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Abstract 
 

The paper proposes a framework so that the robot can learn to detect the doorbell 

buttons on a portable device and identify the broken ones by haptic exploration and in 

an unsupervised way. 4 doorbell buttons and 1 wood were mounted onto a portable 

device made for the robot to generate button surfaces and non-button surfaces. The 

portable device was made for the robot on purpose so that it can match the robot’s 

hand very well and can be grasped stably by two fingers of the robot hand while the 

robot hand frees the third finger to press the surface. The empirically optimal 

exploratory procedure, press exploratory procedure, is chosen to obtain the haptic 

property of doorbell buttons. The press procedure is generated by closing/opening the 

free finger, which is straightforward selection considering the operation with the 

portable device.  

 

Joint torque sensor in the distal joint of the free finger is used to guide the close/open 

of the finger as well as notify the touch of surface. Motor position sensor is used to 

measure the travel distance during touch and the microphone sensor is used to get the 

maximal volume heard during touch. The unsupervised learning algorithm, k-means is 

used to do the learning work and is run in two clustering procedures. The first 

clustering procedure considers the travel distance only and partitions the exploration 

trails into button-press or non-button-press. The second clustering procedure 

considers the maximal volume only and partitions the exploration trials into 

bell-triggering-press or non-bell-triggering-press. Buttons are detected if the trial is 

clustered into button-press after the first clustering procedure. Broken buttons are 

identified if the trial is clustered into both button-press and non-bell-triggering-press 

after these two clustering procedures. Results show that the robot can learn to 

consistently detect buttons and broken ones.  

 

Real-time detection and on-line learning are achieved by implementing the framework 

in C/C++ program. The control of the closing/opening of the finger, the reading of 



 

joint torque and motor position, and the extraction of audio stream (OpenAL) are 

combined into the C/C++ program and made parallel using pthread. The two 

clustering procedures are also implemented in C/C++ functions and called to get the 

detection result right after the completion of a press trial. The data associated with the 

trial explored is updated into the experience data base right after the completion of the 

trial so that the robot can learn on-online. 
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1. Introduction 

 

The study focuses on detecting the doorbell buttons and broken ones on a portable 

device, which made by the author particularly to match the robot’s hand. Portable 

devices with buttons on are very common in human’s life. For example, TV remote 

controller with varied buttons is used to choose the channels and adjust the volume of 

TV. People hold the flashlight to light up and press the button on the flashlight to turn 

on/off the light. Buttons are everywhere in human’s life and doorbell buttons are 

representative among kinds of buttons. Therefore, this study is meaningful in building 

the robot in helping human’s life. 

 

Previous work in detecting buttons shows interest in using vision (Miura et. al 2005, 

Klingbeil et. al 2008, Sukhoy et. al. 2010). Their work aim to let the robot learn and 

get the visual representation of the button so that the model learned can be used to 

detect the button in visual space. However, rare work is done to learn and get the 

haptic representation of the button, so that the robot can find the buttons by only 

haptic exploration and modalities in the absence of vision. It should also be very 

important to get the haptic representation of the button. Not only the robot can still 

detect and locate and operate the buttons under the condition where there is no vision 

available, but also the haptic representation is more accurate in defining a button, 

which is invented by human to help human’s life. 

 

More correctly, this research focuses on the push-button, which has a spring in to 

return to the un-pushed state. Because of the spring in the push-button, the fingertip 

can sink in while keep contact with the button’s surface and feel the resistance, and 

also when being released the button’s surface will resume automatically. (Sukhoy and 

Stoytchev 2010) trained a visual model that can detect the button with the button-like 

texture in vision. However, any object with the button-like texture but without the 

spring and the tactile and proprioceptive properties above, we still can’t say that it is a 
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push-button. Therefore, the representation for a button derived from its tactile 

property is more accurate and may be able to achieve a more accurate detection result. 

