

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Counters & Solved Problems

Administrative Stuff

- Homework 9 is out
- It is due on Monday Nov 7, 2016

Counters

T Flip-Flop (circuit and graphical symbol)

The output of the T Flip-Flop divides the frequency of the clock by 2

The first flip-flop changes on the positive edge of the clock

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of $\overline{\mathbb{Q}}_0$

The first flip-flop changes on the positive edge of the clock

The second flip-flop changes on the positive edge of \overline{Q}_0

The third flip-flop changes on the positive edge of \overline{Q}_1

[Figure 5.19 from the textbook]

[Figure 5.19 from the textbook]

A three-bit down-counter

A three-bit down-counter

Synchronous Counters

The propagation delay through all AND gates combined must not exceed the clock period minus the setup time for the flip-flops

[Figure 5.21 from the textbook]

Derivation of the synchronous up-counter

Derivation of the synchronous up-counter

Clock cycle	$Q_2 Q_1 Q_0$	
0 1 2 3 4 5 6 7	Q2 Q1 Q0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q ₁ changes Q ₂ changes
8	0 0 0	ı

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 Q_1$$

$$T_0 = 1$$

 $T_1 = Q_0$
 $T_2 = Q_0 Q_1$

In general we have

$$T_0 = 1$$
 $T_1 = Q_0$
 $T_2 = Q_0 Q_1$
 $T_3 = Q_0 Q_1 Q_2$
...
 $T_n = Q_0 Q_1 Q_2 ... Q_{n-1}$

Adding Enable and Clear Capability

Inclusion of Enable and Clear capability

Inclusion of Enable and Clear capability

Providing an enable input for a D flip-flop

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A counter with parallel-load capability

Reset Synchronization

Motivation

- An n-bit counter counts from 0, 1, ..., 2ⁿ-1
- For example a 3-bit counter counts up as follow
 - **0**, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ...

- What if we want it to count like this
 - **0**, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, ...
- In other words, what is the cycle is not a power of 2?

What does this circuit do?

A modulo-6 counter with synchronous reset

(a) Circuit

(b) Timing diagram

[Figure 5.25 from the textbook]

A modulo-6 counter with asynchronous reset

A modulo-6 counter with asynchronous reset

Other Types of Counters (Section 5.11)

- 2: Parallel-load four-bit counter
 - Figure 5.24
- Each counts in binary
 - **-** 0-9
- Resets generated on 9
 - Reset by loading 0's
- Second digit enabled by a 9 on first counter

[Figure 5.27 from the textbook]

[Figure 5.27 from the textbook]

It is a counter with parallel-load capability

Zeroing the BCD counter

[Figure 5.27 from the textbook]

Zeroing the BCD counter

[Figure 5.27 from the textbook]

How to zero a counter

Set all parallel load input lines to zero.

[Figure 5.24 from the textbook]

How to zero a counter

Set "Load" to 1, to open the "1" line of the multiplexers. Load _

[Figure 5.24 from the textbook]

How to zero a counter

When the positive edge of the clock arrives, all outputs are set to zero together.

[Figure 5.24 from the textbook]

When Clear = 0

[Figure 5.27 from the textbook]

[Figure 5.27 from the textbook]

Enabling the second counter

Enabling the second counter

N-bit ring counter

- **1000**, 0100, 0010, 0001, 1000......
- Reset
 - Set start to 1
 - Sets output to 1000

N-bit ring counter

4-bit ring counter

- Use a 2-bit counter
 - 00, 01, 10, 11, 00......
- 2-4 Decoder
 - 1000, 0100, 0010, 0001, 1000......

