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Abstract—From an early stage in development, infants

show a profound drive to explore the objects around them. @ =
Research in psychology has shown that in doing so, they >
solve a vast array of problems, including the formation

and establishment of object representations, recognition
of objects based on the stimuli they produce, object
grouping and ordering, as well as learning words that
describe objects and their properties. This project proposs

a behavior-grounded framework for object perception that
will enable a robot to solve some of these very same
problems. Our robot interacted with 100 different objects
by performing 10 different behaviors on them (e.g., grasp,
shake, lift, etc.), while using several sensory modalities
including vision, proprioception and audio. Our robot
was tasked with recognizing objects, grouping objects
together, recognizing category labels of novel objects and Fig. 1. The humanoid robot used in our experiments, along with
ordering objects based on criteria such as heights and the 100 objects that it explored.

weight. Our results show that robots need to perceive

objects interactively and in multiple sensorimotor contexs

in order to scale up object perception skills to a large splving several key tasks:

number of objects.

1) object identificationi.e., the ability to individuate
. INTRODUCTION objects, recognize the object identity of a given
object stimulus, and recognize when a stimulus is
produced by a novel object [21], [19].
2) object sorting i.e., the ability to spontaneously
group items into sets, or orders, without being

Our ability to explore physical objects is unparalleled
in the natural world. From an early age, human beings
spend much of their time manipulating objects while si-
multaneously observing the resulting stimuli (e.g., visua given a specific criteria [52], [35].

movement, auditory events, etc.). A long line of research3) cateqory and relational learninaie. the abilit
in psychology has revealed that humans (as well as gory ngl-e., ity
. oo . . to assign category membership to novel objects as
animals) acquire information about objects through the well as infer how two obiects should be ordered
use of a number of manipulation behaviors, commonly o 0] : !
based on a criteria specified by a series of example

referred to aexploratory proceduref25] or exploratory ; . .
behaviors[11], [36]. For example, scratching an object objects with known labels and/or orderings [3].

can inform us of its roughness, while lifting it can inform The goal of this project was the development of a
us of its weight. In a sense, the exploratory behavianulti-modal behavior-grounded framework for object
acts as a “question” to the object, which is subsequenpgrception that would enable a robot to solve these
“answered” by the sensory stimuli produced during theroblems in an experimental setting. To achieve this aim,
execution of the behavior. the robot in our framework (show in Figure 1) actively
Other research in psychology has established that fmerformed exploratory behaviors (e.g., grasping, lifting
sensory feedback produced by objects can be crucial braking, dropping, pushing and tapping) when learning



about objects as opposed to just passively observiBghsequently, participants may be asked to enumerate
them. While most robots perceive objects using visidhe objects they observed, or match an object stimulus to
alone, the robot in our framework also used the auditogne of the estimated object identities. For example, one
and proprioceptive and sensory modalities, which aseich study with human adults showed that as the number
necessary to capture many object properties [8], [29].of objects observed increases, the likelihood that a novel

The rest of the paper is organized as follows: Secti@bject will be classified as a previously observed object
Il gives an overview of the related work in psychologgoes down [19].
and robotics. Section 1l describes our experimental A closely related area of developmental psychology
setup, including the robot, its exploratory behaviors, igtudies how infants group objects. An important finding
sensors and the objects used in our experiments. Seci®rhat certain experimental settings can elicit sponta-
IV describes the feature extraction methodology useésous sorting and grouping behaviors by infants [33],
to extract sensory feedback features from the robof52]. Starkley [52] reports that both 9 and 12 month-old
sensory streams. Section V describes the theoretigd#hnts exhibit sorting behaviors when presented with a
model used by the robot to identify, categorize, angkt of 8 objects, where the set contains 2 groups of four
order objects. Section VI details our experiment resultsbjects that are similar along some dimension (e.g., size,
followed by a discussion and future work. color, etc.).

