Ross Thedens
Section Q

CPRE 281

Final Project Report

| completed project option number 3 (simple door lock). This report details all the
workings and derivations required to build the circuit and Verilog modules contained in the
project. It contains a general overview of every top-level module, followed by a multilevel

description of the inner workings of each module that explains every submodule involved.

Top Level Diagram

i

SR— |

This is the overall top-level diagram. Since it is difficult to view at this size, | have split it into

three different sections: Part A, Part B, and Part C. These are explained below.

Part A

button press
sublraclor ressull
“Transition

number of attempts

=
|
t

async_reset_FSM selectt
seec_in el
= bin_ar_reset
O rm_clock 3do_anemot
o lock_light
hard_lock ight s S
e, e S O
Switcn_regs
am_reset

= 3 R CLKCIN Qx _ouT

In this part, the inputs are the lock signal Ick, the clear switch signal clr_entered_code, the reset
input signal hard_reset, and the clock signal Board _Clk. The clock frequency is divided by 1024
via the clock_divider_1024 module to give more stability to the module related to button
inputs (not shown); the clock signal services all the synchronized blocks in the project. The
mux_4_to_1 block is a 4 to 1 multiplexer; it determines the source of the input signal select_in
for the FSM block. Note that the FSM select line outputs wrap around directly to the mux
outside of the screenshot. The FSM block itself encompasses the entirety of the state machine
in the project. It contains two inputs select_in and lock, a reset input async_reset FSM, and a
clock signal input FSM_clock. The outputs are selectl, selectO, btn_ctr_reset, add_attempt,

lock_light, hard_lock_light, new_code_light, and switch_regs. Select1 and selectO are the select

lines to the mux_4_to_1 block; this helps to overcome the problem of requiring inputs from
many different sources (comparator circuit, button presses, number of attempts) when at
different states; the select lines will pipe in the correct input corresponding with each state
(explained in detail later). The btn_ctr_reset input is used to reset the counter within the button
input module (not shown); it is either triggered by the clear switch or the state machine’s state
(explained later). The add_attempt output is used to add an incorrect attempt to the module
that counts incorrect attempts (not shown) when an incorrect code is entered to unlock the
lock. Lock_light, hard _lock_light, and new_code_light work as follows: lock_light is mapped to
LEDGO—it is lit only when the lock is unlocked, hard_lock_light indicates that the maximum
number of incorrect attempts have been entered and that the lock must be hard reset using the
hard reset switch. Switch_regs determines which register (stored code or entry) is written to at
a particular point in time. Finally, att_reset resets the attempt counter, which asserts when the
lock is unlocked. The clIr_entered code input is connected to a D-Flip-Flop that synchronizes its
input with the rest of the circuit to ensure predictable behavior; it is run through an OR gate
with the btn_ctr_reset output from the FSM block; this allows either input to transmit a clearing

signal.

mux_4 to_1
mux_4_to_1is a 4-1 multiplexer. It is simply designed to output the value of dat0 when both

select lines are 0, datl when s1 is zero and sO is one, dat2 when s1is 1 and s0is 0, and dat3

when both select lines are one. This module does not need further explanation.

moduTe mux_4_to_1(s1, s0, sel, dat0, datl, dat2, dat3);

input s1, s0, dat0, datl, dat2, dat3;
output sel;

assign sel = ~s1 & ~s0 & dat0 | ~s1 & sO & datl | s1 & ~s0 & dat2 | s1 & sO & dat3;

endmodule

clock divider 1024

clock_divider_1024 is a clock dividing module. It is a series of T-Filp-Flops that each divide the
frequency by 2; it essentially works as a ten-bit counter where the tenth bit changing between
1 and 0 is the new clock signal. The first flip flop output changes at the rate of the clock, while
the second changes at half the rate of the clock; the AND gates make sure that the next flip flop
does not change until the outputs of the previous two are equal to 1; this means the flip flop is
changing at half the speed of the preceding one and a fourth the speed of the one before that.
Since there are ten T-Flip-Flops, the frequency is divided by 1024. As stated previously, this

makes the button inputs more reliable.

FSM
The bulk of Part

project, compos

state diagram:

Ais manifested in the FSM block. This represents the state machine for the

ed of the next state logic, flip flops, and output logic. First, we can focus on the

gt) |

-~

Gé‘ack)[‘;d

—~——
3#{
Gecli)

-

‘ - Hard kesé-!- \
T
L & amﬁ-’v)'%(fd@uﬁ) /

:) (Patk) (st et
ol k)(select_iy) ’@,@[% &L}) \m

k)(%‘ﬁ-a JJ %Cyaaed L }

(T (e i) " .