 

From the point of view of haptic exploration, sensing the push-button is also very 

meaningful. By haptic exploration, humans can learn many characteristics of objects, 

such as object shape, surface texture, stiffness and temperature. This kind of research 

is also viewed as the tactile data interpretation, which supports the dexterous 

manipulation a lot. For example, (Okamura and Cutkosky 1999a) designed a 

mathematical model based on a differential geometry approach to detect small surface 

feature of bump. 

 

2. The Previous Study 

 

This project is based on the previous study by the research group in Developmental 

Robotics Laboratory at Iowa State University. The robot for the previous study as well 

as this project proposed is showed in Figure 1. This robot has two Barrett Whole Arm 

Manipulators (WAMs) with a BH8-Series Barrett Hand as arms. Two Logitech 

cameras are mounted in its head as his eyes. It also has a microphone mounted on the 

head and an artificial fingernail attached on the finger 3 on the left arm. 
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    (a) The robot pushing a button         (b) Experimental fixture (back) 

Figure 1: The robot and fixture for the experiment. 

 

In the previous study, there are mainly two projects. One project (Sukhoy, Sinapov, 

Wu and Stoytchev 2010) is humanoid robot learning to press doorbell buttons using 

active exploration and audio feedback. With 5 sampled points in the 7-D joint space, 

the robot can calculate itself to generate press behaviors of pressing an area on the 

board. The press behaviors are parameterized by the vector decided by the start 

position and end position of the behavior in the 7-D joint space. By running the 

pre-learned classifier on the audio stream, the time when the doorbell is triggered can 

be detected in real-time. For each behavior, it will be labeled as pressing a button or 

not pressing a button according to if there is a doorbell detected at the meantime. 

Finally, k-nearest neighbor algorithm is used to do the learning work and three kinds 

of active selection strategies—random exploration, uncertainty-driven exploration, 

and stimulus-driven exploration—are used to speed up the learning. 

 

In another project (Sukhoy and Stoytchev 2010), the humanoid robot learns the visual 

model of doorbell buttons autonomously. Color tracker is used to track the touch 
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position on the board surface in the image from robot’s camera. These touch position 

is simplified as a pixel in the image and labeled as the functional component or not 

according to if the associated press behavior is pressing button or not based on the 

audio feedback. Image is split into 10x10 pixel patches, and each patch is labeled as 

functional component or not according to the density of functional component touch 

point falling into the grid. For each patch, the texture, edge and low-frequency color 

information of itself and neighbors are extracted and logistic regression classifier is 

used to learn the visual model for detecting patches belonging to the functional 

component of the doorbell buttons. 

   

3. Related Work 

 

3.1 Button Study 

 

In psychology, (Hauf and Aschersleben 2008) found that a 9-month old infant can 

anticipate what color of buttons will trigger the light or the ring when he/she presses 

from experience, and in turn by the anticipation control his/her action to press the 

working buttons more often. In the experiment, the infants were placed in front of 3 

groups of buttons. In the first group, the red button is effective. In the second group, 

the blue button is effective, and in the third group, none button is effective. The result 

shows that the infants press red button more often for the first group, blue button more 

often for the second group and almost the same for the third group. 

 

In robotics, the previous work focuses on the visual feedback more. (Thomaz 2006) 

used social learning to teach the robot how to turn the button on & off using speech 

communication. But the robot uses the vision to recognize where the button is and 

decide if the button is on or off. (Miura, Iwase, and Shirai 2005) made the robot 

execute a take-an-elevator task based on vision. Vision-based teaching algorithm was 

used to find the location of the elevator door and elevator button. The origin of the 
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elevator was marked with a red light, and the robot searched the area around the 

origin to find the image template of the elevator. Similarly, being indicated the rough 

position of the buttons; the robot finds the position of the button by searching for the 

area nearby. (Klingbeil, Saxena and Ng 2008) tried a haar classifier using supervised 

learning algorithm for the robot to detect where the elevator button is. 

