Sample Solutions

CprE 281: Digital Logic

Midterm 2: Friday Oct. 26, 2018

Student ID Number: Student Name:

Wed 8-11(J) Fri 11-2(G) Lab Section: Mon 12-3(P) Tue 11-2(U) Thur 11-2(Q)

Tue 2-5(M) (circle one) Wed 11-2(W) Thur 11-2(V)

> Tue 2-5(Z)Wed 6-9(T) Thur 2-5(L)

> > Thur 5-8(K)

1. True/False Questions ($10 \times 1p \text{ each} = 10p$)

(g) A priority encoder has one-hot encoded inputs.

TRUE / (FALSE (a) I forgot to write down my name or student ID number or lab section.

TRUE /(FALSE (b) The total delay through a half-adder is 2 gate delays.

TRUE / FALSE (c) The two inputs of a gated D-latch are called S and R.

/ FALSE TRUE (d) A register file can have more than one read port.

TRUE / FALSE (e) A JK flip-flop reduces to a T flip-flop when J=K.

(f) The undesirable state of a basic latch with NAND gates is when $Q = \overline{Q} = 1$. TRUE / FALSE

TRUE / FALSE

/ FALSE (h) In 32-bit IEEE 754 format, 11000000011000...0 is equal to -3. TRUE

(i) A T flip-flop and an XOR gate can be used to implement a D flip-flop. TRUE)/ FALSE

TRUE V FALSE (j) In binary, Yoda is more than 1000000000 years old.

2. Venn Diagrams (5×1) each = 5p)

Write the Boolean expression that corresponds to each Venn diagram below each figure.

$$(\overline{X+Y})$$
 \geq

- 3. Minimization ($3 \times 4p$ each = 12p)
- (a) Draw the truth table for the function $f(a, b, c, d) = \Sigma m (1, 2, 4, 6, 7, 14, 15) + D(5, 10)$
- (b) Use a K-Map to derive the minimum cost SOP expression for f.
- (c) Use a K-Map to derive the minimum cost POS expression for f. (9) (6) abcd # 6c azd+ ab+ bc+cd d (c) d f=(B+c+d).(B+C+d).(a+c).

4. Fill in the Blanks $(2 \times 4p = 8p)$. Given the inputs, outputs, and wires of a familiar circuit, fill in the names of the logic gates inside the square blocks. Also, write the name of each circuit.

- 5. Circuits (5p + 10p = 15p).
- (a) Draw the wiring diagram for an SR Latch. Label all inputs, outputs, and pins.

(b) Draw the circuit for an 8-to-1 multiplexer using <u>only</u> 2-to-1 multiplexers. Clearly label all inputs, outputs, and pins. Hint: think of a tree.

6. Computations with Adders ($5 \times 3p$ each = 15p)

In all problems below, the binary numbers are stored in <u>2's complement representation</u>. For each of the following, assign either a 0 or a 1 to each input and output of the 5-bit adder such that it computes the given expression. The problem in a) is already solved.

a) (+5) + (+6) = +11

c) (-11) + (+7) = -4

d) (+15) + (-7) = + 8

e) (+9) + (-13) = -4

f) (-3) - (-10) = + 7

7. Flip-Flops and Timing Diagrams ($3 \times 5p = 15p$)

Complete the timing diagram for the specified flip-flop such that the output Q will be as indicated. Assume that the input signal can change only on the <u>vertical lines</u>. Also, assume that the setup time t_{su} and the hold time t_h are <u>each</u> equal to the width of one square.

a) Complete the timing diagram for the D input to a positive-edge triggered D flip-flop.

b) Complete the timing diagram for the T input to a positive-edge triggered T flip-flop.

c) Complete the timing diagram for the K input to a positive-edge triggered JK flip-flop.

