, we shall employ these methods together to demonstrate how Block Diagram
Files may be used in a Verilog file and vice versa.

3.0 Parallel-Access 4-bit Register
3.1 1-bit register
Create a new project with a new schematic capture. Give this project the name register.
Design the one-bit parallel access register with inputs LOAD, IN, CLRN, and CLOCK, and
with output OUT. A sample diagram is shown below in Figure 1, but you should also
include the CLRN connection to your schematic and you should set the PRN to high (a.k.a
VCC). Use a D flip-flop as memory and use the included mux2to1 Verilog file to choose
the data source for the D flip-flop. Save this file as register.bdf.

Figure 1: One-bit parallel access register.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

2

When you have finished recreating the register in schematic capture, simulate this
register in ModelSim by forcing the inputs. Observe the operation of the register as
follows:
To change the output of the register, you must first force CLRN to 0 for a period of time.
Then, the CLOCK signal must produce a positive edge and LOAD must be 1. Once these
requirements have been met, the output OUT will change to match the input IN. Fill in
the characteristic table in your report. Note: there is no DO file for this 1-bit register.

After you have verified the proper operation of your one-bit register, create a symbol for
your register. You will use multiple copies of this one-bit register to make much more
elaborate register circuitry.

3.2 4-bit register
Make a new .bdf file, name it reg4b.bdf, and then verify that the files register.bdf and
register.bsf are in this project folder. Make this new .bdf file the top-level entity for your
project. This can be done by either pressing Ctrl-Shift-J on the reg4b file or by selecting
Project -> Set as Top-Level Entity from the Quartus menu.

Next, you will create a 4-bit register. Place four copies of the 1-bit register in your circuit
schematic file. Connect all of the CLOCK inputs to the same input pin CLK. Similarly,
connect all of the LOAD inputs to the same input pin LD and all of the CLRN inputs to the
same input pin CLRN.

The input and output connections will be made as a bus. Add one input pin for the data
input and name it IN[3..0]. The same method will be used for the output; name the
output pin OUT[3..0].

Connect the bus wires individually to each register as shown below, in Figure 2. Notice
that each wire connecting to the IN bus and OUT bus connection is given the same name
with a corresponding index (IN[3], OUT[3], IN[2], OUT[2], etc.). Make sure that the
indexing you use is consistent; i.e., if a register receives IN[3], it should also produce
OUT[3].

Once this circuit is complete, you will have four input pins (CLK, LD, CLRN, and IN[3..0])
and one output pin (OUT[3..0]). This will be the register in the register file that you will
create in the next step.

Use ModelSim and the reg4b.do DO file to verify that your circuit works. Include a
screenshot of your reg4b.bdf file and your waveform.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

3

Figure 2: Four-bit parallel access register.

4.0 Register File
Now, it is time to create a register file, which is the next component in the hierarchy that
you will create for this lab. The register file will have one write port, two read ports, and
data will be stored in eight 4-bit registers. Therefore, you need to start by making eight
copies of the four-bit register that you created in Part 3.0.

In addition to the eight registers, the register file also includes the controlling components
that specify which register will be read and which register will be written. In order to read
from the registers, you will use a multiplexer that will select which register output will
become the output of the entire register file. To write to the registers, you will use a
decoder. Since there are eight registers, you will need an 8-to-1 multiplexer and a 3-to-8
decoder.

The ports of the register file are as follows:
DATAP: First output of 4-bit data from the register file.
DATAQ: Second output of 4-bit data from the register file.
RP: 3-bit Read address that specifies which register will send its output through DATAP.
RQ: 3-bit Read address that specifies which register will send its output through DATAQ.
WA: 3-bit Write address that indicates which register will update its data.
LD_DATA: 4-bit data that will be written into the register specified by the address in WA.
WR: When this is zero, no register will update its data. When this is one, the register
specified by WA will update its value with the value in LD_DATA.
CLK: A typical clock connection.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

4

Figure 3: Rough schematic for the register file.

Start a new project and name it regfile. Open a new Verilog file and name it regfile.v.
This file will contain the required components to implement a register file. See prelab
question Q4 for skeleton code. The following steps outline the components needed to
provide functionality to the register file. These components will include copies of the 4-
bit register that you created in the previous step, so be sure to bring the register, reg4b,
and mux2to1 files into this new folder.

4.1 Multiplexer
The multiplexer that will read from the register file will receive all of the outputs from
each reg4b that exists within the regfile. Each of these outputs is a four-bit value and the
multiplexer must then select one of these four-bit values to output. What you will create
for this register file is a 4-bit 8-to-1 multiplexer. You will create this 4-bit 8-to-1
multiplexer in Verilog similarly to how you created the 1-bit 4-to-1 multiplexer in Lab 08.
Make this multiplexer in a separate Verilog file named Mux8_4b. See prelab question Q2
for skeleton code. You will bring this file together with the other components in section
4.4.

Use ModelSim to verify your circuit and include your circuit and waveform on your report.

Note 1: Intermediate multiplexer values are four-bit connections and should be declared
as such. Although it is certainly possible to create the multiplexer without any
intermediate expressions, it may be beneficial to include them. A four-bit intermediate
connection can be declared as wire [3:0] X; this 4-bit wire X can be used to connect an
output from a 2-to-1 multiplexer to another 2-to-1 multiplexer’s input. There are other
declarations that we need to do in this lab; see section 4.5 for more details.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

5

Note 2: Notice that the output of each multiplexer is a single 4-bit value. The individual
bits from the output bus can be referenced in Verilog using brackets. For instance, the
individual bits from an output bus DATAP can be referenced as DATAP[0], DATAP[1],
DATAP[2], and DATAP[3]. This will be used when we bring our components together in
4.4.