Sorting and grouping behaviors have also been ob-
served with non-human primates [35], [50]. For exam-
A. Psychology and Cognitive Science ple, Spinozziet al. [50] found that human-encultured

The ability of humans to individuate objects andonobos and Chimpanzees are capable of spontaneously
recognize their identities has been extensively studipdrtitioning a set of objects into two categories. The au-
in psychology. The problem of object identification ighors also report that chimpanzees’ predominant means
typically defined as that of inferring how many objectsf partitioning a set of objects is by manipulating objects
the environment contains (also referred to as individuétom one object class only. This procedure is consistent
tion) as well as recognizing when the same object is ewith the behavior of 3 year old infants [50]. Overall,
countered twice (sometimes referred to as identificatibhese findings suggest that the ability to sort objects is
as well as recognition) [19]. Studies in developmentfiindamental to primate intelligence.
psychology have shown that this process is fundamentaFor humans in particular, object grouping skills are
to establishing an internal object representation th#ought to be fundamental for language acquisition —
can handle the large number of objects that humai®¥ example, Nelson argued that children form primitive
encounter in their day to day lives [57], [21]. conceptual categories which are later used when binding

For this reason, how infants establish an object refiie meaning of a word [33]. Similarly, based on a
resentation and subsequently use it to recognize flagge volume of experimental research, Bloom argues
identities of objects is a question of significant intereghat a large part of early language learning is about
to developmental psychology. For example, a study @stablishing a relation that maps language symbols (e.g.,
infants showed that even at the age of 12-months, Hodividual nouns) to already existing concepts that are
mans are able to individuate objects using both shape gatmed independently of the language in question [6].
color information [57]. The study also found that whiléAn example of what this may look like is provided by
both object features were used for the task of figurigemp et al. [18] who write:
out how many objects exist, only the shape feature was “Before learning her first few words, a child
used when recognizing the identity of an object that may already have formed a category that in-
was previously individuated. Other studies have shown cludes creatures like the furry pet kept by her
that when identifying objects, infants and adults often parents; and learning the word 'cat’ may be
make different judgments based on the differences in a matter of attaching a new label to this pre-
the objects’ features [59], indicating that at such an early existing category.” [18, p. 216]
age, the biological circuits that allow the problem to be Not surprisingly, a large volume of research has
solved are still developing. focused on revealing how humans learn the names of

In a typical scenario, the human participant observeategories [3]. In this framework, the participants are
(or interacts with) objects one at a time, where the nettpically presented with several examples from each
object may or may not be a previously encountered or@hject category and subsequently asked to categorize a

Il. RELATED WORK



novel item. Researches postulate that humans use tijects. A study by Bergquiset al. [5] showed that
different strategies (sometimes in combination) to leae robot can use proprioceptive information alone to
categories from examples - the first involves finding theecognize an object from a large set of objects. A study
common features of members of an individual categodyy Sinapovet al. [47] showed a similar result using
while the second consists of identifying the distinctivauditory information alone. Other studies have confirmed
features among the non-members of that category [1@jat audition can be used for object recognition [40], [39]
[15]. Experiments have shown that adults can leaas well as for determining properties of objects [22].
categories even when presented only with pairs of objeétsother study by Mettaet al. showed that integrating
of different categories [16]. Children between the aggsoprioception and vision can bootstrap a robot's ability
of 6-9 years old, however, could only learn the sante manipulate objects. All of these studies strongly imply
categories when provided with object pairs in which thiat sensory modalities other than vision (e.g. audi-
two objects are of the same category class, indicatitign, proprioception) are useful for object recognition
that the two strategies for solving the task have differeint addition to vision. The robot in our experiments
developmental trajectories [16]. takes advantage of this by combing multiple sensory

In addition to learning discrete categories, researchemodalities when solving object perception tasks.
have also examined how adult and infant humans learnrOne of the major drawbacks of virtually all of the
real-valued comparative relations such as “A is biggemnethods cited above is that during the training stage,
than B” [48], [10]. As with category learning, humanghe robot has to be told which object it is exploring at
can learn such relations when presented with pairedy given trial. In other words, the training trials must
examples for which the relation is provided by thée grouped by object identity. In order to relax that
instructor or inferred by some other means. Hence, thssumption, a robot must be able to autonomously figure
robot in this work will be tested in a similar fashion -out how many objects it has interacted with as well as
after initially interacting with the objects, computatan organize its sensorimotor data according to object ID
models will be evaluated using both discrete categoriz@-€., solve the object individuation problem). There has
tion as well as real-valued ordering tasks. been relatively little work in robotics in that area - a

