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Abstract—From an early stage in development, infants
show a profound drive to explore the objects around them.
Research in psychology has shown that in doing so, they
solve a vast array of problems, including the formation
and establishment of object representations, recognition
of objects based on the stimuli they produce, object
grouping and ordering, as well as learning words that
describe objects and their properties. This project proposes
a behavior-grounded framework for object perception that
will enable a robot to solve some of these very same
problems. Our robot interacted with 100 different objects
by performing 10 different behaviors on them (e.g., grasp,
shake, lift, etc.), while using several sensory modalities,
including vision, proprioception and audio. Our robot
was tasked with recognizing objects, grouping objects
together, recognizing category labels of novel objects and
ordering objects based on criteria such as heights and
weight. Our results show that robots need to perceive
objects interactively and in multiple sensorimotor contexts
in order to scale up object perception skills to a large
number of objects.

I. I NTRODUCTION

Our ability to explore physical objects is unparalleled
in the natural world. From an early age, human beings
spend much of their time manipulating objects while si-
multaneously observing the resulting stimuli (e.g., visual
movement, auditory events, etc.). A long line of research
in psychology has revealed that humans (as well as
animals) acquire information about objects through the
use of a number of manipulation behaviors, commonly
referred to asexploratory procedures[25] or exploratory
behaviors[11], [36]. For example, scratching an object
can inform us of its roughness, while lifting it can inform
us of its weight. In a sense, the exploratory behavior
acts as a “question” to the object, which is subsequently
“answered” by the sensory stimuli produced during the
execution of the behavior.

Other research in psychology has established that the
sensory feedback produced by objects can be crucial for

Fig. 1. The humanoid robot used in our experiments, along with
the 100 objects that it explored.

solving several key tasks:

1) object identification, i.e., the ability to individuate
objects, recognize the object identity of a given
object stimulus, and recognize when a stimulus is
produced by a novel object [21], [19].

2) object sorting, i.e., the ability to spontaneously
group items into sets, or orders, without being
given a specific criteria [52], [35].

3) category and relational learning, i.e., the ability
to assign category membership to novel objects as
well as infer how two objects should be ordered,
based on a criteria specified by a series of example
objects with known labels and/or orderings [3].

The goal of this project was the development of a
multi-modal behavior-grounded framework for object
perception that would enable a robot to solve these
problems in an experimental setting. To achieve this aim,
the robot in our framework (show in Figure 1) actively
performed exploratory behaviors (e.g., grasping, lifting,
shaking, dropping, pushing and tapping) when learning



about objects as opposed to just passively observing
them. While most robots perceive objects using vision
alone, the robot in our framework also used the auditory,
and proprioceptive and sensory modalities, which are
necessary to capture many object properties [8], [29].

The rest of the paper is organized as follows: Section
II gives an overview of the related work in psychology
and robotics. Section III describes our experimental
setup, including the robot, its exploratory behaviors, its
sensors and the objects used in our experiments. Section
IV describes the feature extraction methodology used
to extract sensory feedback features from the robot’s
sensory streams. Section V describes the theoretical
model used by the robot to identify, categorize, and
order objects. Section VI details our experiment results,
followed by a discussion and future work.

II. RELATED WORK

A. Psychology and Cognitive Science

The ability of humans to individuate objects and
recognize their identities has been extensively studied
in psychology. The problem of object identification is
typically defined as that of inferring how many objects
the environment contains (also referred to as individua-
tion) as well as recognizing when the same object is en-
countered twice (sometimes referred to as identification
as well as recognition) [19]. Studies in developmental
psychology have shown that this process is fundamental
to establishing an internal object representation that
can handle the large number of objects that humans
encounter in their day to day lives [57], [21].

For this reason, how infants establish an object rep-
resentation and subsequently use it to recognize the
identities of objects is a question of significant interest
to developmental psychology. For example, a study in
infants showed that even at the age of 12-months, hu-
mans are able to individuate objects using both shape and
color information [57]. The study also found that while
both object features were used for the task of figuring
out how many objects exist, only the shape feature was
used when recognizing the identity of an object that
was previously individuated. Other studies have shown
that when identifying objects, infants and adults often
make different judgments based on the differences in
the objects’ features [59], indicating that at such an early
age, the biological circuits that allow the problem to be
solved are still developing.

In a typical scenario, the human participant observes
(or interacts with) objects one at a time, where the next
object may or may not be a previously encountered one.

Subsequently, participants may be asked to enumerate
the objects they observed, or match an object stimulus to
one of the estimated object identities. For example, one
such study with human adults showed that as the number
of objects observed increases, the likelihood that a novel
object will be classified as a previously observed object
goes down [19].

A closely related area of developmental psychology
studies how infants group objects. An important finding
is that certain experimental settings can elicit sponta-
neous sorting and grouping behaviors by infants [33],
[52]. Starkley [52] reports that both 9 and 12 month-old
infants exhibit sorting behaviors when presented with a
set of 8 objects, where the set contains 2 groups of four
objects that are similar along some dimension (e.g., size,
color, etc.).

Sorting and grouping behaviors have also been ob-
served with non-human primates [35], [50]. For exam-
ple, Spinozziet al. [50] found that human-encultured
Bonobos and Chimpanzees are capable of spontaneously
partitioning a set of objects into two categories. The au-
thors also report that chimpanzees’ predominant means
of partitioning a set of objects is by manipulating objects
from one object class only. This procedure is consistent
with the behavior of 3 year old infants [50]. Overall,
these findings suggest that the ability to sort objects is
fundamental to primate intelligence.

For humans in particular, object grouping skills are
thought to be fundamental for language acquisition –
for example, Nelson argued that children form primitive
conceptual categories which are later used when binding
the meaning of a word [33]. Similarly, based on a
large volume of experimental research, Bloom argues
that a large part of early language learning is about
establishing a relation that maps language symbols (e.g.,
individual nouns) to already existing concepts that are
formed independently of the language in question [6].
An example of what this may look like is provided by
Kemp et al. [18] who write:

“Before learning her first few words, a child
may already have formed a category that in-
cludes creatures like the furry pet kept by her
parents; and learning the word ’cat’ may be
a matter of attaching a new label to this pre-
existing category.” [18, p. 216]

Not surprisingly, a large volume of research has
focused on revealing how humans learn the names of
categories [3]. In this framework, the participants are
typically presented with several examples from each
object category and subsequently asked to categorize a



novel item. Researches postulate that humans use two
different strategies (sometimes in combination) to learn
categories from examples - the first involves finding the
common features of members of an individual category,
while the second consists of identifying the distinctive
features among the non-members of that category [16],
[15]. Experiments have shown that adults can learn
categories even when presented only with pairs of objects
of different categories [16]. Children between the ages
of 6-9 years old, however, could only learn the same
categories when provided with object pairs in which the
two objects are of the same category class, indicating
that the two strategies for solving the task have different
developmental trajectories [16].