- 8. Multiplexers $(3 \times 5p \text{ each} = 15p)$
- a) Draw the truth table for the function $f(a, b, c) = a c + a \overline{b} + \overline{b} c$.

a 16c	ac +	a6+	BC	1+		
0100	0	0	0	0		
0101	0	0	1	1	>	9
0110	0	0	0	0		0
0 11	O	0	0_	0_	ر	
1.00	0	1	0	1)	
1101	1	1	1	1	>	h
1110	0	0	0	0		
1111	1	0	0	1	J	

b) Implement this function using a <u>minimal</u> number of 2-to-1 multiplexers. You must use <u>only</u> 2-to-1 multiplexers and <u>no other logic gates</u>. Assume that the signals a, b, and c are available <u>only</u> in their non-inverted form as well as the constants 0 and 1. Clearly label all inputs, outputs, and pins.

- $\begin{array}{c|c}
 c & & & & & & & & & & & & & & \\
 \hline
 c & & & & & & & & & & & & & & & \\
 \hline
 1 & & & & & & & & & & & & \\
 c & & & & & & & & & & & \\
 \end{array}$
- c) Implement this function using a <u>minimal</u> number of 8-to-1 multiplexers. Clearly label all inputs, outputs, and pins.

9. Alternative Implementation (10p)

Implement the logic expression in each sub-problem in three different ways: 1) using a 2-to-1 multiplexer; 2) using NAND-NAND logic; and 3) using NOR-NOR logic. In this problem, you are not allowed to use any other logic gates. Assume that a and b are available in both their inverted and non-inverted form, along with the constants 0 and 1. If some implementation is not possible, then indicate that with words. Label all inputs and outputs.

a) Implement in three different ways: f(a,b) = a + b.

$$\frac{SOP}{f=a+b=a\cdot 1+b\cdot 1}$$

b) Implement in three different ways: f(a,b) = a b.

$$f = ab = a \cdot b + 0 \cdot c$$

c) Implement in three different ways: f(a,b) = ab + ab.

$$f = (a + \overline{e}) \cdot (\overline{a} + \overline{e}) \cdot (\overline{a} + \overline{e})$$

10. Faulty Circuits (3p + 3p + 4p = 10p)

The circuits below have a manufacturing defect such that one of their wires is broken and is permanently stuck to zero volts (ground). Your task is to find a set of input and output patterns that can be used to distinguish between a working circuit and a faulty circuit. The figure below gives an example in which the second input of the AND gate may be faulty.

1 ______ 0
1 _____ stuck at 0?

Normal Circuit

Faulty Circuit

Normal Circuit

Faulty Circuit

Normal Circuit

1 stuck at 0?

Faulty Circuit

11. Register (15p)

Complete the following circuit diagram by drawing wires and adding any other circuits or logic gates to implement a 3-bit register. The register has two control inputs $(C_1 \text{ and } C_0)$, three parallel input lines $(I_2, I_1, \text{ and } I_0)$, and three output lines $(Q_2, Q_1, \text{ and } Q_0)$. Depending on the values of C_1 and C_0 , the register performs one of the following four operations:

C ₁	Co	Operation
0	0	Hold the current value (i.e., Q2 Q1 Q0 remain unchanged)
0	1	Cyclic shift left (i.e., new Q2=Q1, new Q1=Q0, new Q0=Q2)
1	0	Load new data (i.e., new Q2=I2, new Q1=I1, new Q0=I0)
1	1	Invert all bits (i.e., new $Q_2=\overline{Q_2}$, new $Q_1=\overline{Q_1}$, new $Q_0=\overline{Q_0}$)

Clearly label all inputs, outputs, and pins.

Question	Max	Score
1. True/False	10	
2. Venn Diagrams	5	
3. Minimization with K-Maps	12	
4. Fill in the Blanks	8	
5. Circuits	15	
6. Computations with Adders	15	
7. Flip-Flops	15	
8. Multiplexers	15	
9. Alternative Implementation	10	
10. Faulty Circuits	10	
11. Register	15	
TOTAL:	130	