_ study by Modayil and Kuipers [30] showed how a robot

B. Robotics could use data gathered from a laser range finder to build

Traditionally, most object recognition systems used n ontology of objects. Another study by Southey and
robots have relied heavily on computer vision techniquédtle [49] used a stereo camera to detect depth features
[37], [51], [38] and/or 3D laser scan data [41]. Buin the robot’s environment, which were combined based
studies in psychology indicate that not only is thereff 3D movement patterns to create representations of
a link between neural activations and different sensoeach object in the environment.
inputs for the same object in the brain [2], but that often In addition to object recognition, there has been much
multiple senses are necessary to correctly recognizewaork in robotics studying how robots can form object
object. In a study by Sapgt al, toddlers were presentedcategories in an unsupervised manner. Some of them
with sponges painted as rocks and only by grasping thave focused on how robots can estimate similarity
sponges could they realize that they were being deceivgetween objects and use that similarity to develop mean-
[42]. Other studies involving proprioception or auditioringful object categories [34], [32], [31], [55], [47], [54]
have also shown that not only is it possible to use sensdny[32] a Self-Organizing Map was used to illustrate the
modalities other than vision to recognize objects arfthptic similarities between objects, while [47] showed
their properties, but in some cases it is necessary [1#jat a robot can use auditory data generated from per-
[9], [12], [13]. forming multiple behaviors on an object to estimate

Recently, there have been multiple studies in robotisgmilarities. Griffith et al. [14] showed that a robot can
that have focused on object recognition using sensdorm categories of “container” and “non-container” by
modalities other than vision or 3D laser scan data. dbserving the movement of an object dropped in the
study by Nataleet al. [32] showed that proprioceptivevicinity of another object. Sinapov and Stoytchev [46]
information obtained by grasping an object can be usstowed that a robot can use these object similarities
to successfully recognize objects. Other studies hatee detect which object in a set of objects is the odd
estimated physical parameters of objects from proprione out. While all of these studies showed how a robot
ceptive data [23], [24], which can be used to recognizan group objects in an unsupervised manner, they all



in [14], the robot’s categorization model used the X-
means algorithm, which can find clusters in data, bu -

not orders or hierarchies. In [45], on the other hand, th Q}&m ‘ ; "l > “

categorization algorithm assumed that the objects can

be organized in a hierarchy, as opposed to some oth ‘ i ‘ ‘ ' l j
structure. a8 e E ! 1

Supervised learning for object category classificatio

- > \/ e =
has also been studied in robotics, though not as exte ﬂ g i’ E Q; = @ @ a g

sively as identification. A study by Lopes and Chauhau

[28] had a robot use vision to extract features from a

object. They then used a set of classifiers to classify ea ". . ." ‘ ' e ' :
object into different categories specified by a human

A study by Sinapov and Stoytchev [44] showed hov B 2 i i ‘ ’ ' ‘ i
a robot can use proprioceptive and auditory feedbac i ‘ ﬁ =~

to classify objects into six human-labeled categorieg =

Other studies have examined relations among objec “w . ‘g' bl Q.
The study by Griffithet al. [14] examined the rela- = -

tionship between objects dropped in the vicinity of & ‘ . . . . |
container/non-container, and how the two objects move ¢ Y A “

when the robot interacted with them. The research

here presents methods for categorizing objects into pr . & =5 i i > ’
defined categories and learning relations between objer »‘ ' ' \ J' ored g .

as they relate to ordering objects (e.g. bigger than

To the authors’ knowledge, there has been no previol (5 & 0 & & “\J "

research in robotics on ordering objects.

Fig. 2. The hundred objects that our robot explored. The objects are
grouped according to twenty object categories. From left to right and
top to bottom: 1) wicker baskets, 2) weights (objects vary by weight
only), 3) small stuffed animals, 4) big stuffed animals, 5) metal
objects, 6) wooden blocks, 7) pasta boxes, 8) metal tin containers, 9)
A. Robot and Sensors PVC pipes, 10) cups, 11) pop cans, 12) plastic bottles, 13) canned
food, 14) medicine pill bottles, 15) coffee containers with different
The robot in our experiments was an upper torsgpes of contents, 16) green cones, 17) pink noodles, 18) egg aplorin
humanoid robot, which has as its actuators two 7-DCHEPS (vary only by color) 19) easter eggs (vary by material, and 20)
Barrett WAMSs, each with an attached 3-finger Barreﬁaus'
Hand. The WAMs have built-in sensors that measure

joint angles and torques for all 7 joints at 500 Hzg Objects
auditory feedback is captured by an Audio-Technica For this project, the robot explored 100 different