 

3. 2 Haptic Exploration 

 

In psychology, haptic exploration is defined as exploratory procedures (EPs) related 

with the modality of touch. EPs are stereotyped patterns describing the ways of 

contact and movement between skin and object (Lederman and Klatzky 1987). During 

exploration, the perceptual system, haptics, incorporates inputs from multiple sensory 

systems (Loomis and Lederman 1986). Haptics includes a cutaneous system sensing 

pressure, vibration, temperature, and a kinesthetic system registering position and 

movement of the muscles and joints. Between EPs and object properties, there are 

associations describing whether an EP is necessary, optimal, sufficient, or inadequate 

in exposing a specific property of an object (Klatzky, Lederman, and Matula 1991). 

By haptic exploration, human can learn these associations, which, in turn, can help the 

human to choose an optimal EP for obtaining the desired object property. Empirically, 

the press EP is optimal in obtaining the press feeling of a push-button. For human, a 

press EP means using the fingertip to add external force perpendicularly onto the 

surface. In this study, the press EP is generated by closing one finger onto the surface, 

which is held stably in the robot hand’s palm. 

 

For the studies of haptic exploration in robotics, most of them focus on detecting the 

object shape (Caselli et al. 1996, Allen and Roberts 1989, Roberts 1990) and small 

surface features such as cracks, bumps and ridges (Okamura et al. 2000, Okamura and 

Cutkosky 2001, Okamura and Cutkosky 1999b). Some papers also designed the 

models to measure surface toughness, friction, and texture (Okamura et al. 2000, 

Stansfield 1992, Sukhoy et al. 2009). (Stansfield 1992) used two kinds of pressure 
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EPs to measure the hardness of objects. One is by grasping and squeezing the object, 

and another one is by probing against the object surface using one finger. In our study, 

the later kind of EP will be used to detect the push-button, which, to some degree, can 

be viewed as a soft object that can be probed in. 

 

4. Haptic Feeling for a Press on Doorbell Button  

 

For human, a press EP means using the fingertip to add external force perpendicularly 

onto the surface. In this study, the press EP is generated by closing one finger and 

putting fingertip onto the surface, which is held stably in the robot hand’s palm. The 

surface is held in the palm in such way that it is parallel to the palm surface. The 

rotation direction of the finger is perpendicular to the palm surface, and also the 

fingertip is spherical. Therefore, the external force added onto the target surface will 

be perpendicular within the range of acceptable error when close the finger onto the 

surface. 

 

The doorbell button in this study is a push-to-make push button. A push-button (also 

spelled pushbutton) or simply button is a simple switch mechanism for controlling 

some aspect of a machine or a process. Most of the buttons are biased switches. There 

are two types of biased switch, and they are push-to-make and push-to-break. For a 

push-to-make button, contact is made when pressed and broken when released. On the 

contrary, contact is broken when released and made when pressed for a push-to-break 

button.  

 

Most of buttons are push-to-make type, such as computer keyboard and doorbell 

button, which is the research target of this paper. The function for a push-to-make 

type button is to make contact by narrowing the distance due to the loading of the 

external force, and to break contact by broadening the distance due to the unloading 

of the external force. Therefore, the correct haptic feeling when doing a press on a 
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push-button is, there is considerable displacement change along the force change 

direction. 

 

Because of the spring in the button, there are also the associated characteristics, say 

buffing effect. This effect may be observed from the collision of fingertip and surface 

during the short time when the fingertip hits the surface. The vibration in the 

interaction force will be more smoothly for a button than for a hard non-button 

surface. However, these are minor comparing the travel distance property resulting 

from the function of a button, and are ignored in this study. 

 

5.  Experimental Setup 

 

5.1 Robot Hand 

 

The robot has two BH8-Series Barrett Hands (Figure 2). The BH8-Series Barrett 

Hand has three fingers. Each of them can be controlled independently to close 

completely, open completely, close the given number of counts, or open the given 

number of counts. In the distal joint of each finger (Figure 3), there is a strain gage 

joint-torque sensor, which can measure the force applied to the finger tip, Force A. 

Moreover, the two joints in the finger are controlled by only one motor, so that the 

position of the whole finger can just be decided by the position of the motor 

associated to the finger.  
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Figure 2. 3-finger Barrett robot hand used in the study 

 

Both the strain gage joint-torque and the motor position will be read in 50 Hz. 