Note that there is no state A; this state was removed in the development of the machine. The
whiteboard photo provides some context for the FSM diagram below it. Hard Reset is the
primary reset for the machine; besides setting the machine to state B, it also sets the lock’s
code to 1111 and resets the attempt counter according to the specification. State B is where
the machine resides before the first button is pressed. At this point, the button counter (part of
the code entry module) is reset to zero, the unlock and new code entry lights are turned off, the
hard reset lock is off, and the register to write to is the entry register (for unlock attempts, this
corresponds to an output of 1). The select lines are s1s0 = 00, which selects the button press
input; the machine advances if a button is pressed. The next state, C, is the state while the code
is entered; it is the same as before but the button counter reset output is no longer asserted
and the input via the multiplexer (s1s0 = 01) is a signal from the code entry module referred to
as “transition;” at this point it is important to note that the transition signal asserts when the
button press counter detects that four buttons have been pressed; this signal will move the
machine to state D. D is the state where the lock checks the entered code against the actual
unlock code; the main output change is the select lines switching to s1s0 = 10 for the subtractor
circuit that compares the codes. Here, the possibilities split into two. In state E, the correct
code has been entered (the subtractor/comparator circuit output is 1). At E, the unlock light
turns on. The select input is switched back to the button press detector, the register to write to
is changed to O for the code register and the button counter is reset in preparation for the code
to be changed. If a button is pressed, the state transitions to F; if the lock switch is flipped, the
state switches back to B. State F is for setting a new code for the lock; LEDG1 is turned on to

indicate this. The select lines are changed to select the “transition” output ones again. Whaen

the “transition” signal is received, the lock transitions back to E, where it can be locked or a new
code can be entered again. If the correct code is received at state D, the state transitions to G,
where the add attempt output is set to one to increment the attempt counter. If the maximum
number of incorrect attempts is reached (five), the state transitions to H; otherwise, it goes
back to B. H is the locked until hard reset state; LEDRO is turned on to indicate this state, and

there is no way to remove the machine from this state except by hard resetting it.

Next are the state and state assigned tables. Note that the outputs are only listed in the state

assigned table, and that don’t cares are used where a particular output is not relevant.

Ksh Sfafe table:
~ Mext - Statfe
§ N wo(/()uvjod -(n) {ia(/c)(sdm(n) [/nu)(s@tact_iy) Wo(uu ¢ Loct_

G e e ——
B B AR

Curyent State |

- } s [,

C (| ik:

[[l |G 2 ‘5
[B | E IRCENIBE AR Im
T L e —F

" | ‘ ‘, \

7 ;‘R' J‘ ‘Q / 'J‘/ ' |

t I ALY

Hate 4;5&’0/1/»{/1%5 3

N YiYe
A =000

g L
e

n mey + Fabl (w1 th outputs]
page.

Fsm State Assignment | able

5(,::{,{,,7‘ &/ex+ State Oudputs
dte k) Csetect_jn) | (Tock) Cselect-y Lock) (Sehect_p) | (DockIcsetect_in)
RER4 Y% f LYY) Y. Y, Y,,) [LE o (sf.ﬂfﬁ‘{’aﬁw E,fj;’;
o %&WW*L i
OO/(M 0ol |[o0lo |00 | 010 |0|0 —1—
D1ow] 010 [T 010 oz/ﬁﬁT 0
Ol w| (10 100 [(0 [go [0 PTF‘%
1 00 (5| o0 EX 00 0ol olo] P\ |
10] & loj | (o0 o1 [100 [o[i[p {0
1 ©] o i oo i M T 4
IIRZINN T IS T Y

|

__, AL Jop e €1 fries ave a((Jon” (aff) (I: reset

(1:0n|

((:9

n{w_jw_&w])k/lh‘l’/‘([f([€

ve acha’rknr* L,eock_ ght

|
m

harl Do k. Dt
T—t—~1—d—
0 0 0 | 0 |
i 0|
0 0 0 0 d
0 (0 0 0
0 | b l 0
10 [o 0 d
R 6 |d |

!' !Q:k (ode

Note: the split column between the two scans is for btn_ctr_reset; it says that 1 toggles the

reset.

