
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Intro to Verilog

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

•  HW3 is due on Monday Sep 12 @ 4p

Administrative Stuff
•  HW4 is out

•  It is due on Monday Sep 19 @ 4pm.

•  Please write clearly on the first page (in BLOCK
CAPITAL letters) the following three things:

§  Your First and Last Name
§  Your Student ID Number
§  Your Lab Section Letter

•  Also, please
§  Staple your pages

Administrative Stuff
TA Office Hours:

•  11:00am-1:00pm on Wednesdays (Jinyuan Jia)

 Location: TLA (Coover Hall - first floor)

•  9:50am-11:50am on Thursday (Siyuan Lu)

 Location: TLA (Coover Hall - first floor)

Administrative Stuff
•  Midterm Exam #1

•  When: Friday Sep 23.

•  Where: This classroom

•  What: Chapter 1 and Chapter 2 plus number systems

•  The exam will be open book and open notes (you can
bring up to 3 pages of handwritten notes).

•  More details to follow.

Quick Review

NAND followed by NOT = AND

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 	

1 	

 x 	

2 	

⋅ 	

f
0
0
0
1

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

DeMorgan’s Theorem

DeMorgan’s Theorem

x 	

 	

x 	

y 	

 	

y 	

x + y	

=x 	

y 	

 	

x 	

 	

 y 	

 	

⋅ 	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

3 	

x 	

4 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

1 	

 x 	

2 	

⋅ 	

 x 	

3 	

 x 	

4 	

⋅ 	

+	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

3 	

x 	

4 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

1 	

 x 	

2 	

⋅ 	

 x 	

3 	

 x 	

4 	

⋅ 	

+	

 AND	

 	

	

	

 AND	

 OR	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

3 	

x 	

4 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

1 	

 x 	

2 	

⋅ 	

 x 	

3 	

 x 	

4 	

⋅ 	

+	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

3 	

x 	

4 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

1 	

 x 	

2 	

⋅ 	

 x 	

3 	

 x 	

4 	

⋅ 	

+	

 NAND	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

 AND	

 	

	

	

 AND	

 OR	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

⋅ 	

x 	

3 	

x 	

4 	

x 	

3 	

 x 	

4 	

⋅ 	

x 	

1 	

 x 	

2 	

⋅ 	

 x 	

3 	

 x 	

4 	

⋅ 	

+	

Sum-Of-Products

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

x 	

5 	

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

x 	

5 	

x 	

1 	

x 	

2 	

x 	

3 	

x 	

4 	

x 	

5 	

2-1 Multiplexer (Definition)

•  Has two inputs: x1 and x2

•  Also has another input line s

•  If s=0, then the output is equal to x1

•  If s=1, then the output is equal to x2

Graphical Symbol for a 2-1 Multiplexer

f 	

s 	

x 	

1 	

x 	

2 	

0 	

1 	

[Figure 2.33c from the textbook]	

Let’s Derive the SOP form

s x1 x2	

s x1 x2	

s x1 x2	

s x1 x2	

f (s, x1, x2) =	

 s x1 x2	

 s x1 x2	

 s x1 x2	

 s x1 x2	

+	

 +	

 +	

Let’s simplify this expression

f (s, x1, x2) =	

 s x1 x2	

 s x1 x2	

 s x1 x2	

 s x1 x2	

+	

 +	

 +	

f (s, x1, x2) =	

 s x1 (x2 + x2) 	

 s (x1 +x1)x2	

+	

 +	

f (s, x1, x2) =	

 s x1 	

 s x2	

+	

Circuit for 2-1 Multiplexer

f 	

x 	

1 	

x 	

2 	

s 	

f 	

s 	

x 	

1 	

x 	

2 	

0 	

1 	

(c) Graphical symbol	

(b) Circuit 	

[Figure 2.33b-c from the textbook]	

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]	

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]	

select	

x1	

 x2	

f	

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]	

select	

x1	

 x2	

f	

This is not a perfect analogy because the trains can go in either direction, 	

while the multiplexer would only allow them to go from top to bottom.	

More Compact Truth-Table Representation

0 	

0 	

0 	

 0 	

0 	

0 	

1 	

 0 	

0 	

1 	

0 	

 1 	

0 	

1 	

1 	

 1 	

1 	

0 	

0 	

 0 	

1 	

0 	

1 	

 1 	

1 	

1 	

0 	

 0 	

1 	

1 	

1 	

 1 	

(a) 	

Truth 	

table 	

s x1 x2 f (s, x1, x2)

[Figure 2.33 from the textbook]	

0 	

1 	

f (s, x1, x2) s
x1

x2

4-1 Multiplexer (Definition)

•  Has four inputs: w0 , w1, w2, w3

•  Also has two select lines: s1 and s0

•  If s1=0 and s0=0, then the output f is equal to w0

•  If s1=0 and s0=1, then the output f is equal to w1

•  If s1=1 and s0=0, then the output f is equal to w2

•  If s1=1 and s0=1, then the output f is equal to w3

 We’ll talk more about this when we get 	

to chapter 4, but here is a quick preview.	

