PRELAB!

Read the entire lab and complete the prelab questions (Q1-Q5) on the report template and submit your completed questions on Canvas before your lab time. You will submit this report again once you have completed the lab.

1.0 Objectives

In this Lab you will design shift registers and counters, and observe their functionality.

2.0 Shift Register

A shift register is a specialized register that takes an input serially and shifts it from one bit position to the next bit position. A full explanation of shift registers is available in Chapter 5.8 of the textbook. Figure 5.17a shows a 4-bit shift register built using D flip-flops.

For this step in the lab you will design a 4-bit shift register using D flip-flops. You may use Figure 5.17a as a reference. You will use the D flip-flop of the **primitives** library to build a shift register. Create a new project *lab10step1* and open a new .bdf file and name it *lab10step1*. Insert a symbol for the D flip-flop (*dff*). Set the preset *PRN* and the clear *CLRN* inputs of this flip-flop to high. One way to do this is to wire both ports to a vcc symbol.

Use the ModelSim to verify your shift register is operating correctly. Create an output pin for the output of each D flip-flop, label the first **Q1**, second **Q2**, third **Q3** and the last **Q4**. Fill in the sequence table on the report and include y screenshots of your circuit in your lab report.

3.0 Counters

Important note (counter initializing):

For this section (counters) you have to pay attention to the initial values of flip-flops. Counters start counting from an initial value. If they don't have a starting point, they will not be able to count!

To set an initial value for the flip-flops, two asynchronous inputs. **CLRN** and **PRN** can be used. Remember the result from the step1 when they were connected to **vcc**.

In this section for each step there have to be inputs for PRN and CLRN of the flip-flops to initialize them.

Then by setting the CLRN to zero, flip-flop's output will change to 0. And by setting PRN to zero flip-flop's output will change to 1. After initializing CLRN and PRN are set back to 1 so that they stop changing the output!

3.1 Synchronous Up-Counters

Counters are either synchronous (common clock signal) or asynchronous. A discussion of synchronous counters may be found in Chapter 5.9.2 of your textbook. Figure 5.23 describes how a 4-bit counter can be built using D flip-flops.

Create a new project *lab10step2a* and open a new .bdf file and name it *lab10step2a*. Use the same **D** flip-flops you used in the last step, and additional gates, to build a synchronous 4-bit up-counter. Use the Figure 5.23 in your text as a reference.

Don't forget that we have to initialize the counter. To initialize the counter, connect all the PRNs to PRN input and all the CLRNs to the CLRN input. You would have 4 inputs; **Enable, Clock, PRN, CLRN.**

Use ModelSim to verify your up-counter is operating correctly. Once you are confident your circuit is functioning properly, include it screenshots of the circuit and the simulations in your lab report.

Create a new project *lab10step2b* and open a new .bdf file and name it *lab10step2b*. Use **T** flip-flops, and additional gates, to build a synchronous 4-bit up-counter. Use Figure 5.21a in your text as a reference. You can get T flip-flops (*tff*) from the **primitives** library the same way you got the D flip-flops. To initialize the counter, connect all the PRNs to PRN input and all the CLRNs to the CLRN input. You would have 4 inputs; **Enable, Clock, PRN, CLRN.**

Use ModelSim to verify your up-counter is operating correctly. Once you are confident your circuit is functioning properly, include it screenshots of the circuit and the simulations in your lab report.

3.2 Asynchronous Counters

In this step *lab10step3a*, you will build a 4-bit asynchronous **up**-counter. Figure 5.19a in your textbook shows a 3-bit asynchronous up-counter using T flip-flops. Extend this circuit to build a 4-bit asynchronous up-counter. You can use an inverter on the Q output to get the ~Q from the flip-flops. To initialize the counter, connect all the PRNs to PRN input and all the CLRNs to the CLRN input. Lastly, instead of a constant 1 for each tff use an input named Enable. You would have 4 inputs; **Enable, Clock, PRN, CLRN.**

Use ModelSim to verify your up-counter is operating correctly. Once you are confident your circuit is functioning properly, include it screenshots of the circuit and the simulations in your lab report.

In this step *lab10step3b*, you will build a 4-bit asynchronous **down**-counter using T flipflops. Figure 5.20a in your textbook shows a 3-bit asynchronous down-counter using T flip-flops. Extend this circuit to build a 4-bit asynchronous down-counter. To initialize the counter, connect all the PRNs to PRN input and all the CLRNs to the CLRN input. Lastly, instead of a constant 1 for each tff use an input named Enable. You would have 4 inputs; Enable, Clock, PRN, CLRN.

Use ModelSim to verify your down-counter is operating correctly. Once you are confident your circuit is functioning properly, include it screenshots of the circuit and the simulations in your lab report.

4.0 Complete

You are now done with this lab. Close all lab files, exit Quartus Prime, log off the computer and submit your report to Canvas. **Don't forget to include your name and your lab** section number.