4-bit ring counter

Johnson Counter

- 1-bit changes at a time
- **•** 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000
- Begin with a reset of all flip-flops
- An n-bit Johnson counter has a counting sequence of length 2n

Johnson counter

Timing Analysis of Flip-Flop Circuits (Section 5.15)

Timing Review

tsu: setup time

th: hold time

tcQ: propogation delay

Timing Example

tsu: 0.6ns

th: 0.4ns

tcQ: 0.8ns to 1.0ns

Which value to use?

k is equal to the number of inputs

• Fmax = 1/Tmin = 370.37MHz

■ Fastest Q can change = tcQ + tnot = 0.8 + 1.1 = 1.9ns

1.9ns > 0.4ns therefore no hold violations

Timing Example: 4-bit counter

[Figure 5.67 from the textbook]

Timing Example: 4-bit counter

- Look for longest path
 - Q0 to Q3
- Propagation delay of Q0
- 3 AND propagation delays
- 1 XOR propagation delay
- Setup delay for Q3
- Tmin = 1.0 + 3(1.2) + 1.2 + 0.6 = 6.4ns
- Fmax = 1/6.4ns = 156.25MHz
- Check for hold violations
 - Fastest Q can change = tcQ + tXOR = 0.8 + 1.2 = 2ns
 - 2.0ns > 0.4ns therefore no hold violations

Timing Example: Clock Skew

Figure 5.68. A general example of clock skew.

Skew Timing Example: 4-bit counter

- Q3 now has a clock slew delay: 1.5ns
 - T = 1.0 + 3(1.2) + 1.2 + 0.6 1.5 = 4.9ns
- Now might not be the longest path
- Check Q0 to Q2
 - T = 1.0 + 2(1.2) + 1.2 + 0.6 = 5.2ns
- Fmax = 1/5.2ns = 192.31MHz

Faster 4-bit Counter

- Want to increase the speed of the 4-bit counter
- Use similar method as used in 4-bit adder
- Remove series AND gates

A faster 4-bit counter

[Figure 5.75 from the textbook]

Faster 4-bit Counter

- Longest path: Q0 to Q3
- Tmin = tcQ0 + tAND + tXOR + tsu
- =1.0 + 1.4 + 1.2 + 0.6 = 4.2ns
- Fmax = 1/4.2ns = 238.1MHz > 156.25MHz

Reaction Timer Circuit (Section 5.14)

Problem Statement

- Want to design a reaction timer
- Circuit turns on light (LED)
- Person then presses switch
- Measures time from LED on until the switch is pressed

Clock Divider

• Input: 102.4kHz

• Output: 100Hz

10-bit Counter to divide

Output Frequency = 102.4k / 2^10 = 100Hz

A reaction-timer circuit

Functionality of circuit

- Push switch
 - Nominally 1
- DFF to keep track of the state
- Two-digit BCD counter
 - Output goes to converters to a 7-segment display
- Start-up
 - Assert the Reset signal
 - Clears counter
 - Clears flip-flop
 - Assert w=1 for one cycle
 - Once switch is hit
 - Clears flip-flop
 - Stops counting

Push-button switch, LED, and 7-segment displays

[Figure 5.61c from the textbook]

Examples of Solved Problems (Section 5.17)

Figure 5.70. Circuit for Example 5.18.

Figure 5.71. Circuit for Example 5.19.

	Q(t+1)	K	J
No Change	Q(t)	0	0
Reset	0	1 0	0
Set	1		1
Complement	Q'(t)	1	1

Time interval	FFO			FF1		
	J_0	K_0	Q_0	J_1	K_1	Q_1
Clear	1	1	0	0	1	0
t_1	1	1	1	1	1	0
t_2	0	1	0	0	1	1
t_3	1	1	0	0	1	0
t_4	1	1	1	1	1	0

Figure 5.72. Summary of the behavior of the circuit in Figure 5.71.

Vending machine example

- Inputs N, D, Q, Coin, Resetn
 - N, D, Q: nickel, dime, quarter
 - Coin: pulsed when a coin is entered
 - Used to store values into register
 - Resetn: resets the register value to zero
- Add up new coin with old value
 - Store new sum into old value register
- See if total is above thirty cents
 - If so output Z goes high

Circuit for Example 5.20

[Figure 5.73 from the textbook]

Questions?

THE END