

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

State Minimization

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Final Project
- Posted on the class web page (Labs section)
- Pick one of the problems and solve it.
- Your grade will not depend on which project you pick
- By next Wednesday you need to select your project and send an e-mail to your lab TAs

Sample E-mail

Hello TAs,

I decided to pick problem number x for my final project in CprE 281.

Thanks,

[your name]

Equivalence of states

"Two states S_i and S_j are said to be equivalent if and only if for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state."

Partition Minimization Procedure

Assuming that we have only one input signal w

S₂ is a 0-successor of S₁

Assuming that we have only one input signal w

 S_2 is a 0-successor of S_1

S₂ is a 0-successor of S₅

Assuming that we have only one input signal w

 S_4 is a 1-successor of S_3

Assuming that we have only one input signal w

 S_4 is a 1-successor of S_3

S₄ is a 1-successor of S₆

Assuming that we have only one input signal w

 S_4 is a 1-successor of S_3

S₄ is a 1-successor of S₆

S₆ is a 1-successor of S₄

Assuming that we have only one input signal w, then k can only be equal to 0 or 1.

Assuming that we have only one input signal w, then k can only be equal to 0 or 1.

In other words, this is the familiar 0-successor or 1-successor case.

If we have two input signals, e.g., w_0 and w_1 , then k can only be equal to 0,1, 2, or 3.

If we have two input signals, e.g., w_0 and w_1 , then k can only be equal to 0,1, 2, or 3.

 S_1 is a 3-successor of S_2

S₄ is a 3-successor of S₂

Equivalence of states

"If states S_i and S_j are equivalent, then their corresponding k-successors (for all k) are also equivalent."

Partition

"A partition consists of one or more blocks, where each block comprises a subset of states that may be equivalent, but the states in a given block are definitely not equivalent to the states in other blocks."

State Table for This Example

Present	Next	Output	
state	w = 0	w = 1	\overline{z}
A	В	C	1
В	D	F	1
C	F	Е	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	

State Diagram (just the states)

Present	Next state		Output
state	w = 0	w = 1	z
A	В	C	1
В	D	F	1
C	F	E	0
D	В	G	1
Е	F	C	0
F	E	D	0
G	F	G	0

State Diagram

(transitions when w=0)

Present	Nex	Output	
state	w = 0	w = 1	z
A	В	С	1
в	D	F	1
C	F	Е	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	0

State Diagram

(transitions when w=1)

Outputs

				-	•		
Present state	$\frac{\text{Next}}{w = 0}$		Output z				
A B C D F G	B D F B F E F	C F E G C D G	1 1 0 1 0 0 0	B $z=1$		C $z=0$	E
			A =1				E $z=0$ G
				$D_{z=1}$		$F_{z=0}$	$G_{z=0}$

(All states in the same partition)

Partition #1 (ABCDEFG)

(based on outputs)

Partition #2 (ABD)(CEFG)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 0-successors of CEFG)

(Examine the 1-successors of CEFG)

(Examine the 1-successors of CEFG)

Partition #3 (ABD)(CEG)(F)

Partition #3 (ABD)(CEG)(F)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 1-successors of ABD)

Partition #4 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(Examine the 0-successors of AD)

(Examine the 1-successors of AD)

(Examine the 0-successors of B)

(Examine the 1-successors of B)

(Examine the 0-successors of CEG)

(Examine the 1-successors of CEG)

(Examine the 0-successors of F)

(Examine the 1-successors of F)

Partition #5 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(This is the same as #4 so we can stop here)

Minimized state table

Present	Next	Output	
state	w = 0	w = 1	Z
A	В	С	1
В	A	F	1
C	F	C	0
F	C	A	0

Vending Machine Example

Vending Machine Example

- The machine accepts nickels and dimes
- It takes 15 cents for a piece of candy to be released from the machine
- If 20 cents is deposited, the machine will not return the change, but it will credit the buyer with 5 cents and wait for the buyer to make a second purchase.

Signals for the vending machine

(b) Circuit that generates N

State Diagram for the vending machine

State Diagram for the vending machine

State Table for the vending machine

Present	Nε	Output			
state	DN =00	01	10	11	z
S1	S1	S 3	S 2	_	0
S2	S2	S 4	S 5	_	0
S 3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S 3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S 8	S 1	_	_	_	1
S 9	S3	_	_	_	1

Incompletely specified state table

Present		Next state			
state	00	01	10	11	z
S1	S1	S3	S2	-	0
S3	S3	S6	S 7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

Present		Next state				
state	00	01	10	11	Z	
S1	S1	S3	S2	-	0	
S3	S3	S6	S7	-	0	
S2	S2	S4	S5	-	0	
S6	S6	S8	S9	-	0	
S4	S1	-	-	-	1	
S7	S1	-	-	-	1	
S8	S1	-	-	-	1	
S5	S3	-	-	-	1	
S9	S3	-	-	-	1	

P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9) P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

Present		Next state					
state	00	01	10	11	Z		
S1	S1	S3	S2	-	0		
S3	S3	S6	S7	-	0		
S2	S2	S4	S5	-	0		
S6	S6	S8	S9	-	0		
S4	S1	-	-	-	1		
S7	S1	-	-	-	1		
S8	S1	-	-	-	1		
S5	S3	-	-	-	1		
S9	S3	-	-	-	1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)
P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)
```

P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)

Present		Next state					
state	00	01	10	11	z		
S1	S1	S3	S2	-	0		
S3	S3	S6	S7	-	0		
S2	S2	S4	S5	-	0		
S6	S6	S8	S9	-	0		
S4	S1	-	-	-	1		
S7	S1	-	-	-	1		
S8	S1	-	-	-	1		
S5	S3	-	-	-	1		
S9	S3	_	_	_	1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)
```

Present		Next state					
state	00	01	10	11	Z		
S1	S1	S3	S2	-	0		
S3	S3	S6	S7	-	0		
S2	S2	S4	S5	-	0		
S6	S6	S8	S9	-	0		
S4	S1	-	-	-	1		
S7	S1	-	-	-	1		
S8	S1	-	-	-	1		
S5	S3	-	-	-	1		
S9	S3	-	-	-	1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)

P4=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)

P5=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)
```

Present			Output		
state	00	01	10	11	Z
S1	S1	S3	S2	-	0
S3	S3	S6	S7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)

P4=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)

P5=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)
```

Minimized State Table for the vending machine

Present	Nε	Output			
state	DN =00	01	10	11	Z.
S1	S 1	S 3	S 2	_	0
S 2	S 2	S 4	S5	_	0
S 3	S 3	S 2	S 4	_	0
S 4	S 1	_	_	_	1
S5	S 3	_	_	_	1

Minimized State Diagram for the vending machine

Mealy-type FSM for the vending machine

Another Example of Incompletely specified state table

Present	Next	state	Output z	
state	w = 0	w = 1	w = 0	w = 1
A	В	С	0	0
В	D	_	0	_
C	F	E	0	1
D	В	G	0	0
E	F	C	0	1
F	Е	D	0	1
G	F	_	0	_

Questions?

THE END