Graphical Symbol and Truth Table

[Figure 4.2a-b from the textbook]	

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]	

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]	

0 	

w 	

0 	

w 	

1 	

0 	

1 	

w 	

2 	

w 	

3 	

0 	

1 	

f 	

0 	

1 	

s 	

1 	

s 	

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]	

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]	

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]	

s1	

w0	

f	

w1	

 w2	

 w3	

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]	

s1	

w0	

f	

w1	

 w2	

 w3	

these two 	

switches are 	

controlled 	

together	

s0	

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

f	

s1	

s0	

w0	

w1	

w2	

w3	

That is different from the SOP form of the 4-1
multiplexer shown below, which uses less gates

w 	

8 	

w 	

11	

s 	

1 	

w 	

0 	

s 	

0 	

w 	

3 	

w 	

4 	

w 	

7 	

w 	

12	

w 	

15	

s 	

3 	

s 	

2 	

f 	

16-1 Multiplexer

[Figure 4.4 from the textbook]	

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]	

7-Segment Display Example

Display of numbers

[Figure 2.34 from the textbook]	

Display of numbers

Display of numbers

b = 1	

e = s0	

c = s1	

f = s1 s0	

g = s1 s0	

a = s0	

d = s0	

Intro to Verilog

History
•  Created in 1983/1984

•  Verilog-95 (IEEE standard 1364-1995)

•  Verilog 2001 (IEEE Standard 1364-2001)

•  Verilog 2005 (IEEE Standard 1364-2005)

•  SystemVerilog

•  SystemVerilog 2009 (IEEE Standard 1800-2009).

HDL

•  Hardware Description Language

•  Verilog HDL

•  VHDL

Verilog HDL != VHDL

•  These are two different Languages!

•  Verilog is closer to C

•  VHDL is closer to Ada

[Figure 2.35 from the textbook]	

“Hello World” in Verilog

[http://en.wikipedia.org/wiki/Verilog]	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

+ 	

AND gate 	

x 	

 x 	

 x 	

1 	

x 	

2 	

x 	

1 	

x 	

2 	

⋅ 	

The Three Basic Logic Gates

[Figure 2.8 from the textbook]	

OR gate 	

NOT gate 	

How to specify a NOT gate in Verilog

NOT gate 	

x 	

 x 	

x 	

 y 	

How to specify a NOT gate in Verilog

NOT gate 	

we’ll use the letter y for the output	

x 	

 y 	

How to specify a NOT gate in Verilog

NOT gate 	

not (y, x)	

Verilog code	

How to specify an AND gate in Verilog

AND gate 	

and (f, x1, x2)	

Verilog code	

x 	

1 	

x 	

2 	

x 	

1 	

x 	

2 	

⋅ 	

f= 	

How to specify an OR gate in Verilog

OR gate 	

or (f, x1, x2)	

Verilog code	

x 	

1 	

x 	

2 	

x 	

1 	

 x 	

2 	

+ 	

f= 	

2-1 Multiplexer

[Figure 2.36 from the textbook]	

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook]	

[Figure 2.36 from the textbook]	

Verilog Code for a 2-1 Multiplexer

[Figure 2.40 from the textbook]	

[Figure 2.36 from the textbook]	

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook]	

[Figure 2.36 from the textbook]	

Verilog Code for a 2-1 Multiplexer

[Figure 2.43 from the textbook]	

[Figure 2.36 from the textbook]	

Another Example

Let’s Write the Code for This Circuit

[Figure 2.39 from the textbook]	

[Figure 2.38 from the textbook]	

Let’s Write the Code for This Circuit

module example2 (x1, x2, x3, x4, f, g, h);	

	

input x1, x2, x3, x4;	

	

output f, g, h;	

 	

	

and (z1, x1, x3);	

	

and (z2, x2, x4);	

	

or (g, z1, z2);	

	

or (z3, x1, ~x3);	

	

or (z4, ~x2, x4);	

	

and (h, z3, z4);	

	

or (f, g, h);	

 	

endmodule 	

[Figure 2.39 from the textbook]	

[Figure 2.41 from the textbook]	

Let’s Write the Code for This Circuit

[Figure 2.39 from the textbook]	

module example4 (x1, x2, x3, x4, f, g, h);	

	

input x1, x2, x3, x4;	

	

output f, g, h;	

	

	

	

assign g = (x1 & x3) | (x2 & x4);	

	

assign h = (x1 | ~x3) & (~x2 | x4);	

	

assign f = g | h;	

	

	

endmodule	

Yet Another Example

A logic circuit with two modules

[Figure 2.44 from the textbook]	

The adder module

[Figure 2.12 from the textbook]	

The adder module

[Figure 2.45 from the textbook]	

The display module

b = 1	

e = s0	

c = s1	

f = s1 s0	

g = s1 s0	

a = s0	

d = s0	

The display module

b = 1	

e = s0	

c = s1	

f = s1 s0	

g = s1 s0	

a = s0	

d = s0	

[Figure 2.46 from the textbook]	

Putting it all together

Questions?

THE END