Although these two sensors can be read in a much higher frequency, 50 Hz will be 

enough since the finger will be controlled to close in real time in a low frequency of 

10 HZ. Every 100 milliseconds, the motor will be input a command of closing a small 

number of counts and can be stop at specific case. There is also a microphone 

mounted into the robot’s head, and it is read in 44.KHz. 

 

Figure 3. Strain Gage Joint-Torque Sensor and Motor 

Finger 3 

Finger 2 
 

Finger 1 

Motor 
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5.2 Portable Device 

 

In the experiment, the robot will grasp a portable device in hand and it will close/open 

one finger iteratively to press one part of the surface on the device. The goal of this 

project is offering the robot such ability that it can learn to distinguish pressing a 

button from pressing a non-button on a portable device, and distinguish 

bell-triggering-button-pressing from non-bell-triggering-button-pressing on a 

portable device. The button will be the common doorbell button in human life, since 

the robot is expected the potential meaning in making human’s life easier. 

 

Human designs kinds of portable devices for themselves so that they can hold these 

devices more stably and more comfortably. The robot hand in this study has only three 

hands and is also much different from human’s hand in shape and material. To make 

the robot can use the portable devices designed for human hand, the straightforward 

solution is just creating a more human-like hand for the robot, which is obvious not 

the work in this project. Therefore, a unique portable device was made by the author 

for matching the robot hand so that the robot can grasp the device using two fingers 

stably while free the third finger to do the press iteratively.  

 
Figure 4. Portable device made for the robot 

Thick Part 
Thin Part 

Surface to Be Explored 
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Figure 4 shows you the portable device made for the robot. The robot uses finger 1 

and finger 3 to grasp the thick end of the device and the doorbell button is mounted to 

the thin end of the device so that the robot can close the finger 3 deep enough to press 

the button (Figure 5).  

 

(a)                                (b) 

Figure 5. Portable device being grasped by the robot hand: (a) with finger 2 open; (b) 

with finger 2 closed.  

 

5.3 Doorbell Buttons and Non-Button-Surfaces and Bell 

 

Figure 6(a) shows you the four buttons and one extension wood used in this study. For 

getting the button-surfaces (Figure 6(b): surfaces #1, 3, 5, 7.), the buttons were 

mounted onto the portable device in such way that the finger 2 will press onto the 

moveable part of the buttons. To get the non-button surfaces (Figure 6(c): surfaces #2, 

4, 6, 8.) as well as eliminate the impact of the device, the buttons will be mounted 

with a few offsets from the ways for getting button-surface so that the finger 2 will 

press onto the unmovable edge of the button instead. Moreover, a wood will be 

mounted to extend the thin part of the portable device to get another 

non-button-surface (Figure 6(c): surface # 9). Figure 6(c) shows you all the 

non-button-surfaces used in this study.  
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(a)                       (b)                    (c) 

Figure 6. Surfaces explored by the robot: (a) 4 buttons and 1 wood generating the surfaces; (b) 4 

button surfaces generated from the 4 buttons and with fingertip right above the moveable part; (c) 

4 non-button surfaces generating from the 4 buttons and with fingertip on the non-moveable edge, 

and 1 non-button surface made from extension wood. 

 

So, 4 button surfaces and 5 non-button surfaces (9 surfaces in total) will be explored 

in this study. A door bell mounted onto a board which stands perpendicularly in front 

of the robot will be connected to the buttons when necessary to generate 

bell-triggering-button-pressing. The setup for door bell is showed in Figure 1 in the 

previous study. 

 

1 

3 

5 

7 

2 

4 

6 

8 

9 
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5.4 Press Exploratory Procedure 

 

The press Exploratory Procedure (EP) will be used to obtain the haptic property of the 

button. The press EP is generated by closing the finger 2 onto the surface. The closing 

of the finger 2 will consist of two steps. During the first step, in a frequency of 10 Hz, 

the motor associated with finger 2 will execute a command for closing a certain 

number of counts when the notification state remains non-touching, which means the 

finger is not touching a surface. At the mean time, the joint torque in the distal joint of 

the finger will be read in a frequency of 50 Hz and checked if it exceeds a specific 

threshold. If it does, then the notification state will change to touching from 

non-touching and notify the robot that the finger now is touching a surface and the 

closing in first step should be stopped (Figure 7(b)).     