At this point, we can derive the expressions used for the outputs and next state signals.

add —attempt T

Y2 Y,

pool 19 —
Yo Odg D] 0 (,(d/—d#mf’/“: yzy,)’o
L6
._/Zﬁc fr- ﬁf‘?hf‘ !
;:y’ g0 O(Il [o
0 01|01/ ~ht L
\[6 10 0/;)] ,ZOC/(V@,%*_)/Z%

}\G/P(—j()[k,/é/;?/“(
VDT
00 o(1/ [0
s leTsl b bkt iy,

Lol ©0|D] 0

b+h_ C(Hr_ reset:

Yy
0\100 Ol {1 10
o oI/ o [4Td 1

0

d |
Wl {410
bne (he reset= %Y +)i Yy

a++ _ resef-

Vz)(/

Yo op o (19
oloreTo () ,.

Lo]0 [0]¢

CZH~ r&r(?‘/': 5/—; }70

_ﬁ#ck _,éoCk

5%"""'k ¥4
¥, ‘ Pl |
! Yo 00011t oo q 10

o0 0 0 mel o) o

o o] olo]1 alol 0] o] |

unnr VL elo

F
/0 I O‘l | (0 I]Q (1

Y‘, = $ﬂl€‘()+_f7) .}71, ;’; +5dd“-l';, }72. }’/ *Yz)’.)’o +
seled-in ¥,7,

Y, .

Lock c
f(_ge(x /4 05/& ff&[* ' -éﬁ k
X 2goot Il (0 358 ol i o
s [0] 1d Wl
ol (] o] 6}

Lol l\% i Fﬂ'oj
l/1o|1]1l0
wDII (oLttt}

Y = Yz)’, -l'felec{- in 70 + dock Sdectf;, y’ +
5€Lect_i'n)// }/o

LY,

o
1]

w0l ([o

0loTJo

Nt (odt- Ly h+ ;

Y

0 L 0

R il

-G

0

[

0

—_
—

Sbadch —rgs:
Y gp ol_u (0

—

swifh-regs= Yy + Y,

i Mexct State exp

New._ Col-f,l/}éfﬁ Xa y_,)lo

——

I

PSS/ OMS,

N
m. _lzrcf(
$Cleqy o
y\%y;o”/ 19 g%%@ 09 0L 10
~ Troa@d[ITA 7 plld[o]0]d]
. 9jojtitle _orelyfr]e
Lo s [y el Jl/ 11
(fglofi]o (0fo 1901 o

Vo= VaYo + Yo t5Chehin VY, +0ok 5,5

Here is the FSM block as it appears in Quartus Prime:

L = - ~°{>c ‘

FEN_sitput g

y2_ovsutioge
¥1_owputiogc

Here is the FSM_next_state_logic Verilog file:

- .
n—-ﬁ—' HH B : : :
FSU pet_stase_oge L . . .
- ¥2._cument ya a\.?
eee yi_sumest v . .o eee .
———] yo_cumeet ». o .
i ; o
ok [Tock, -
et -
- .

¥o_ouputope

moduTe FSM_next_state_logic(y2_nextstatelogic, yl_nextstatelogic, yO_nextstatelogic, y2_current, =

yl_current, yO_current, select_in_nextstatelogic, lock_nextstatelogic);

input y2_current, yl_current, yO_current, select_in_nextstatelogic, lock_nextstatelogic;

output y2_nextstatelogic, yl_nextstatelogic, yO_nextstatelogic;

assign y2_nextstatelogic = y2_current & yO_current | yl_current & yO_current | =

select_in_nextstatelogic & y2_current & yl_current | ~lock_nextstatelogic & ~yl_current & ~a

yO_current;

assign yl_nextstatelogic = select_in_nextstatelogic & ~y2_current & ~yl_current | ~a
select_in_nextstatelogic & ~y2_current & yl_current | y2_current & yl_current & yO_current | =

select_in_nextstatelogic & yl_current & ~y0_current;

assign yO_nextstatelogic = y2_current & yl_current | select_in_nextstatelogic & ~yO_current | =»
Tock_nextstatelogic & ~select_in_nextstatelogic & ~yl_current | ~select_in_nextstatelogic & ~=a

yl_current & yO_current;

gndmodu1e

Here is the FSM_output_logic Verilog file:

moduTe FSM_output_Togic(y2_outputlogic, yl_outputlogic, yO_outputlogic, selectl, selectO, =
btn_ctr_reset, add_attempt, Tock_light, hard_lock_1ight, new_code_light, switch_regs, att_reset);