In addition to learning discrete categories, researchers
have also examined how adult and infant humans learn
real-valued comparative relations such as “A is bigger
than B” [48], [10]. As with category learning, humans
can learn such relations when presented with paired
examples for which the relation is provided by the
instructor or inferred by some other means. Hence, the
robot in this work will be tested in a similar fashion –
after initially interacting with the objects, computational
models will be evaluated using both discrete categoriza-
tion as well as real-valued ordering tasks.

B. Robotics

Traditionally, most object recognition systems used by
robots have relied heavily on computer vision techniques
[37], [51], [38] and/or 3D laser scan data [41]. But
studies in psychology indicate that not only is there
a link between neural activations and different sensory
inputs for the same object in the brain [2], but that often
multiple senses are necessary to correctly recognize an
object. In a study by Sappet al., toddlers were presented
with sponges painted as rocks and only by grasping the
sponges could they realize that they were being deceived
[42]. Other studies involving proprioception or audition
have also shown that not only is it possible to use sensory
modalities other than vision to recognize objects and
their properties, but in some cases it is necessary [17],
[9], [12], [13].

Recently, there have been multiple studies in robotics
that have focused on object recognition using sensory
modalities other than vision or 3D laser scan data. A
study by Nataleet al. [32] showed that proprioceptive
information obtained by grasping an object can be used
to successfully recognize objects. Other studies have
estimated physical parameters of objects from proprio-
ceptive data [23], [24], which can be used to recognize

objects. A study by Bergquistet al. [5] showed that
a robot can use proprioceptive information alone to
recognize an object from a large set of objects. A study
by Sinapovet al. [47] showed a similar result using
auditory information alone. Other studies have confirmed
that audition can be used for object recognition [40], [39]
as well as for determining properties of objects [22].
Another study by Mettaet al. showed that integrating
proprioception and vision can bootstrap a robot’s ability
to manipulate objects. All of these studies strongly imply
that sensory modalities other than vision (e.g. audi-
tion, proprioception) are useful for object recognition
in addition to vision. The robot in our experiments
takes advantage of this by combing multiple sensory
modalities when solving object perception tasks.

One of the major drawbacks of virtually all of the
methods cited above is that during the training stage,
the robot has to be told which object it is exploring at
any given trial. In other words, the training trials must
be grouped by object identity. In order to relax that
assumption, a robot must be able to autonomously figure
out how many objects it has interacted with as well as
organize its sensorimotor data according to object ID
(i.e., solve the object individuation problem). There has
been relatively little work in robotics in that area - a
study by Modayil and Kuipers [30] showed how a robot
could use data gathered from a laser range finder to build
an ontology of objects. Another study by Southey and
Little [49] used a stereo camera to detect depth features
in the robot’s environment, which were combined based
off 3D movement patterns to create representations of
each object in the environment.

In addition to object recognition, there has been much
work in robotics studying how robots can form object
categories in an unsupervised manner. Some of them
have focused on how robots can estimate similarity
between objects and use that similarity to develop mean-
ingful object categories [34], [32], [31], [55], [47], [54].
In [32] a Self-Organizing Map was used to illustrate the
haptic similarities between objects, while [47] showed
that a robot can use auditory data generated from per-
forming multiple behaviors on an object to estimate
similarities. Griffith et al. [14] showed that a robot can
form categories of “container” and “non-container” by
observing the movement of an object dropped in the
vicinity of another object. Sinapov and Stoytchev [46]
showed that a robot can use these object similarities
to detect which object in a set of objects is the odd
one out. While all of these studies showed how a robot
can group objects in an unsupervised manner, they all



suffer from one main drawback: They all require the
type of sorting to be specified in advance - for example,
in [14], the robot’s categorization model used the X-
means algorithm, which can find clusters in data, but
not orders or hierarchies. In [45], on the other hand, the
categorization algorithm assumed that the objects can
be organized in a hierarchy, as opposed to some other
structure.

Supervised learning for object category classification
has also been studied in robotics, though not as exten-
sively as identification. A study by Lopes and Chauhan
[28] had a robot use vision to extract features from an
object. They then used a set of classifiers to classify each
object into different categories specified by a human.
A study by Sinapov and Stoytchev [44] showed how
a robot can use proprioceptive and auditory feedback
to classify objects into six human-labeled categories.
Other studies have examined relations among objects.
The study by Griffith et al. [14] examined the rela-
tionship between objects dropped in the vicinity of a
container/non-container, and how the two objects moved
when the robot interacted with them. The research
here presents methods for categorizing objects into pre-
defined categories and learning relations between objects
as they relate to ordering objects (e.g. bigger than).
To the authors’ knowledge, there has been no previous
research in robotics on ordering objects.

III. EXPERIMENTAL PLATFORM

A. Robot and Sensors

The robot in our experiments was an upper torso
humanoid robot, which has as its actuators two 7-DOF
Barrett WAMs, each with an attached 3-finger Barrett
Hand. The WAMs have built-in sensors that measure
joint angles and torques for all 7 joints at 500 Hz;
auditory feedback is captured by an Audio-Technica
U853AW cardioid microphone mounted in the head,
which samples 1 channel (mono) at the standard 16-
bit/44.1 kHz resolution and rate. A digital accelerometer
device [53], mounted on one of its fingertips, samples
acceleration of the fingertip at 1600 Hz, allowing de-
tection of minute vibrations due to rubbing between the
robot’s fingertip and the objects’ surfaces. The robot’s
vision sensors include a Logitech webcam (right eye)
and a ZCam, an RGBD camera from 3DV systems that
records standard640 × 480 RGB video in addition to
320 × 240 depth images accurate to within 1-2 cm.

Fig. 2. The hundred objects that our robot explored. The objects are
grouped according to twenty object categories. From left to right and
top to bottom: 1) wicker baskets, 2) weights (objects vary by weight
only), 3) small stuffed animals, 4) big stuffed animals, 5) metal
objects, 6) wooden blocks, 7) pasta boxes, 8) metal tin containers, 9)
PVC pipes, 10) cups, 11) pop cans, 12) plastic bottles, 13) canned
food, 14) medicine pill bottles, 15) coffee containers with different
types of contents, 16) green cones, 17) pink noodles, 18) egg coloring
cups (vary only by color) 19) easter eggs (vary by material, and 20)
balls.