 

The second step of closing starts when the surface is being touched. Finger 2 will now 

execute a closing command which closes the finger until the torque in the motor 

reaches a specific limit or until the motor position reaches the destination (Figure 

7(c)). In this study, this step of closing will be designed on purpose so that it is the 

torque limit of motor but not the destination of the motor position is reached. In this 

case, different surfaces will receive the same press force within the range of 

acceptable error at the end of the second step of closing. Figure 7 shows you the 

position of the fingertip of finger2 during the press exploratory procedure on surface 

#1 (button surface). 
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(a)                     (b)                     (c) 

Figure 7. Position of the fingertip of finger2 during the press exploratory procedure on surface #1 

(button surface): (a) ready for press; (b) the end of first step as well as the start of the second step; 

(c) the end of the second step. 

 

6. Methodology 

 

6.1. Data Collection 

 

After one press EP, the finger 2 will be reset in order to be ready for another press EP. 

It will be open to a specific position where the finger tip of the finger will be away 

from the surface totally and the joint torque in the distal joint will be below the 

threshold notifying touching. One trail consists of the press EP and the open for reset. 

For each trial, both the travel distance of the motor position associated to the finger 2 

and the maximal volume heard from the microphone during the second step of closing 

will be recorded in real-time for further analysis. For each non-button surface, 6 trials 

will be performed. For each button surface, 3 trials will be performed when it is 

connected to the door bell, and another 3 trials will be performed when it is not 

connected to the door bell. Therefore, there are 6 trials for each surface, and there are  

6 × 9 = 54 trials in total. 

 

6. 2. The k-means Clustering 

 

The k-means Clustering algorithm (MacQueen 1967) will be used to do the learning 
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work in this study. It is a method of cluster analysis in statistics and data mining as 

well as machine learning. It partitions n observations into k clusters so that each 

observation will belong to the cluster, which has the nearest mean to it.     

 

Assume there are n observations (��,��, … , ��)  and each observation is a 

d-dimensional real vector. These n observations will be clustered into k sets �� ≤ �� 
� = {��,��, … ,��}. Then, k-means clustering aims to do the clustering so as to 

minimize the within-cluster sum of squares (WCSS): 

argmin
�

� � ||�� − 	�||�
��∈	�

�

�
�

 

where 	� is the mean of observations in ��. 
 

6.3. Normalization before Clustering 

 

To reduce the effect of unit and scalability, the parameters of each observation need to 

be normalized into the range [0, 1] before run clustering algorithm on the observations 

set. Assume observation vector ��  �1 ≤ 
 ≤ �� consists of p parameters and we have 

�� = ���, ��, … , ��
 �1 ≤ 
 ≤ ��.  

 

Get the new observation vector ��� = ����, ���, … ,���
 �1 ≤ 
 ≤ ��  by following 

normalization formula: 

�
� =
�������

���������
(1 ≤ � ≤ �) 

where ���� = �����
�� �
 and ���� = �����
�� �
.  

 

Then, new observation vectors will be fed into the clustering procedure instead.  

 

6. 4. Detecting Button and Identifying Broken Button 

 

Take these 42 trials as 42 observations. For solving these two tasks, two k-means 
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clustering procedures will be run on these observations to get two clusters for each 

observation. For the first clustering procedure, each observation will only have travel 

distance as its parameter, and it will be clustered into two clusters, button-press or 

non-button-press. For the second clustering procedure, each observation will only 

have maximal volume as its parameter and it will be clustered into two clusters, 

bell-triggering-press or non-bell-triggering-press.  

 

Therefore, the task of detecting button can be solved using the first clustering 

procedure. As long as a press is identified as button-press after the first clustering 

procedure, the robot can know that it is pressing a button so that it can detect the 

button. For solving the task of identifying broken button, both of these two procedures 

need to be run. If a press is identified as button-press as well as 

non-bell-triggering-press, the robot will know it is pressing a broken button, which 

may be disconnect to the bell and can’t function correctly to trigger the bell. 

