Name and Std No.:	Lab Section:

Date:_____

Submission Instructions:

Prelab:

- 1. Complete the prelab
- 2. Submit this report with the prelab completed to Canvas before your lab starts

Lab:

- 1. Complete the lab according to the instructions
- 2. Take screenshots of your ModelSim waveform (note: to receive points your NetID has to be present in the screenshot) and insert them into this document.
- 3. Include screenshots of any related block design files or Verilog files in the report
- 4. Complete this report and reupload it to Canvas

PRELAB:

Refer to Chapter 5 in your textbook and the lab instructions to complete your pre-lab. Please read all the material and complete the circuit diagrams before you come to the lab.

Q1. Draw the circuit diagram for the SR Latch using NOR Gates for **Section 2.0** in the space below.

Q2. Draw the circuit diagram for the \overline{SR} Latch using NAND Gates for **Section 2.0** in the space below.

Q3. Draw the circuit diagram for the D Latch using NAND Gates and a NOT gate for **Section 3.0** in the space below.

Q4. Draw the circuit diagram for the Master-Slave D Flip-Flop for **Section 4.0** using the D latches you built in the previous step in the space below. The flip-flop should be triggered by the negative edge of the clock.

Q5. Draw the circuit diagram for the Positive-Edge-Triggered D Flip-Flop using NAND gates for **Section 4.0** in the space below.

LAB:

2.0 Complete the characteristic table for both versions of the SR latch. Do both versions function properly as a latch?

SR NOR Latch			
S	R	Action	
0	0	Keep State	
0	1	Q =	
1	0	Q =	
1	1	Restricted Combination	

SR NAND Latch			
S	R	Action	
0	0		
0	1	Q =	
1	0	Q =	
1	1		

NOR Screenshots:

<<<Insert a screenshot of your SR NOR latch here>>>

<<< Insert a screenshot of your waveform for your SR NOR latch here>>>

NAND screenshots:

<<<Insert a screenshot of your SR NAND latch here>>>

<<< Insert a screenshot of your waveform for your SR NAND latch here>>>

3.0 Complete the timing diagram below for your Gated D Latch. What is the difference between this gated latch and the previous basic latches?

D Latch Screenshots:

<<<Insert a screenshot of your D latch here>>>

<<< Insert a screenshot of your waveform for your D latch here>>>

4.0 Complete the timing diagram below for your <u>Negative</u>-Edge-Triggered D Flip-Flop.

<<<Insert a screenshot of your Neg. Edge DFF here>>>

<<< Insert a screenshot of your Neg. Edge DFF waveform here>>>

Complete the timing diagram below for your <u>Positive</u>-Edge-Triggered D Flip-Flop.

<<<Insert a screenshot of your Pos. Edge DFF here>>>

<<< Insert a screenshot of your Pos. Edge DFF waveform here>>>

