Verification, The Key to Al

11/15/2001

It is a bit unseemly for an Al researcher to claim to have a special insight or plan for how his field should proceed. If he has such, why
doesn't he just pursue it and, if he is right, exhibit its special fruits? Without denying that, there is still a role for assessing and analyzing
the field as a whole, for diagnosing the ills that repeatedly plague it, and to suggest general solutions.

The insight that | would claim to have is that the key to a successful Al is that it can tell for itself whether or not it is working correctly. At
one level this is a pragmatic issue. If the Al can't tell for itself whether it is working properly, then some person has to make that
assessment and make any necessary modifications. An Al that can assess itself may be able to make the modifications itself.

The Verification Principle:
An Al system can create and maintain knowledge only to the extent that it can verify that knowledge itself.

Successful verification occurs in all search-based Al systems, such as planners, game-players, even genetic algorithms. Deep Blue, for
example, produces a score for each of its possible moves through an extensive search. Its belief that a particular move is a good one is
verified by the search tree that shows its inevitable production of a good position. These systems don't have to be told what choices to
make; they can tell for themselves. Image trying to program a chess machine by telling it what kinds of moves to make in each kind of
position. Many early chess programs were constructed in this way. The problem, of course, was that there were many different kinds of
chess positions. And the more advice and rules for move selection given by programmers, the more complex the system became and the
more unexpected interactions there were between rules. The programs became brittle and unreliable, requiring constant maintainence, and
before long this whole approach lost out to the "brute force" searchers.

Although search-based planners verify at the move selection level, they typically cannot verify at other levels. For example, they often
take their state-evaluation scoring function as given. Even Deep Blue cannot search to the end of the game and relies on a human-tuned
position-scoring function that it does not assess on its own. A major strength of the champion backgammon program, TD-Gammon, is that
it does assess and improve its own scoring function.

Another important level at which search-based planners are almost never subject to verification is that which specifies the outcomes of
the moves, actions, or operators. In games such as chess with a limited number of legal moves we can easily imagine programming in the
consequences of all of them accurately. But if we imagine planning in a broader Al context, then many of the allowed actions will not
have their outcomes completely known. If | take the bagel to Leslie's office, will she be there? How long will it take to drive to work? Will
| finish this report today? So many of the decisions we take every day have uncertain and changing effects. Nevertheless, modern Al
systems almost never take this into account. They assume that all the action models will be entered accurately by hand, even though these
may be most of the knowledge in or ever produced by the system.

Finally, let us make the same point about knowledge in general. Consider any Al system and the knowledge that it has. It may be an
expert system or a large database like CYC. Or it may be a robot with knowledge of a building's layout, or knowledge about how to react
in various situations. In all these cases we can ask if the Al system can verify its own knowledge, or whether it requires people to
intervene to detect errors and unforeseen interactions, and make corrections. As long as the latter is the case we will never be able to
build really large knowledge systems. They will always be brittle and unreliable, and limited in size to what people can monitor and
understand themselves.

"Never program anything bigger than your head"
And yet it is overwhelmingly the case that today's Al systems are not able to verify their own knowledge. Large ontologies and knowledge

bases are built that are totally reliant on human construction and maintainence. "Birds have wings" they say, but of course they have no
way of verifying this.