 

7. Results 

 

7.1. Detecting Button and Identifying Broken Button 

 

Table 1 shows some sample results for the exploratory trials on surface1 and surface 8. 

When use the openAL program to extract the volume value from the microphone 

device, the value will be stored into a signed 16 bits integer and may vary from 0 to 

32767 (although the maximal value for a signed 16 bits integer is 65535). Bigger 

value means higher volume. When the finger 2 is open completely, the motor position 

is about 10. On the contrary, when the finger 2 is closed completely, the motor 

position is about 200000. For the first cluster procedure, the cluster 0 turns out to be 

the cluster of button-press, but for the second cluster procedure, the cluster 0 turns out 

to be the cluster of bell-triggering-press. 
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Table 1. Results of exploratory trials on surface 3 and surface 4 

Trial 
ID 

Surface Connect 
to Bell 
(Y/N) 

Travel Distance Maximal Volume 
Cluster 
assigned 

ID type Original Normalized Original Normalized First Second 

1 3 button Y 4295 0.95608 32767 1 0 0 

2 3 button Y 4403 1 32767 1 0 0 

3 3 button Y 4343 0.9756 32767 1 0 0 

4 3 button N 4326 0.968686 3542 0.022543 0 1 
5 3 button N 4320 0.966246 3136 0.008964 0 1 

6 3 button N 4340 0.97438 3134 0.008897 0 1 

43 4 
non- 

button  2162 0.088654 2868 0 1 1 

44 4 
non- 

button  1944 0 3382 0.017191 1 1 

45 4 
non- 

button  1974 0.0122 3249 0.012743 1 1 

46 4 
non- 

button  1998 0.02196 3803 0.031272 1 1 

47 4 
non- 

button  1980 0.01464 3528 0.022074 1 1 

48 4 
non- 

button  1971 0.01098 3501 0.021171 1 1 

Note: The clustering results consider only these 12 trials in the table. 

 

From the Table 1, we can found that the travel distance value for a button surface is 

around 4000, and around 2000 for the non-button surface, which means the haptic 

sensor works very well in the task. Moreover, the maximal volume is around 30000 

when a bell is heard, and around 3000 when no bell is heard, which means the 

microphone works very well too. Table shows the clustering results considering only 

these 12 trials in the table. After the first clustering procedure, trials are partitioned 

into button-press and non-button-press with a precision of 100%. After the second 

clustering procedure, trials are partitioned into bell-triggering-press and 

non-bell-triggering-press with a precision of 100%, too. So, the clustering algorithm 

also works very well.  

 

The results for all the trials can be found in Table 3. Table 2 also summarizes all of the 

results. In the first cluster procedure, the cluster 0 is associated with the cluster of 

button-press. In the second cluster procedure, the cluster 1 turns out to be the 

bell-triggering-press cluster. For both of the cluster procedures, the percentage of 
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incorrectly clustered trials is 0%. Therefore, we can say, with the sensors and 

exploratory behaviors and clustering algorithms, our robot can successfully learn to 

detect buttons and identify the broken buttons.      

Table 2. Summary on the clustering results for all trials 

 
Manual 
clusters 

Trials assigned 
to cluster 0 

Trials assigned 
to cluster 1 

Incorrectly 
clustered trials 

Incorrect 
percentage 

First 
cluster 

procedure 

button- 
press 

24 0 0 
0% 

non- 
button-press 

0 30 0 

Second 
cluster 

procedure 

bell- 
triggering-press 

0 12 0 
0% 

non-bell- 
triggering-press 

42 0 0 

Note: For the first cluster procedure, the cluster 0 is associated with the cluster of button-press. 

For the second cluster procedure, the cluster 1 turns out to be the bell-triggering-press cluster. 