B. Objects

For this project, the robot explored 100 different
household objects. To our knowledge, this is the largest
number of objects explored by a humanoid robot over
the course of a single experiment. The 100 different
objects consists of 20 object categories, with 5 objects
per category. The objects within each category vary along
certain dimensions while remaining constant along oth-
ers. For example, thePVC pipescategory includes 5 pipe
cross sections which vary by width (and consequently,
weight) but are constant in shape, color and material
type. The object set was designed in this manner in order
to test models for object recognition as well as object



Fig. 3. Illustration of object detection in the robot’s visual field of
view.

categorization. Figure 2 shows all 100 objects grouped
in the 20 object categories used in our experiments.

C. Behaviors

The robot’s set of behavior consisted of 10 actions:
look, grasp, lift , hold, shake, drop, tap, push, poke, and
crush. The look behavior consisted of simply taking
an RGB snapshot of the object on the table. All other
behaviors, with the exception ofgrasp and tap were
encoded as recorded trajectories, i.e., they were executed
using pre-defined joint position coordinates.

The grasp and tap behaviors, on the other hand,
were performed by the robot according to the detected
visual location of the object. Visual object detection was
performed using the following steps:

1) A background visual model of the table was cre-
ated by taking a snapshot of the empty table before
any objects are placed on it.

2) When an object is in place and the robot needs to
determine its position, the robot moved its hand
out of its field of view, calculated the deviation of
each pixel observed from the value predicted by
the background model, and then used a threshold
to classify them as either “background” or “fore-
ground”.

3) The largest connected component in the “fore-
ground” was detected and a bounding box was fit
on it as shown in Figure 3.

The robot was trained to grasp and tap objects
at various table positions using a simple learning by
demonstration framework. During the training stage, the
robot detected the location of objects on the table,
after which the human-programmer physically moved
the robot’s arm to the appropriate joint-coordinates given
the location of the object. Both models were trained on
12 demonstrations. After training, the robot used the3-
nearest neighbor algorithm which outputs interpolated

Fig. 4. The exploratory behaviors (excluding the “look” behavior)
that the robot performs on objects. From top to bottom and left to
right: 1) grasp, 2) lift, 3) hold, 4) shake, 5) drop, 6) tap, 7) poke, 8)
push, 9) crush.

joint-positions for a given object location by finding the
three neighbors in the train set with object locations most
similar to the one being observed. The object’s location
in the visual field of view was encoded by the pixel
coordinates of the lower left corner of the bounding box
around the detected object.

Figure 4 shows images of the 9 interactive behaviors
(i.e., all exceptlook) that the robot was programmed
with.

D. Data Collection

In our experiments, the robot interacted with the 100
objects over the course of a series of exploration trials.
During each trial, an object was placed on the table, after
which the robot performed a series of behaviors on the
object. This was repeated until the robot had performed
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Fig. 5. a) The raw torque values for all seven joints as the robot
performed thecrush behavior on the smallestgreen coneobject in
our dataset.

its full set of 10 exploratory behaviors on each object
for a total of five times, resulting in10 × 100 = 5000
behavior executions.

Over the course of each behavior execution, the robot
recorded sensory feedback from its microphones, joint-
torque sensors, vibrotactile sensor, RGB webacm (right
eye) and the RGB-D ZCam. The next section describes
the feature extraction routines that were used to compute
features from several of the recorded sensory input
streams.

IV. FEATURE EXTRACTION

A. Proprioceptive Feature Extraction

During each interaction, the robot recorded the torque
applied to each of its 7 joints at 500hz, resulting in a
joint torque record for each interaction. The joint torque
record is a series of column vectors through time where
eachxi,t is the amount of torque being applied to joint
i at time t.

To extract features, ann-bin average was used. To
compute this, first each joint torque record was split into
n bins of sizebsize = T

n
based off temporal relation of

each column (e.g. the firstbsize columns in the first bin
and so on) whereT is the temporal length of the joint
torque record. For each binbk, the average of each joint
torque was computed, resulting in one column vectorx̄k

Temporal Bins

F
re

qu
en

cy
 B

in
s

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

b) Spectro-temporal features

200 400 600 800 1000 1200

20

40

60

80

100

120

a) Raw sound spectrogram

Fig. 6. a) The raw spectrogram of the sound detected as the robot
performed thetap behavior on thecoke canobject. b) The resulting
10× 10 spectro-temporal features.

for eachbk where x̄i,k is the average torque for jointi
in bin bk.

For most experiments in this paper, the number of
temporal bins,n, was set to 10. For the experiments
involving object ordering,n was set to 1.

B. Auditory Feature Extraction

Auditory features were extracted using the log-
normalized Discrete Fourier Transform (DFT) which was
computed for each sound, using27 +1 = 129 frequency
bins. The SPHINX4 natural language processing library
package was used to compute the DFT for each sound
[27]. The DFT encodes the detected intensity for all
129 frequency bins over time. The DFT is highly-
dimensional and thus cannot be used directly as an input
to most machine learning algorithms. Therefore, given
the DFT matrix for each sound, a 2-D histogram is com-
puted by discretizing time intokt bins and frequencies
into kf bins. The value for each bin in the histogram is
set to the average of the values in the DFT matrix that
fall into it. In all experiments conducted,kt was set to
10 andkf was set to 5. Hence, each sound is represented
by feature vector,S, whereS ∈ R

5×10. Figure 6 shows
an example of how the DFT of a sound is transformed
into a 2-D histogram across time and frequency.



C. Visual Feature Extraction

The robot’s learning model extracted visual object
features from the RGB color images taken during the
execution of thelook behavior. Three types of features
were computed: 1) color: the distribution of colors in
the object’s image, 2) aspect: the width and height of
a bounding box centered on the object, and 3) size: the
area of the object in the robot’s image. The image of the
object and the surrounding table area was taken by the
robot’s left eye webcam. The set of pixels representing
the object was computed immediately afterwards to
allow the robot to grasp the object by classifying. Pixels
not representing the object were blackened in the saved
copy of the image. The pixels were classified as “object”
or “non-object” using a learned visual model of the
background (see Section III.C).