input y2_outputlogic, yl_outputlogic, yO_outputlogic;

output selectl, selectO, btn_ctr_reset, add_attempt, lock_light, hard_lock_light, new_code_light=
, switch_regs, att_reset;

assign selectl = yl_outputlogic & yO_outputlogic | y2_outputlogic & yl_outputlogic;
assign select0 = yl_outputlogic & ~yO_outputlogic | y2_outputlogic & ¥0_output1ogic;
assign btn_ctr_reset = ~y2_out?ut1ogic & ~y1_outputlogic | ~yl_outputlogic & ~y0O_outputlogic;
assign add_attempt = y2_outputlogic & yl_outputlogic & ~yO_outputlogic;

assign lock_light = 2_outg tlogic & ~yl_outputlogic;

assign hard_1ock_1ig t = y2_outputlogic & yl_outputlogic & yO_outputlogic;

assign new_code_light = y2_outputlogic & ~yl_outputlogic & y0O_outputlogic;

assign switch_regs = ~y2_outputlogic | yl_outputlogic;

assign att_reset = ~yl_outputlogic & ~y0_outputlogic;

endmodulg

inc_attempts
async_eset_attempts

hard_reset _indicator

Shavied....
S

| async_clr
buttono
| buttont
[buttonz
butteas

<lk

button_pressed

transition signal

en7.0

en 7.1

Load_Data[1.0]
wiite_addiess_0
wiite_address_1

wiite_enable

walile

<l

wa

wal

as_feset

LD_D#ta[1.0] Data_o[1.0)

w Entered Code

Data_1(1.0]

Data_2(1.0)

Data_3{1.0]

we s

as_reset

Data_0[1.0]

Data_1(1.0)

Data_2(1.0)

pata_3(1.0)

tored Code

enteredo[1.0)
antered1(1.0)
entered?(1.0)
entered’(1.0)
starado(1.0)
starad 1(1.0)
starad 2(1.0)
stared 2(1.0)

code_match

Part B primarily involves the register files, the attempt counter, the button module, and the
subtractor. Essentially, the attempt counter takes signals from the FSM module and the hard
reset switch. It triggers the hard reset when a fifth incorrect attempt is entered. It is reset when
a hard reset is performed or the lock is unlocked successfully, hence the OR gate. The
code_entering_module takes in the four buttons inputs, outputting button_pressed when a
button is initially pressed (for the duration of one clock cycle), transition_signal when the
counter reaches four (all code numbers have been input), and en7_0, en7_1,anden7_2
immediately following the entry of each consecutive digit to enable seven segment displays for
each digit (note that since the code is cleared immediately following the entry of the fourth
digit, | have omitted a fourth seven segment display). Load_Data[1..0] is a 2-bit bus outputting
the value of the button pressed, write_address 0 and write_address 1 output the address to
write to, and write_enable enables the writing capability on the register selected by
switch_regs. Note that the AND and NOT gate associated with the signal on the mod_reg_file
modules mean that the write_enable signal from the code_entering_module enables the
Entered Code register file when the switch_regs output is 1 and the Stored Code register file
when the switch_regs output is 0. Also note the Stored Code register file has an asynchronous
reset input while the one on Entered Code is grounded; this is triggered when a hard reset is
initiated, setting the stored code to 1111. Entered Code is not cleared, as each time a new code

is entered it is completely overwritten.

attempt_counter

This is a basic three-bit synchronous up counter with an asynchronous reset, constructed in the
same way as in the lab/textbook. The reset input is inverted such that an input of 1 resets the
counter. The hard_reset_indicator output asserts when the counter reaches 5 (101); this sends

asignal to the FSM to enter the locked until hard reset state.

mod_reg_file

This register file works exactly as the examples discussed in lecture and in the textbook, except
that it has bus outputs for each 2-bit register in the file and it contains an asynchronous clear
that sets the value of every flip flop to 0. When the lock is hard reset, this corresponds to a
code of 1111 due to the mapping of the 2-bit values to the values shown on the 7-segment
displays. The reset signal is inverted so that an input of 1 resets the register file. The 2-4
decoder and 2-1 multiplexer are described below. The 2-4 decoder determines which register in

the file is enabled for writing based on the address and whether writing is enabled. The output

is sent to the 2-1 multiplexers associated with that register; this switches the register from
holding the current value to accepting the input from the LD_Data bus. The Data_0[1..0]

through Data_3[1..0] buses output the 2-bit values stored in each of the four registers.