 

Table 3. Result table for all of the 54 trials 

Trial 
ID 

Surface Connect 
to Bell 
(Y/N) 

Travel Distance Maximal Volume Clustering 

ID Type Original Normalized Original Normalized First Second 

1 3 button Y 4295 0.94492 32767 1 0 1 

2 3 button Y 4403 0.981868 32767 1 0 1 

3 3 button Y 4343 0.961341 32767 1 0 1 

4 3 button N 4326 0.955525 3542 0.033916 0 0 

5 3 button N 4320 0.953472 3136 0.020495 0 0 

6 3 button N 4340 0.960315 3134 0.020429 0 0 

7 9 nonbutton  1955 0.144372 3365 0.028065 1 0 

8 9 nonbutton  1925 0.134109 3580 0.035172 1 0 

9 9 nonbutton  1872 0.115977 3102 0.019371 1 0 

10 9 nonbutton  1854 0.109819 3752 0.040858 1 0 

11 9 nonbutton  1817 0.09716 3059 0.01795 1 0 

12 9 nonbutton  1812 0.09545 3781 0.041817 1 0 

13 1 button N 4456 1 3269 0.024892 0 0 

14 1 button N 4104 0.879576 3695 0.038974 0 0 

15 1 button N 3825 0.784126 3434 0.030346 0 0 

16 1 button Y 4201 0.912761 32767 1 0 1 

17 1 button Y 4082 0.872049 30424 0.922548 0 1 

18 1 button Y 4114 0.882997 32148 0.979538 0 1 

19 6 nonbutton  1973 0.15053 3859 0.044395 1 0 

20 6 nonbutton  1533 0 4069 0.051337 1 0 

21 6 nonbutton  1537 0.001368 3073 0.018413 1 0 

22 6 nonbutton  1538 0.001711 2516 0 1 0 

23 6 nonbutton  1546 0.004447 3084 0.018776 1 0 

24 6 nonbutton  1548 0.005132 3620 0.036495 1 0 

25 5 button N 3921 0.816969 3429 0.030181 0 0 

26 5 button N 3937 0.822443 3219 0.023239 0 0 

27 5 button N 3896 0.808416 3249 0.024231 0 0 

28 5 button Y 3901 0.810127 29886 0.904763 0 1 
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Table 3 (continued) 
29 5 button Y 3891 0.806705 32767 1 0 1 

30 5 button Y 3874 0.800889 32767 1 0 1 

31 7 button N 3895 0.808074 3280 0.025255 0 0 

32 7 button N 3570 0.696887 3771 0.041486 0 0 

33 7 button N 3661 0.728019 3282 0.025321 0 0 

34 7 button Y 3609 0.710229 32091 0.977654 0 1 

35 7 button Y 3557 0.692439 32767 1 0 1 

36 7 button Y 3574 0.698255 32767 1 0 1 

37 8 nonbutton  2126 0.202874 3356 0.027768 1 0 

38 8 nonbutton  2181 0.22169 3412 0.029619 1 0 

39 8 nonbutton  2178 0.220664 3471 0.031569 1 0 

40 8 nonbutton  2132 0.204926 3126 0.020165 1 0 

41 8 nonbutton  2137 0.206637 3858 0.044362 1 0 

42 8 nonbutton  2133 0.205269 2772 0.008463 1 0 

43 4 nonbutton  2162 0.21519 2868 0.011636 1 0 

44 4 nonbutton  1944 0.140609 3382 0.028627 1 0 

45 4 nonbutton  1974 0.150872 3249 0.024231 1 0 

46 4 nonbutton  1998 0.159083 3803 0.042544 1 0 

47 4 nonbutton  1980 0.152925 3528 0.033453 1 0 

48 4 nonbutton  1971 0.149846 3501 0.032561 1 0 

49 2 nonbutton  2398 0.295929 3087 0.018875 1 0 

50 2 nonbutton  2278 0.254875 3620 0.036495 1 0 

51 2 nonbutton  2297 0.261375 3285 0.025421 1 0 

52 2 nonbutton  2302 0.263086 3396 0.02909 1 0 

53 2 nonbutton  2202 0.228874 3066 0.018181 1 0 

54 2 nonbutton  2287 0.257954 3866 0.044627 1 0 

Note: Travel Distance varies from 0 to 200000; Maximal Volume varies from 0 to 32767; cluster 0 
in first cluster procedure is associated with button-press, and cluster 1 in the second cluster 
procedure turns to be the bell-triggering-press. 
 