When the images were loaded for feature computation,
pixels with values very close to black were completely
blackened, because almost all pixels having values in
this region were compression artifacts and were origi-
nally black. Afterward, the cvFindContours() algorithm
from the OpenCV library was used to locate contiguous
regions of pixels. Finally, all pixels not within the
bounding rectangle of the largest contiguous region were
blackened, which eliminated regions of the environment
that were labeled “object” due to chance variations
in their appearance during the experiment. After the
object was segmented in the image, visual features were
computed as follows:

Color: For each trial with each object, 4 color his-
tograms were computed, each of which separated the
RGB color space into one of43, 83, 123, or 163 bins.
This was done by dividing the[0, 256) range along each
color axis into equal-length segments and classifying
each pixel according which segment each of its channels
fell onto. Mathematically, for each

n ∈ {4, 8, 12, 16}

we assigned a triplet

(binr, bing, binb) ∈ N
3

to each pixel with coordinates

(r, g, b) ∈ N
3 | 0 ≤ r, g, b < 256

such that
binr

n
· 256 ≤ r <

binr + 1

n
· 256

and etc. forg, b. A feature vector inNn3

was produced
for each of the 4 histograms which gave the numbers

of pixels falling into the bins of its corresponding his-
togram. In the following experiments described in this
paper, the histograms produced when using 4 bins for
each color channel were used.

Aspect: A feature vector inN
2 was produced giving

the width and height (in pixel units) of the bounding
rectangle of the object.

Size: A feature vector inN1 was produced giving the
total number of pixels comprising the object.

D. Hand Proprioception Feature Extraction

During the execution of thegrasp behavior, the re-
sulting finger joint angles were recorded. Thus, the
grasp behavior was the only one that produced hand
proprioception features. Each recorded feature vector
was 3-dimensional, where each value indicates the end
position for one of the three corresponding fingers of the
Barett Hand. The end position of each finger was always
in the range of 0 (fully open) to 20000 (fully closed).

E. Summary

In our experiments, the robot extracted proprioceptive,
auditory, visual and hand features from each interac-
tion. The visual features (color histogram, aspect ratio
and visual size) were extracted from the RGB image
taken by the robot at the start of each exploration trial.
The auditory and proprioceptive features were extracted
from the feedback detected over the course of each
manipulation behavior (i.e., all behaviors exceptlook).
The hand proprioptive features were extracted only for
the grasp behavior. Note that vibrotactile and Z-Cam
RGBD data were also recorded for each behavior, but
are not used in the experiments described in this report
(extracting features from those two sensory streams will
be done in future work). The next section describes the
theoretical model which uses detected object features for
the problems of recognizing, categorizing and ordering
objects.

V. THEORETICAL MODEL

A. Notation

Let B be the set of exploratory behaviors and letS
be the set of sensory modalities available to the robot.
Let C be a set of behavior-modality contexts such that
each contextcj ∈ C refers to a unique combination of
a behavior and a sensory modality (e.g.,drop-audio).
Note that it is not necessary for every combination to be
present in the setC, since in our case certain behaviors
do not produce sensations in certain modalities.



During each object exploration trial, the robot is
presented with an objecto ∈ O, the set of all ob-
jects, and subsequently applies its set of exploratory
behaviors on the object. Hence, when executing behavior
b ∈ B, the robot observes a set of sensory signals
Xb = {x1 . . . xmb

} where eachxj represents the sensory
feedback observed from some known sensory modality
in S. Note that the number of sensory feedback sig-
nals detected when performing some specific behavior,
|Xb| = mb, may be less than the number of sensory
modalities,|S|, since certain behaviors do not produce
sensations in certain modalities (e.g., looking at an object
does not produce tactile sensations).

After all behaviors are applied on the test object, the
ith exploration trial may be summarized by the collection
of observed sensory feedback signals,Ti = {Xb}b∈B. In
practice, the signalsxj may be encoded as numerical
vectors, real-valued time series, or discrete sequences.
For this project, several different representations will be
used, including sequences

B. Object Recognition

For this problem, the robot is tasked with recognizing
the identity of the object (one out of the 100) being
explored, given some sensory feedbackxc

i detected in
sensorimotor contextc. To solve this task, an object
recognition modelMc is trained for each contextc ∈ C,
such that given inputxc

i , the robot outputsMc(x
c
i ) → ô,

such that̂o is the estimated object identity of the object
present in the interaction. In other words, for each
viable combination of behavior and sensory modality,
the robot learns a recognition model specifically adapted
for data from that behavior-modality combination. Given
sensory feedback featuresxc

i , the modelMc outputs a
probabilistic object identity estimatePrc(o|x

c
i) for each

objecto ∈ O.
The modelsMc are trained on data points[xc

i , oi]
for which the true object identity,oi, is known. In
the experiments presented in this report, the recognition
models for each sensorimotor context were implemented
by the k-Nearest Neighbor (kNN) classifier, a memory-
based algorithm, which does not build an explicit model
of the data [1], [4]. Instead, given a test data point,
k-NN finds thek closest neighbors in its training set
and outputs a prediction, which is a smoothed average
over those neighbors. In this study, the parameterk

was set to 3. Class label probabilities for each object
o ∈ O were computed by counting the labels of thek

neighbors. For example, if two of the three neighbors
had object identityA then Pr(oi = A) = 2

3
. Similarly,

if the class label of the remaining neighbor wasB, then
Pr(oi = B) = 1

3
. The k-NN implementation included

in the WEKA machine learning library [60] was used to
obtain the results.

After executing its full set of behaviorsB on the
test object, the robot combined the outputs of each
individual context-specific modelMc in order to get a
more accurate estimate for the identity of the object. Let
X〉 = [x1

i , x
2
i , . . . , x

|C|i] be the resulting set of sensory
inputs detected in all sensorimotor contextsC. The robot
can get a combined probabilistic estimate for the identity
of the object,Pr(o|X〉) by summing up the outputs of
the individual models:

Pr(o|X〉) =
∑

c∈C

Prc(o|x
c
i)

The robot’s recognition model is evaluated using
5-fold cross validation: during each round of cross-
validation, data from 4 of the exploratory trials with each
object is used for training the models, while the data
from the remaining trial is used for testing whether the
recognition model is correct. This is repeated five time,
such that each trials is used once in the test set and four
times in the training set. The model’s performance is
reported in terms of percent object recognition accuracy
(% Accuracy), defined as:

% Accuracy =
# correct outputs

# total outputs
× 100

C. Object Grouping

In a typical categorization experiment in psychology,
the participant is presented with a set of objects and then
either asked to group them or allowed to freely explore
them to see if spontaneous sorting behavior occurs.
Hence, in this task the robot’s categorization model is
given sensorimotor experience with objects from two ob-
ject categories and outputs an object grouping consisting
of two groups of objects. For example, if presented with
the object categoriesconesandpop cans, we epxect that
the robot’s categorization model will group the items
into two groups, each corresponding to one of the two
categories.