two_to_four_decoder for reg

This is a basic 2-4 decoder with enable. It maps the inputs (wOw1) 00 01 10 11 to the outputs y0
y1 y2 y3 respectively, outputting nothing if the decoder is not enabled. No further explanation

should be necessary.

module two_to_four_decoder_for_reg_file(w0, wl, En, y0, v1, y2, y3);
input w0, wl, En;

output y0, y1, y2, y3;

assign y0 = ~wl&-wO&En;

assign yl = ~wl&wO&En;

assign y2 = wl&-wO&En;

assign y3 = wl&wO0&En;
endmodule

two_to_one_mux
This is a basic 2-1 multiplexer. It outputs x0 when the select line is zero and x1 when the select
line is one. The expressions should be obvious from this stated purpose. No further explanation

should be necessary.

modu le two_to_one_mux(s, x0, x1, Z);
input s, x0, x1;
output z;
assign z = ~s&x0 | s&x1;

endmodule

subtractor_unit

This module takes an input of two four digit numbers (the stored code and entered code) in the
form of four 2-bit buses (values of 1, 2, 3, 4). It outputs a 1 if the values are exactly the same,
and a 0 otherwise. The module consists of four instances of the two_bit_adder module, which
adds two 2-bit values together. These values are the corresponding digits of the entered code

and the stored code. In this case, they are subtracted in two’s complement fashion. To

accomplish this, one of the inputs (the y1y0 input) is negated, and a carry-in of 1 is used,
making it negative. The carry out bit is ignored, as is done in two’s complement
addition/subtraction. If all the digits are the same, each subtractor will output 00; the NOR gate

outputs a 1 if all the inputs are 0.

two_bit_adder

L0 (— e s I
......................... B R RS S S PP
N I N S NI 8 1 (—— S
Coiiiiiiiioicdn R S
RS £ CSge S I
Coooin CoREE———— |
R 5 % % §:: 5 = g:::::::::::::::::::::::::::::
......................... s B TR D S D
........................... 3 3
R S - - S
........................... 5 @ 5
R I S IS I I I QBT

.::...:.%c_out '%51

This module uses two full adders to create a ripple carry two-bit adder as seen in the

textbook/lecture. First, x0 and y0 are added (along with the carry in), sO is output, and the carry

out is carried in to the next adder, which adds x1 and y1. This outputs s1 and the carry out

signal.

full_adder

This is a basic implementation of a full adder. The derivation is shown below. Note that xi yi are

the addends, and ci and ci+1 represent the carry in and carry out, respectively.

,%L)ﬁ [Cilsil Gy
o0 [|9] ¢
oleo]| I | o
oj1 o L] ©O
gyt ! 01l |
(19 }0 | 10
l‘ 0 11 ol !
A A
X Y (Sf) ,
L o 0(I [0
0lo YN | o
[0 0

G2 Xt X VGt Kby + XV G
= %, @ Y8 C

X;%‘ (é,’.”)

L 00 O/ ((D

m—/@ 01 AN ©
Lol

Cf#/ = Xl'yi ‘f’ XI'CI‘ + YI' C,'

module full_adder(xi, yi, ci, si, ci_1);

input xi, yi, ci;
output s1, ci1_1;

assign si = xi A yi A ci;
assign ci_1 = xi&yi | xi&ci | yi&ci;

gndmodu]e

code_entering_module

=

This is the module that reads and synchronizes all button inputs with the rest of the project.

The (intentionally) misspelled buton_press_detection_logic block outputs a 1 if a button is
pressed and no button was pressed on the previous clock cycle. In parallel is the
push_button_encoder, which encodes the signals (described under that block’s main heading).
The dig_counter block is incremented by the buton_press_detection_logic output z. The
async_reset input to dig_counter resets the counter. The xI and x0 outputs from dig_counter
serve as the write addresses for the next button entry and also serve as inputs to
enable_seven_segs, the block that determines which seven segment displays are turned on.
The transition signal from dig_counter provides the signal to the FSM that the button entry is
finished; it asserts when the counter reaches 4 (100, more on this later). This also feeds the
endstate input into enable_seven_segs, which disables all the seven segment displays; this
means that the seven segment displays are turned off while the counter is “full,” i.e. all digits

have been entered. This means that the code clears soon after entry of the fourth digit. The

Load_Data[1..0] output bus outputs the binary value supplied by the button presses. The
write_enable output, which allows writing to the registers, is activiated when the buttons are
pressed (z from buton_press_detection_logic) AND the counter is NOT full (transition is not

equal to 1), hence the AND and NOT gates.