4.2 Decoder
The decoder will assert one of the LOAD lines for the eight registers, depending on the
value of the write address. These LOAD lines will specify which register’s value will be
updated on the next clock edge. Also, add an ENABLE line to this decoder to allow for
the opportunity to maintain all register values unchanged. To accomplish this, create a
3-to-8 decoder with ENABLE in Verilog. This, again, will be in a separate file named
Decoder3to8. See the prelab for skeleton code.

4.3 Register Collection
You can create duplicate objects from the code files that you’ve already used. Similar to
adding a symbol to a schematic file and wiring it.

Symbol_name symbol_inst(.Symbol_input(in_wiring), .Symbol_output(out_wiring))
reg4b my_reg4b(.IN(LD_DATA), .LD(Y[0]), .CLK(CLK), .OUT(R0), .CLRN(CLRN))

This will create one of the eight 4-bit registers from Part 3.0 that you will need to make
the register file. You will have to specify the remaining connections to the other reg4b
entities.

4.4 Bringing Everything Together
Now, you are ready to create the register file in Verilog. Start by declaring the module
inputs and outputs as follows:

module regfile(DATAP,DATAQ,RP,RQ,WA,LD_DATA,WR,CLRN,CLK);
 // address and control port
 input [2:0] RP, RQ, WA;
 input WR, CLRN, CLK;
 // input data port
 input [3:0] LD_DATA;
 // output data ports
 output [3:0] DATAP,DATAQ;
 wire [3:0] VALUE0, VALUE1, VALUE2, VALUE3, VALUE4, VALUE5, VALUE6,
VALUE7;
 wire [7:0] Y; //decoder ouput

 <<< insert code here >>>

endmodule

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

6

The bus width is specified with its highest and lowest index as part of the declaration
input [3:0]. This declares an input connection that has a width of four bits. Each bit can
be accessed individually using the indices [0], [1], [2], and [3]. This will also be shown
below.

The decoder can be added in the same way that you added the registers in part 4.3. A
separate decoder file can be integrated with the register file module like this:

Decoder3to8 my_decoder(.EN(WR), .W(WA), .Y(Y));

The inputs to the decoder are also inputs to the register file. They determine which
register, if any, will update its value. The outputs Y0 to Y7 are intermediate wires in
Verilog that connect to the register LOAD connections as follows:

reg4b my_reg0(.IN(LD_DATA), .LD(Y[0]), .CLK(CLK), .OUT(VALUE0), .CLRN(CLRN))

This connects the decoder to register 0. The register’s load connection is connected
directly to the Y0 output of the decoder. The output of the register is placed on the
connection labeled VALUE0; this output will also become the output of the register file if
address 0 is specified as either of the two read addresses. The data, clock, and clear inputs
are inputs to the entire register file and will serve the same purpose for all registers. The
remaining seven registers will be connected in the same way, except they will receive the
corresponding Y output from the decoder and will output to the appropriate VALUE
connection.

NOTICE: The multiplexer output is a 4-bit intermediate wired connection and must be
declared as such. See section 4.5 for more information.

Once all of the registers have been placed in the file, we can use the multiplexer to select
from one of the eight register outputs (VALUE0, VALUE1, VALUE2, …). Since our register
file will have two read ports (DATAP and DATAQ), we will use two multiplexers to decide
the output on each port. For instance, the output DATAP will be decided by a multiplexer
that processes the values based on the read address in RP. In other words,

Mux8_4b my_muxP(.S(RP), .W0(VALUE0),
 .W1(VALUE1), .W2(VALUE2), .W3(VALUE3), .W4(VALUE4), .W5(VALUE5),
 .W6(VALUE6), .W7(VALUE7), .F(DATAP))

A similar result will be done for read address in RQ.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

7

4.5 Wire Declarations

Wire declarations are also necessary. Previously, we did not have to declare intermediate
wired connections in Verilog, since all intermediate values were just one bit in width. In
this case, the output of the register file is a 4-bit value. If this output were left undeclared,
then the compiler would assume this wire to be only one bit wide, as done before, which
will create errors when these wires are used in place of the required four-bit connections.
To avoid this problem, we will declare all of our intermediate buses as four-bit wires, as
shown below.

 // wire declarations
 wire [3:0] VALUE0, VALUE1, VALUE2, VALUE3, VALUE4, VALUE5, VALUE6, VALUE7;
 wire [7:0] Y;

These values are the outputs of the register file and the outputs of the multiplexer. They
are all four-bit values that are neither a module input nor a module output. These
declarations should be placed in the register file module with the declarations for the
input and output ports.

Your circuit should now be able to store eight 4-bit numbers. Using ModelSim and the
regfile.do DO file, test your circuit and once you understand how it works, demonstrate
your result to the TA. Make sure include a screenshot of your code and waveform for the
register file.

NOTICE: Make sure to add and compile all of the previous lab12 components in
ModelSim. Otherwise, you may get compile errors.

5.0 Interaction of the Register File with Other Components

Finally, you will interface the newly created register file with other components that you
have created in previous labs. Before closing the register file project, make a symbol for
it. Now, create a new project and name this project lab12_final. Create a new schematic
file and save it. Bring all of the previous lab12 components into the same folder as
lab12_final: add_sub, adder_4bit, busmux, Decoder3to8, FA, mux8_4b, register, reg4b,
and mux2to1.

Once these files have been successfully copied into the new folder, connect the
components as shown in the figure below.

Cpr E 281 LAB 12
ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Registers and Register Files

8

Figure 5: Register file with 4-bit adder connected.

Once your circuit has been connected, verify it in ModelSim using the lab12_final.do DO
file. Include a screenshot of your BDF file and waveform in your report.

6.0 Complete

Congrats! You are done with labs for the semester. Please double check your report and
submit it to Canvas. Good luck on finals and enjoy your break.