More specifically, the robot’s categorization model
takes as input a set of 50 exploration trialsTinput =
[T1, T2, . . . , T50] in which the robot explored a set of
10 objects,Oinput, (with known object identity) from
two different categories (unknown to the robot). The
model is tasked to output two object setsOa and Ob,
representing the estimated object categories, such that
Oa ∪ Ob ≡ Oinput andOa ∩ Ob ≡ ∅.



The robot produces the categorization using the fol-
lowing steps. First, the robot’s object recognition models
are evaluated on the set of input trialsTinput by perform-
ing 5-fold cross-validation as described in the previous
subsection. The result of this procedure is a confusion
matrix A ∈ R

|Oinput|×|Oinput| such that each entryAij

specifies how often objectoi was recognized as objectoj .
Next, an object similarity matrixW ∈ R

|Oinput|×|Oinput|

is computed such that each entryWij = Aij+Aji

2
. Finally,

the resulting symmetric object similarity matrixW is
given as input to a partitioning algorithm, which splits
the set of objects into two groups such that the similarity
(as encoded inW) between objects in the same set is
maximized while the similarity between objects in two
different sets is minimized.

In our experiments, the robot used theSpectral Clus-
tering partitioning algorithm, which falls into the family
of graph-basedor similarity-basedclustering algorithms
[58]. Given a similarity matrix,W, the algorithm parti-
tions the set of object into disjoint clusters by exploiting
the eigenstructure of the matrixW. Because finding
an optimal graph partitioning is NP-complete, Shi and
Malik [43] proposed an approximation that optimizes the
normalized cutobjective function. The algorithm, can be
summarized with the following steps:

1) LetWn×n be the symmetric matrix containing the
similarity score for each pair of objects.

2) Let Dn×n be the degree matrix ofW, i.e., a
diagonal matrix such thatDii =

∑
j Wij .

3) Solve the eigenvalue system(D − W)x = λDx

for the eigenvector corresponding to the second
smallest eigenvalue and use it to bi-partition the
graph.

The resulting partition encodes how the robot would
group the object based on its experience with them. The
robot’s categorizations are evaluated in terms of whether
the discovered partitioning matches the true categories
assigned to the objects.

D. Object Category Recognition

The third task consists of training the robot to rec-
ognize the category labels of objects given a certain
amount of objects with known labels. For example, if
the robot interacts with a large set of objects, and if the
user specifies that two of those objects are called “cups”,
then the robot’s model should be able to infer what other
objects are cups as well.

To solve this problem, for each sensorimotor context
c, the robot learns a category recognition model trained
on input datapoints with known category labels. As in

the case of object recognition, the robot uses the k-NN
classifier model this task. Similarly, the robot is also
evaluated on how well it performs as model outputs from
different sensorimotor contexts are combined.

The robot’s category recognition model is evaluated
by performing object-based cross-validation as follows:
during each round of cross validation, the full set of
trials in split into a test and train set, such that the
train set contains trials with 4 out of the 5 objects for
each category, while the test set contains the trial for
the remainder object of each category. This is repeated
5 times, such that each object serves once as a test
object with unknown category label and four times as a
training object with a known label. The performance of
the category recognition model is reported in terms of %
accuracy. In addition, for each of the 20 categories, the
f-Measure is reported. The f-Measure is the harmonic
mean between the precision and recall for a given
category label and is computed by:

f − Measure = 2 ×
precision ∗ recall

precision + recall

The f-Measure is always in the range of 0.0 to 1.0;
high f-Measure for a given category indicates that the
category is easy to recognize while low f-Measure shows
that the category is difficult to recognize.

E. Object Ordering

For this problem, the robot is tasked with correctly
sorting objects by some external criteriaE given some
sensory feedbackxc

j and xc
i detected in sensorimotor

contextc. To solve this task, an object comparison model
Mc is trained for each contextc ∈ C, such that givenxc

j

and xc
i , the robot outputsMc(x

c
j , x

c
i ) → {>, <} where

< indicates that the robot estimates thatoj is less thanoi

and> indicates that it is greater than. In other words, the
robot learns a model for each viable context that outputs
the comparison of two objects.

The modelsMc are trained on data points[xc
j , x

c
i , {>

, <}] for which the true outcome of the comparison
for oj and oi is known. In the experiments presented
in this report, the comparison models used for each
sensorimotor context were implemented by the Support
Vector Machine (SVM) algorithm, as implemented in the
WEKA machine learning library [60].

To evaluate the robot, first the objects were split into
20 sets of 5. For each external criteriaE, sets were
pruned if they did not have at least aK% difference
between each pair of objects in the set, leaving the set
OE as the set of all objects that vary based on criteria
E. For this experimentK was set to10.



Each objectoj was interacted withmb times, gener-
ating mb feature vectors in the contextc. To train the
model, object-based cross-validation was used. For each
object oj , all feature vectorsxj generated byoj were
removed from the set. Then the model was trained on
every pair of feature vectorsxi andxk such thatoi and
ok are in the same set of 5 objects andoi 6= ok given
the true comparison between the two objects. Then every
feature vector for objectoj , xj , was paired with every
other feature vectorxi such thatoj and oi are in the
same set of 5 objects andoj 6= oi.

The accuracy for each contextc is reported as

Ac =

∑
oj∈OE

rj∑
oj∈OE

tj

where rj is the number of correct comparisons when
evaluating objectoj and tj is the total number of
comparisons when evaluatingoj .

To evaluate multiple contexts together, a weighted
voting approach was used. For eachC′ ⊆ C (for each
combination of contexts), to calculate the accuracyAC′ ,
each modelMc, where c ∈ C′, voted on the outcome
of every pair of feature vectorsxj and xi such thatoj

andoi are in the same set of 5 objects andoj 6= oi. The
estimated comparison then forxj andxi is

v̂i,j =
∑

c∈C′

Acv̂
c
i,j

where v̂c
i,j is the vote of contextc for xj and xi. The

accuracy ofC′ is calculated as

AC′ =

∑
xj ,xi∈OE

[v̂i,j = vi,j ]

TE

where [v̂i,j = vi,j ] is 1 iff the estimated comparison for
xj and xi is equal to the actual comparison andTE is
the total number of comparisons for objects inOE .