Since the timing of this module is somewhat complex with the flip flops and synchronization of

elements, here is timing explanation for the module’s operation.

A;mmin +hq?L 7Lf‘4n§/5‘/b4 ;2“4/
[5 (0\}/7.‘ T(M!‘;y(‘(?/‘ CML@.{mV‘M&,m

0 @ Q@

ks f— T h 1
S

buttoh

(Ms,(a{ comewhoe
N heve

at (]): = from buton— press_ defec ms_,eﬁ,*c
@ goes A (x hjeh(/zd("h v (ee Gom
f)u.fh- utfon — eacoder yoés Fhry

the P- F((‘p-qus_ Fo ‘the Lowd-lak

out pat-bus, (pr:z*’fﬁ Fhe ‘rgmr/r,

fehg wrtH-/en — ,“JfVPf’l in” by
0f E +he D—‘FW:‘F/OP (A ng’lff ot
d,‘/y_ COM”«(G/} rie enable 15 set to

high.
aH(2): T wpediately at Fhe clock Cdgg

rff fihaé/g [S A/‘(M 4/1/\77% He
' At4 (5wrtfento The /\eJ/;JWS. buton- pe
%e fec fion_logic's = outpuf Swrfekes
0 zerp Shortly athy A5 The hzh
ffﬂq{ (5 lff/{aJ‘Céf Sowy the PFF
cué(tracels 19 {//7 ('OMM@ x'n(vo«enhx/
(k. This Cﬁan/wf “Fhe it adles
wnd reveals the pex+ §Crses di
Since 215 S/}(/Ml?/ ?wl%:le’: to (D, the
lz\/‘/‘f-(-g '€4alb/‘f1 A3 Z(C«/M(a(’ 65‘0
the pext write will no 1 oCwr untyy
+he ‘5?’\””’)'/ o - ano ther f)u an prér;.

d@: T4€ pﬂ’(PSJ /\q} d(rch?’éeey) Con//({e:(.

buton_press_detection_logic

This module first inverts every button signal so that the inputs to the OR gate are high when the
buttons are pressed, not the other way around. The OR gate detects if any of the inputs are
high; it is assumed that the user presses a single button at a time. The D-Flip-Flops (abbreviated
DFF from this point onward) allow the module to hold the state of the buttons at the previous
clock edge and the clock edge before that. This means that the module can detect when button
state changes from none pressed to button(s) pressed; it functions as a simple 2-bit shift
register. When the earlier state is not pressed (indicated by the not gate on the left DFF) AND
the later state is pressed (the right DFF outputs 1), the output z asserts. This means that z only

asserts when the button is initially pressed.

[{ ‘
[[‘ \ [gae) ‘ % N
) > b o * ° 0 L .

push_button_encoder
This module takes the button inputs b0, b1, b2, and b3, and, assuming they are one-hot inputs,
encodes them to the binary values 00, 01, 10, 11, respectively, on the outputs z1 and z0. Note

that the buttons output zero when pressed; the inputs are not inverted going into the module.

SNy
7 o

N DYy S TUSN TS

4] RS

././l/{

> —

(=Y

<o

-l

o | _| :

o (

(e} -

< jeu
oo o e —

\lo © oo
<

A

L dlVd
{1 dg
@
o {d

0
5&2\\\\000 [

0352

modu le push_button_encoder (b0, bl, b2, b3, z0, z1);

input b0, bl, b2, b3;
output z0, z1;

assign z0 = ~bl | ~b3;
assign z1l = ~b2 | ~b3;
endmodule
dig_counter

This module stores a number associated with the number of digits entered, the current address
to write to, and which seven segment displays to show. It is a three-bit up counter that holds
numbers from 0 to 4, depending on the situation. The asynchronous reset input sets the value
stored to zero. This is the state before buttons have been pressed in the code entry process;
the write address is 00, none of the seven segment displays are shown, and no digits have been
entered. The increment input, which comes in from the buton_press_detection_logic module,
is connected to the clock of the TFFs in the module, causing the counter to increment by 1.
When the counter hits 4, the AND gate the increment input passes through normally is closed.
This “locks up” the counter until a reset signal comes through. Otherwise, this is essentially a

regular 3-bit up counter like those seen in lecture and lab.

enable_seven segs

This block enables the seven segment displays as digits are entered based on the output of the
dig_counter module. If each seven-segment display is indexed from 0 to 2 (excluding 3 for
reasons described above), the enabled displays should be those with lower indices than the
stored value of dig_counter. When dig_counter is initially at zero, there should be no active
displays, and so on. When the counter reaches four, all the displays should be shut off; this is
handled by the input endstate. seven0, sevenl, and seven2 are the outputs to enable the seven
segment displays. addr0 and addr1 are the values from dig_counter. Below is the derivation

and Verilog module.

