
OpenCV API
A Quick Introduction to the C Interface
By David Johnston

Warning: API Version 1.x

Primary OpenCV Interfaces

The 1.x API is based on C.
The 2.x API is based on C++.

Goals

Very briefly outline the OpenCV installation
process on Windows, OS X, and Linux.

Walk through 4 example programs which should
relevant to solving homework 2.

Point out some common API patterns and idioms.

Installing OpenCV

Windows 7 64-bit and
Visual C++ 2010 Express

● Install Visual C++ 2010 Express Edition (or some
other modern Visual Studio product).

● Download prebuilt binaries and extract them to
some desired location.

● Set the OPENCV_DIR environment variable:

 > setx -m OPENCV_DIR C:\opencv\build\x64\vc10

Windows 7 64-bit and
Visual C++ 10.0 Express

● Add %OPENCV_DIR%\bin to your system path.

● Modify Visual Studio properties to find necessary
files. The following describes this process in great
detail:

docs.opencv.
org/doc/tutorials/introduction/windows_visual_studio_Openc
v/windows_visual_studio_Opencv.html

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html
http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html
http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html
http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html

Install on Mac OS X

● Install XCode or the Apple Command Line
Tools. Both are available with a (free) Apple ID.

● Install a package manager such as macports or
homebrew.

● Install OpenCV.

Install on Linux

● Install via native package manager (ie.
apt-get, yum, etc.)

Build on UNIX-Like System

cc `pkg-config --cflags --libs\
 opencv` -o foo foo.c

Four Code Demos

CvMat cvMat(...)

CvMat* cvCreateMat(...)

CvMat* cvCreateMatHeader(...)

IplImage* cvCreateImage(...)

CvSeq* cvCreateSeq(...)

Some Constructors for
Important Data Structures

Ex 1: Image Workflow

Loading, modifying, saving, and closing an
image file.

See filter.c.

Macros

OpenCV defines a lot of macros.

● Most are prefixed with CV_*
● Many are function-specific
● The online documentation is usually pretty clear

In-Place Matrix Operations

cvNot(img, img);

Manual Memory Management

IplImage* img = cvLoadImage(...);

/* do something worthwhile */

cvReleaseImage(&img);

Ex 2: Basic Morphology
and Color

Creating basic structuring elements and calling
cvErode() and cvDilate().

Using binary images (bit masks) and cvSet()
to color regions of an image.

See noteSeg.c.

Constructors of Helper
Data Structures

 Simple ideas wrapped inside a data type:
CvPoint cvPoint(int x, int y)

CvSize cvSize(int width, int height)

CvScalar cvScalar(double d0, double d1, double d2, double
d3)

CvScalar cvScalarAll(double d)

CvScalar cvRealScalar(double d)

CvRect cvRect(int x, int y, int width, int height)

Ex 3: Horizontal and
Vertical Projections

Use cvGetRow(), cvGetCol(), and
cvSum() to perform very simple projections.

Sort of Object Oriented
The most important data structure is arguably IplImage.

- Page 33 of Learning OpenCV by Bradski and Kaehler

The IplImage and CvMat data structures are
just metadata which provide interfaces to the
underlying image data.

See projections.c.

Sort of Object Oriented

Ex 4: Custom Morphology

Creating custom structuring elements using
cvCreateStructuringElementEx() and
an int[].

Warning: Pointer Arithmetic
is Imminent!

Examples and discussion can be found in the
text (highly recommended reading):
● cvMat and IplImage: pp. 31 - 47
● cvSeq: pp. 222 - 234

See customStructElem.c.

Questions?

Example

CvSize size = cvSize(600, 400);

IplImage* img = cvCreateImage(

 size, IPL_DEPTH_8U, 3

);

cvSet(img, cvScalarAll(0), NULL);

Why isn't every call to these helper
functions a memory leak?

Esoteric C99 Feature of the Day:
Inline Functions

"The keyword inline is a request to the
compiler to insert a function's machine code
wherever the function is called in the program."

- Page 106 of C in a Nutshell, by Prinz and Crawford

Automatic variables declared in an inline
function become automatic variables in the
calling function.