VI. RESULTS

A. Object Recognition

The first experiment evaluates the performance of the
robot’s recognition models for each possible sensorimo-
tor context. Tables I and II shows the accuracy rates
for each viable combination of a behavior and sensory
modality.

TABLE I
OBJECTRECOGNITION FROMLookBEHAVIOR

Behavior Color Histogram Aspect Ratio Visual Size

look 66.33 % 33.46 % 17.64 %

TABLE II
OBJECTRECOGNITION FROM ASINGLE BEHAVIOR

Audio Proprioception Proprioception

Behavior (Arm) (Hand)

grasp 10.44 % 9.21 % 11.02 %

lift 17.44 % 37.07 % –

hold 6.81 % 26.25 % –

shake 30.26 % 47.90 % –

drop 31.26 % 9.22 % –

tap 31.86 % 14.23 % –

push 39.4 % 43.0 % –

poke 28.06 % 38.48 % –

crush 28.25 % 64.12 % –
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Fig. 7. Object recognition performance as the number of sensori-
motor contexts (i.e., behavior-modality combinations) is varied from
1 to 22. At each level, the cross-validation is repeated 200 times with
a random set of contexts selected. The solid line corresponds to the
mean accuracy for the given number of contexts, while the dotted
lines denote the standard deviation.

To compare, a model which randomly assigns object
identity is expected to achieve1.0% accuracy, since
the number of object identities is 100. The results
show that nearly every sensorimotor context contains
information useful for object recognition. As expected,
certain behaviors work better with certain modalities: for
exampple, the proprioceptive features produced by the
lift behavior are better for object recognition than the
auditory features detected in that same context.

Following, the robot’s performance at the object
recognition task is also computed as a function of the
mnumber of sensorimotor contexts available to the robot
during the exploration trial (both for training and testing
the recognition models). To do this, the number of
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Fig. 8. A histogram of individual f-Measures per object identity. The
histogram shows that most objects can be recognized almost perfectly
(with 10 ten behaviors). One object (object 3 from the wooden blocks
category) is almost impossible to recognize.

contexts is varied from 1 to 22. At each level, the cross-
validation is repeated 200 times with a random set of
contexts selected. The results are then used to estimate
the mean object recognition rate for a given number of
contexts as well as its standard deviation.

Figure 7 shows the results of this experiment. The
plot shows that as the robot experiences the objects with
more behaviors and modalities, its object recognition
rate improves substantially. With all 22 sensorimotor
contexts, the robot’s recognition rate hits90.0%. This
result shows that the diversity of the robot’s behavioral
repertoire is important (and necessary) in order to scale
up object recognition methods to a large number of
objects.

Finally, Figure 8 shows a histogram of individual f-
Measures (as defined in the previous section) per object
identity. Objects that are easy to recognize have high f-
Measures while those that are difficult have low ones.
The figure shows that most objects can be recognized
almost perfectly when using all 10 ten behaviors. The
right-most bar of the histogram corresponds to the 49 out
of the 100 objects that are always correctly recognized
with all 10 behaviors.

B. Object Grouping

The next set of experiments evaluates how the robot
can group objects without knowing their true category
labels. First, we look at whether the confusion matrix
computed when performing cross-validation can be used
for categorization. In the first test, the robot’s model is
presented with the set of trials performed on the 10
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Fig. 9. Resulting object recognition confusion matrix after perform-
ing cross validation on the 10 objects in thebig stuffed animalsand
plastic bottlescategories. Each entry in the confusion matrix specifies
how often objecti was recognized as objectj. In this example, the
first five objects are from thebig stuffed animalsset while the last five
objects are from theplastic bottlesset. Values close to white indicate
that a pair of objects are often confused. In this case, most errors
happen within the category, i.e., stuffed animals are rarely recognized
as a plastic bottle object.

objects in thebig stuffed animalsand plastic bottles
categories. Figure 9 shows the resulting confusion matrix
after the robot has cross-validated its object recognition
models trained to recognize these 10 specific objects.
Each entry in the confusion matrix specifies how often
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Fig. 10. An ISOMAP embedding of the similarity matrixW used
by the robot’s model to group the presented set of objects. In this
example, the robot’s model was presented with 10 objects, the five
big stuffed animals and the five plastic bottles. The spectral clustering
partitioning algorithm discovered two object clusters, each perfectly
corresponding to one of the two human-provided object categories.
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Fig. 11. An ISOMAP embedding of the similarity matrixW used
by the robot’s model to group the presented set of objects. In this
example, the robot’s model was presented with 10 objects, the five
big stuffed animals and the five plastic bottles. The spectral clustering
partitioning algorithm discovered two object clusters, each perfectly
corresponding to one of the two human-provided object categories.

object i was recognized as objectj. In this example,
the first five objects are from thebig stuffed animalsset
while the last five objects are from theplastic bottlesset.
Values close to white indicate that a pair of objects are
often confused. In this case, most errors happen within
the category, i.e., stuffed animals are rarely recognized
as a plastic bottle object. This indicates that the robot
may be able to use its object recognition models to
perform cross-validation on a given set of objects, and
subsequently use the resulting confusion matrix as a
measure for similarity when grouping the given set of
objects into two groups.

Following, the confusion matrix is converted into a
symmetric similarity matrix and used as an input to a
partitioning algorithm which groups the objects into two
sets. In this example, the spectral clustering algorithm
divided the set of objects into two groups, where each
corresponded to one of the two object categories. Figure
10 shows an ISOMAP embedding [56] of the similarity
matrix. The robot’s model for grouping the objects
produced two object sets, each perfectly corresponding
to one of the two human-provided object categories.