Ondstate | addr | addrO 1] seen T |5 cien (| seen2

0 0 0

0 0 [
0 [0
0 | |
(0 0

| 0 |
] 0
sewen 0.
endstete gy |

0]o]
oo
seven [W addr| +m@
ends{ale adiys |
T gon 10| sl o by
[[0l o] 0

ceven (= ends tate addr]

module enable_seven_segs(addr0, addrl, endstate, sevenO, sevenl, seven2);
input addr0, addrl, endstate;
output sevenO, sevenl, sevenZ;

assign seven0 addr0 & ~endstate | addrl & ~endstate;

assign sevenl addrl & ~endstate;

assign seven2 addrl & addr0 & ~endstate;

endmodule

w01
b}
5§
8
|
5
g
i
8

| { e content_Selecior -

Out_Data_0(1..0] = @

Owt_Data_1[1..0] e S :

T y

Owt_Data_2{1..0} glitply ==

Out_Data_3{1. 0)fmms - - - - - - - L
- oiiiiiiiiiioin

s i

on) ey S

wl b S

) ¢ e D

R o

o RIBL_ o

S)oeae 2

P e

Part C is devoted exclusively to displaying the entered code to seven segment displays. The
reg_content_Selector module takes the four two-bit buses from each of the registers (eight

buses total) and uses a select line to choose which register’s data is passed through. The Entry

Code register’s buses go into the inputs Set_Data00, Set_Data01, Set Data02, and Set_Data03,
while the Stored Code register’s buses go into the inputs Set_Datal0, Set_Datall, Set Datal2,
and Set_Datal3. The select line is directly connected to the switch_regs output of the FSM
block. As described before, only three seven segment displays are used because the fourth digit
would be cleared immediately with the rest of the code when the fourth key is pressed. The
seven segment decoders output to the seven segment displays indexed HEXO, HEX1, and HEX2

on the Altera board.

reg_content_Selector

Below is the Verilog code for this module. This is essentially a 2-1 mux, where each
input/output consists of four two-bit buses. The first four assign statements assign the zeroth
bit of each output bus, using the zeroth bit of the “zero” input if the select line is zero and the
zeroth bit of the “one” input if the select line is 1. The next four assign statements accomplish
the same thing on the first bit. The similarities to the basic 2-1 mux as described in lab and

lecture should be obvious.

module reg_content_se‘leuor(sel_oata_oo. sel_patra 01, sel_pata 02, sel_pata 03, sel_patra 10, Sel_para 11, sel_pata 12, sel_pata 13, s, out_Data 0, out_patal, =
out_pata_2, out_pata.3);

input [1:0] sel_pata 00, sel_pata 01, sel_pata 02, sel_pata 03, sel_pata 10, sel_pata_11, sel_pata 12, sel_pata 13;
input s;
output [1:0] out_pata_0, Out_Data_l, Out_Data_2, out_Data_3;

assign out_pata.l - ~5 & Sse]_pata_01 | s & sel_pata_11
assign out_pata_2 = ~5 & Sel_Data_02 | s & sel_pata_12

assign out_pata_0 = ~5 & se]_pata_00] | s & se]l_pata 10
assign out_pata_3

= ~5 & Sel_pata_03 | s & sel_pata_13

assign out_pata_0 - ~5 & Sel_pata_00 [1] |
assign out_Data_l (1] = ~s5 & Sel_pata 01 [1] |
assign out_pata_2 [1] = ~s & sel_pata_02 (1] |
assign out_pata_3 - ~5 & Sel_pata_03 |

& sel_pata_11
& sel_pata_12
&

& Sel_pata_10 [:1:
sel_pata_13 [1]}

s
s
s
s

endmodule

seven_seg_decoder

This module is very similar to the seven-segment decoder used in multiple labs for the course,
but it only accepts two bit input values, providing for values in the range of 1-4. As such, an
input of 00 will resultin 1,01 is 2, 10is 3, and 11 is 4 on the seven-segment display. en is an
additional input that will prevent any of the segments from lighting while it is asserted. w1 and
w0 are the most significant bit and least significant bit, respectively, that determine the value
displayed. When input into this module, the two-bit buses are broken into their individual bits
and labeled in the Part C screenshot as shown to distinguish them. The attached image below
shows which segments the g, b, ¢, d, e, f, and g outputs and the truth table. Note that the
Verilog module is implemented via the truth table method; no K-maps or boolean expressions

are used. Note that the segments are lit when their value is 0 and unlit when their value is 1.