7.2. Learning Curves 

 

Figure 8 shows you the learning curves of the robot with the number of exploration 

trials increases. In the first cluster procedure, the first 6 trials are in the same cluster, 

button-press. Without the samples of another cluster, the k-means does random 

selection when the number of trials is less than or equal to 3, which generates some 

incorrectly clustered trials. However, when the number of trials is greater than 4 or 

there are samples of another cluster added, the learning curve in first cluster procedure 

keeps at an incorrect percentage of 0% (figure (a)), which means the robot learns to 

detect button-press consistently. Similar, for the learning curve in second cluster 

procedure (figure (b)), the incorrect percentage vibrates away from 0% before 4 trials, 

but keeps at 0% consistently after the samples of another cluster is added at 4th trials. 

Both curves show that the robot can learn to detect buttons and identify the broken 
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ones consistently after some trials (3 trials in our experiment) of exploration.  

 

(a) (b)          

Figure 8. Learning curves of the robot with the number of exploration trials increases: (a) in first 

cluster procedure; (b) in second cluster procedure. 

 

7.3. Real-time Detection 

 

For achieving real-time detection, the close/open of robot finger, the reading of joint 

torque and motor position, the extraction of audio stream and the on-line k-means 

clustering are combined in one integral C/C++ program. Figure 9 shows you the flow 

chart. Pthread is used to achieve the parallelization among the close/open of robot 

finger, the reading of joint torque and motor position and the extraction of audio 

stream. OpenAL is used to extract the audio stream in real-time. Whenever a trial is 

done, the clustering function is called twice to do the two clustering procedures and 

output the clustering results. Therefore, the result of detecting buttons and identifying 

broken buttons can be got right after the completion of the trial, which means that the 

robot can do the detection in real-time. The robot can also learn on-line. As soon as 

one trial is completed, the data for this trial will be added into the database so that the 

experience database will be updated on-line to ensure the robot can learn on-line. 
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Figure 9. Flow chart of the program for real-time detection 

 

8. Conclusion and Future Work 

 

To conclude, our robot can learn to detect doorbell buttons and identify the broken 

buttons on a portable device in an unsupervised way by haptic exploration. This study 

focuses on the portable device, which is very common in the human’s life. The 

doorbell buttons were put onto the portable device since they are also representative 

among kinds of buttons. So, this study should contribute in making robot useful in 

helping human’s life. Moreover, the unsupervised learning algorithm, k-means, is 

used to do the learning work and the robot learns to complete the tasks by 

self-exploration. These two things make the robot can learn to detect the doorbell 

buttons and identify the broken ones autonomously and in an unsupervised way. 

C/C++ codes were wrote to make the detection real-time and the learning on-line 

since the robot can update the experience database and detect the doorbell buttons and 

broken ones right after the completion of press procedure.  

 

For the future work, more kinds of buttons (or soft surfaces) except doorbell buttons 
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can be tried. Doorbell buttons work very well in this study because they are kind of 

hard to press and can generate significant travel distance. Future work may have a try 

on some other buttons say keyboard’s keys which need less external force, and some 

buttons generating less significant travel distance. Some soft surfaces can also be tried 

say if the robot will be confused by these kinds of non-button surfaces, which can also 

generate travel distance. Buttons may not be restricted onto the portable device. They 

can be on a big board just like the doorbell buttons are on the door. Then in this case, 

it needs to generate other kinds of press exploratory procedure except the way of only 

closing/opening one finger. The experiment setup in the previous study then can be 

used. The robot will go to explore the big board perpendicularly standing in front of 

the robot to detect the buttons. The press exploratory procedure will be from the 

movement of the whole arm and should be designed elaborately to be similar to 

human’s press when human press a doorbell buttons. 
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