Similar results were observed with other object cate-
gory pairs. This results indicates that the robot’s model
for spontaneous object grouping produces object clusters
which closely match human category names. Neverthe-
less, not all categories are perfectly separable by the
robot’s grouping model. Figure 11 shows an example
in which the robot’s model is presented with objects
from two categories,metal tin containersand metal

TABLE III
OBJECTORDERING ACCURACY BY HEIGHT USINGSVM MODEL

Behavior Audio Proprioception

Grasp 69.1 % 69.8 %

Slow Lift 56.1 % 76.7 %

Hold 58.9 % 79.2 %

Shake 64.7 % 84.3 %

Drop 70.1 % 68.1 %

Tap 79.7 % 52.3 %

Crush 93.1 % 96.8 %

Poke 73.7 % 68.1 %

Push 69.1 % 85.4 %

Average 70.5 % 75.6 %

objects. The 2D embedding shows that the confusion
matrix for this set of objects has many mistakes in
which a tin objects is confused as one of the metal
objects that is not a tin and thus the categories cannot
be separated when looking at the confusion matrix. In
this example, the robot’s model produced two object
groups, one containing 3 of the metal tins and 2 of
the metal objects (non-tins) and the other containing the
rest. Following, the next set of experiments examines
how well the robot can explicitly learn to classify novel
objects into one of the twenty categories.

C. Category Recognition

The third sets of experiments evaluates the performance
of the robot’s category recognition models. In this set-
ting, the model is trained with known labels for 4 out of 5
objects for each category and evaluated on the remaining
set. As with object recognition, the evaluation is also
performed when varying the number of sensorimotor
contexts from 1 to 22. The reported performance measure
is the f-Measure for each category type. An f-Measure
of 1.0 indicates that the category was always recognized
(see theoretical model section for further explanation).

Figure 12 shows the recognition rates for all 20 cate-
gories as the number of behavior-modality combinations
used to train recognition models is varied from 1 to 22.
As the robot is allowed to experience objects in more
sensorimotor contexts, its ability to classify them into
categories increases. With all 22 sensorimotor contexts,
the robot can recognize the correct category of a novel
object with89.1% accuracy (a chance model is expected
to achieve5.0% accuracy as there are 20 categories).
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Fig. 12. Category Recognition

D. Object Ordering

The external criteria used to evaluate the robot were
heightandweight. Tables III and IV show the results for
single contexts. The contexts used for ordering included
audio and proprioception and every behavior excpet look.
The object sets used for height evaluation are shown in

Fig. 13. Object sets for ordering by height

figure 13. The object sets used for weight evaluation are
shown in figure 14.

The accuracy is reported as the number of compar-
isons between feature vectors for objects in the same cat-
egory that were correctly predicted over the total number
of comparisons. As a reference, chance accuracy is50%.
For height, there were 2 objects sets with 5 interactions
with each object (and thus 5 feature vectors for each
object), for a total of 500 comparisons. Forweight,
there were 7 sets with 5 interactions with each object
(and thus 5 feature vectors for each object), for a total
of 1750 comparisons. As with object recognition and
category recognition, the evaluation is also performed
when varying the number of sensorimotor contexts from
1 to 18. In this case though, every combination of
contexts was used, rather than a random sample.

As expected, some behaviors, such as
{proprioception, tap} and {audio, slow lift}
for height, perform near chance. For height, the
crush behavior for both audio and proprioception
perform significantly better than chance. Also as
expected, the contexts{proprioception, slow lift},
{proprioception, hold}, and {proprioception, shake}

TABLE IV
OBJECTORDERING ACCURACY BY WEIGHT USINGSVM MODEL

Behavior Audio Proprioception

Grasp 65.2 % 67.8 %

Slow Lift 77.9 % 97.3 %

Hold 64.2 % 96.5 %

Shake 81.1 % 96.9 %

Drop 65.9 % 83.2 %

Tap 67.3 % 72.2 %

Crush 63.1 % 63.5 %

Poke 75.4 % 71.0 %

Push 69.1 % 84.2 %

Average 69.9 % 81.4 %



Fig. 14. Object sets for ordering by weight

perform the best for weight, significantly above chance.
Interestingly enough, the robot is able to get81.1%
for weight accuracy with the context{audio, shake},
suggesting that there is some relation between the noise
an object makes when being shook and its weight.

Figures 15 and 16 show the accuracy when varying
the number of sensorimotor contexts from 1 to 18
for height and weight respectively. For each number
of sensorimotor contexts, every possible combination
of that size was evaluated using weighted-voting (see
theoretical model for details), and the mean and standard
deviation is reported. The robot is able to acheive87.6%
accuracy for height and93.8% accuracy for weight when
using all combinations of contexts. This is lower than the
maximum value for each (96.8% and97.3% respectively)
when using only the best single context. This suggests
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Fig. 15. Object ordering accuracy for height as the number of
sensorimotor contexts (i.e., behavior-modality combinations) is varied
from 1 to 18. At each level, every possible combinations of contexts
is evaluated. The solid line corresponds to the mean accuracy for the
given number of contexts, while the dotted lines denote the standard
deviation.

0 5 10 15 20
60

70

80

90

100

Number of Sensorimotor Contexts

%
 O

bj
ec

t O
rd

er
in

g 
Ac

cu
ra

cy

Fig. 16. Object ordering accuracy for weight as the number of
sensorimotor contexts (i.e., behavior-modality combinations) is varied
from 1 to 18. At each level, every possible combinations of contexts
is evaluted. The solid line corresponds to the mean accuracy for the
given number of contexts, while the dotted lines denote the standard
deviation.

that if accuracy is known for each contexta priori, then
it is not beneficial to combine contexts; but if accuracy
is not knowna priori, then combing contexts will, on
average, improve performance.

Figures 17 and 18 show the error rate plotted against
the difference between the object pairs that were evalu-
ated (where error rate is the number of incorrect predic-
tions over the total number of predictions). The differ-
ence for height is reported in inches, and the difference
for weight is reported in ounces. The figures show that
there is a relation between the difference between objects
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Fig. 17. The error rate (i.e. the number of incorrect predictions over
the number of total predictions) for object ordering by height versus
the actual difference in height between object pairs.
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Fig. 18. The error rate (i.e. the number of incorrect predictions over
the number of total predictions) for object ordering by weight versus
the actual difference in weight between object pairs.

and the error rate: as the difference grows, the error rate
declines. But for the weight that relation is not as clear
as it is for height.

VII. CONCLUSION AND FUTURE WORK

This project explored the development of a behavior-
grounded framework for object perception by a hu-
manoid robot. Several problems were addressed:

1) object recognition: the ability to recognize the
object identity of the object that the robot interacts
with, based on prior experience with that object.

2) object grouping: the ability to group objects into
categories without specific human-provided guide-
lines.

3) object category recognition: the ability to learn
object category labels, and classify novel objects

according to the correct human-given category
4) object ordering: the ability to order novel objects

according to various properties (e.g., height, and
weight) based on pairs of objects for which the
order relation is known.