‘ ". ‘ L ” ‘ 0 ..
L ,:\.

module seven_seg_decoder(en, w1, w0, a, b, c, d, e, ¥, g);
input en, wl, wO;
output reg a, b, ¢, d, e, f, g;
always @ (en or wl or w0)
begin

case({en, wl, w0})

3'b100:
begin
a=1;
b = 0;
c = 0;
d =1;
e = 1;
f=1;
g =1
end
3'b101:
begin
a = 0;
b = 0;
c=1;
d = 0;
e = 0,
f =1;
endg
3'b110:
begin
a = 0;
b = 0;
c = 0;
d = 0;
e = 1;
f=1;
g =0;
end
3'b111:
begin
a=1;
b = 0;
c = 0;
d=1;
e = 1;
f = 0;
g =0;

end

3"b000

mn

beg

e -
LU | |
MO UDT UY O

end

3'b001

mn

beg

e -
LI [
TOUDT U4y O

end

3'b010

mn

beg

e -
LI I 1 [
TOUDT U4 O

end

M -
e nn
TOUDT U4 O

mn

3'b011
beg
end

endcase

end
endmodulq

Note that this report is only on part D in the rubric, as that part is the final, assembled product.
Parts A-C primarly focus on the code_entering_module. Below is the document with the test

cases | chose.

Cpr E 281 FINAL
PROJECT

i Rt Final Project Answer Sheet

ENGINEERING
IOWA STATE UNIVERSITY

Name and Student ID: Q@_SJ ﬂeo{renj _

Date: ”/25-/'7

PRELAB:

Q1. Design of the project. (Use sheets as needed, attach them here and leave with TA.

Q2. Test plan of the details in terms of input and output.

)) Hard resety then enfer [[[and Fhe Unlock
J/l'(thr Should appear.

Hau ves<t, fheq
D), Enkr L3 notice i appears o the diple,

a’td clear +4€,h}¢a+ wiTh '["Af C{ anr JWI"‘C‘

V‘Cff aq o 5
EfY Prﬁ,SJ‘ couh{e— wié(ﬁﬁfoeq[a:g’/ h\ed”f{‘:; j—izi :ggr
Hard resef , fhen enfor [((+o UnLoc f Hie ¢4
Th €n n VZ

0ty Frat the gieen Lrght
A Nxt B !
Hardru ;{P +n2730d< Sw!é‘l andk "‘Z‘S‘ that flz(‘f mgf[é@ym Pl

U) Eh-kr L,LL{LILQL five +imes 7107‘&/ 77(rcf(/ f\f/

" Cpocked urtl hard vesef-1l indicafsr Should tum o, (QJ;’*

(Saeﬁ

Demonstration Results:

Quality of implementation:

Operation of machine:

Signature of TA:

Addendum: Debouncing the Lock Switch

Note that the lock switch selected (pin AC28) may suffer from bouncing issues on some Altera
boards. This typically results in the lock entering state 101 instead of 001 (set new code and

lock and enter new unlock code, respectively). The following debounce module attached in the
following manner will solve this issue if it is occurring with a particular board:

r_ontered_code S =15 S— I l FSM
fard_reset [— MET
o debouncer hd async_reset_FSM
Ick : et

select_in
Manual Output

i lock
Board ! 4

FSM_Clock

Inst10

clog dlvider_1024
Board_C Ik [i CLK_IN CLK_OuUT ! ®
inst23 !

The debouncer consists of the following:

Manua (e

clogk_divider_1024 }

F O
Bowd ot CLK_IN CLK_OUT clogk_divider_1024 ™

| ‘ux IN CLK_OUT

' Lopy

The effect of this circuit is to divide the clock frequency by 1024 two times (in this case, a 50

MHz clock) and synchronize the switch input with this. This fixes the signal for extended periods
to prevent the anomalies that bouncing issues typically cause.