The trained recognition model was able to estimate
the identity of the present object by training a series
of recognition models, each corresponding to a specific
behavior-modality combination (i.e., sensorimotor con-
text) that produces sensory feedback. This representa-
tion allowed the robot to estimate the object identity
given sensory feedback detected with the object when
performing any of the 10 behaviors that the robot was
programmed with. In addition, the robot was able to
significantly improve its recognition rate by combining
the outputs of multiple models after performing a series
of behaviors on the object and detecting the resulting
sensory feedback features. These results make a strong
case that robots should experience objects using a diverse
set of behaviors and sensory modalities in order to
scale up their recognition abilities to a large number of
household objects.

Following, the robot’s recognition models were used
to estimate a measure for pair-wise object similarity,
such that objects that are often confused with each other
are considered similar, while objects that are never con-
fused with each other are considered different. After the
robot’s model estimated the pair-wise object similarity,
it used the resulting matrix to partition the object set
into two groups using the spectral clustering graph-
based algorithm. The results showed that the model’s
choice for object groups matched closes the human-
provided category labels - for example, when the model
was presented with 5 stuffed animals and 5 plastic
bottles (without knowing the category of each object), it
produced two object groups, such that each group was a
perfect match to the human-provided category label. This
result shows that robots can estimate object groups that
match category nouns even without explicitly knowing
that the objects fall into human-provided categories.
In addition, the result also shows that if a robot can
recognize objects, it can also categorize them based on
how easy it is to distinguish between each pair of objects.

For the third task, a model was trained to explicitly
estimate the category label of anovel object (i.e., one
for which training data is not available) given training
data with objects for which the category labels are
provided by a human. The evaluation of the robot’s
category recognition model showed that, just as with
object recognition, the number of behaviors and modal-



ities available to the robot can greatly influence the
classification performance. The results imply that a robot
may ground category nouns (e.g.,cup, container, ball,
etc.) in its own behavioral repertoire.

In the final task, a model was trained to predict
the outcome of a pairwise comparison between two
objects (i.e. greater than or less than). Given anovel
object, it had to determine how it compared to objects
it had previously interacted with. The evaluation of this
model showed that a robot can in fact learn these object
orderings and that certain contexts are best at comparing
by certain properties, such asslow lift, hold and shake
with proprioceptionfor comparing by weight andcrush
for both audio and proprioception for comparing by
height. Unlike the other models, though, this model has
shown that if a robot knowsa priori which sensorimotor
contexts are best suited for comparing which properties,
then combing modalities and behaviors does not improve
accuracy. On the other hand, if the robot does not
know the accuracies for individual contextsa priori,
then combing them significantly improves accuracy. This
suggests that at least for object ordering, there are cer-
tain sensorimotor contexts that specialize at perceiving
certain properties about objects. A robot that wants to be
able to order by a diverse set of properties, then, would
find it beneficial to equip itself with multiple, diverse
sensorimotor contexts for performing object interactions
in.

There are many directions for future work. First, incor-
porating features extracted from the robot’s vibrotactile
sensor and the RGBD Z-Cam is a direct extension to
this project that we plan to pursue. Using RGBD data
gathered from the Z-Cam, more properties can be used
for ordering such as color or volume. As well, adding in
RGBD data would increase the diversity of the ordering
predictors. Based on the results in this paper, we can
safely predict that with an even richer experience with
objects, a robot may be able to scale up object perception
methods to an even larger object sets.

Finally, we also plan to pursue novel methods for
unsupervised object grouping with the goal of enabling
a robot to discover object concepts that may be relevant
to many language learning tasks (e.g., learning objects’
category nouns as well as the adjectives that describe
them). The drawback of most existing algorithms is that
they assume a specific form (e.g., a hierarchy, or a
grouping) that describes how objects are related to each
other. To avoid this pitfal, in future work, we plan to
implement methods such as the one described in [20] to
allow the robot to determine which structure type should

be used to organize a particular set of objects – in other
words, the structure used to sort the object is induced by
the model, rather then specified by the programmer.

VIII. A PPENDIX

A. Team

1) Kerrick Staley is a first-year student in Com-
puter Engineering. He is interested, in general, in
computer science, mathematics, and the physical
sciences; he has specific interests in robotics, cryp-
tography and data security, user interface design,
and the practicalization of open source software.
He programs primarily in C/C++ and Python.
He enjoys reading Slashdot.org, and his Kirby
skills in SSB64 will stomp most competitors. He
has a website with further biographical details at
kerrickstaley.com.

2) Connor Schenck is a senior in Computer Sci-
ence. He has experience with C/C++, Java, and
Matlab. He has used OpenCV, Weka, Java Swing,
and MATLAB’s Image Processing Toolkit. He
has taken courses on Machine Learning, Artificial
Intelligence, Algorithms, and Statistics. He is a
coauthor for the paperInteractive Object Recog-
nition Using Proprioceptive Feedbackand Inter-
active Object Recognition Using Proprioceptive
and Auditory Feedback. He has also worked on
multiple projects in the Developmental Robotics
Laboratory at Iowa State University.

3) Jivko Sinapov received the B.S. degree in Com-
puter Science from the University of Rochester,
NY in 2005. He is currently a PhD student in
Computer Science and works at the Developmen-
tal Robotics Laboratory at Iowa State University,
Ames. His research interests include developmen-
tal robotics, robotic perception, manipulation, and
machine learning.

B. Software Packages

The following list of software libraries was used in
for this project:

1) The WEKA Java Machine Learning Library :
contains a number of implementations for popu-
lar machine learning algorithms for the tasks of
classification, and unsupervised clustering [60].

2) Structural Form Discovery MATLAB package:
implementation of the model proposed by Kemp



et al. [20] for the purposes of fitting structures to
data.

3) OpenCV: C++ computer vision library, used when
detecting the object on the table, as well as extract-
ing visual object features.

4) GHSOM package: a Java library implementing
the Growing-Hierarchical Self-Organizing Map al-
gorithm [7] for dimensionality reduction. The
package will be used to turn high-dimensional sen-
sory feedback data into low dimensional discrete
sequence.

5) Sparse Coding MATLAB package: a MATLAB
library developed by Leeet al. [26], which will be
used to extract features given depth images taken
by the robot’s ZCam.

6) robocop: C++ software, written by Vlad Sukhoy,
which wraps the Barett WAM API and is used
for recording the robot’s sensorimotor data during
object exploration trials.

C. Future Timeline

1) Submit paper to Humanoids Conference: May 26.
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