U853AW cardioid microphone mounted in the hea . T
; ousehold objects. To our knowledge, this is the largest
which samples 1 channel (mono) at the standard 16- . :
number of objects explored by a humanoid robot over

bit/44.1 kHz resolution and rate. A digital acceleromet%e course of a single experiment. The 100 different
device [53], mounted on one of its fingertips, SamplesDjects consists of 20 object categories, with 5 objects

0
er category. The objects within each category vary along

I1l. EXPERIMENTAL PLATFORM

acceleration of the fingertip at 1600 Hz, allowing de-

tection of minute vibrations due to rubbing between (e cated . : o
certain dimensions while remaining constant along oth-

robot’s fingertip and the objects’ surfaces. The robot’s . . '
- . . . s. For example, theVC pipescategory includes 5 pipe
vision sensors include a Logitech webcam (right eye . . )
Cfoss sections which vary by width (and consequently,

and a ZCam, an RGBD camera from 3DV systems that . . .
: . " weight) but are constant in shape, color and material
records standar@d40 x 480 RGB video in addition to tvpe. The obiect set was desianed in this manner in order

320 x 240 depth images accurate to within 1-2 cm. ype. ) 9

to test models for object recognition as well as object



Fig. 3.
view.

lllustration of object detection in the robot’s visual field of

C. Behaviors

The robot’s set of behavior consisted of 10 action
look, grasp lift, hold, shake drop, tap, push poke and
crush The look behavior consisted of simply taking
an RGB snapshot of the object on the table. All oth
behaviors, with the exception arasp and tap were ,
encoded as recorded trajectories, i.e., they were exeCLff:
using pre-defined joint position coordinates.

The grasp and tap behaviors, on the other hand
were performed by the robot according to the detectf
visual location of the object. Visual object detection we =

. ) s
performed using the following steps:

1) A background visual model of the table was cre-

ated by taking a snapshot of the empty table befof®- 4. The exploratory behaviors (excluding the “look™ behavior)
that the robot performs on objects. From top to bottom and left to

any objects are placed on it. right: 1) grasp, 2) lift, 3) hold, 4) shake, 5) drop, 6) tap, 7) poke, 8)
2) When an object is in place and the robot needs f0sh, 9) crush.

determine its position, the robot moved its hand

out of its field of view, calculated the deviation of

each pixel observed from the value predicted hpint-positions for a given object location by finding the

the background model, and then used a threshahltee neighbors in the train set with object locations most

to classify them as either “background” or “fore-similar to the one being observed. The object’s location

ground”. in the visual field of view was encoded by the pixel
3) The largest connected component in the “fore&oordinates of the lower left corner of the bounding box

ground” was detected and a bounding box was firound the detected object.

on it as shown in Figure 3. Figure 4 shows images of the 9 interactive behaviors

The robot was trained to grasp and tap objecfk_e" all exceptlook) that the robot was programmed

at various table positions using a simple learning BYith-

demonstration framework. During the training stage, the .

robot detected the location of objects on the tablg,' Data Collection

after which the human-programmer physically moved In our experiments, the robot interacted with the 100
the robot’s arm to the appropriate joint-coordinates givasbjects over the course of a series of exploration trials.
the location of the object. Both models were trained dburing each trial, an object was placed on the table, after
12 demonstrations. After training, the robot used 3he which the robot performed a series of behaviors on the
nearest neighbor algorithm which outputs interpolatesbject. This was repeated until the robot had performed
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b) Proprioceptive Features b) Spectro-temporal features

Fig. 5. a) The raw torque values for all seven joints as the robBtg. 6. a) The raw spectrogram of the sound detected as the robot
performed thecrush behavior on the smallegireen coneobject in  performed theap behavior on thecoke canobject. b) The resulting
our dataset. 10 x 10 spectro-temporal features.

its full set of 10 exploratory behaviors on each objegf, eachb, wherez, , is the average torque for joirit
for a total of five times, resulting in0 x 100 = 5000 4 pin b ’

behavior executions. For most experiments in this paper, the number of

Over the course of each behavior execution, the rObt%nporal bins,n, was set to 10. For the experiments
recorded sensory feedback from its microphones, jo"?ﬁ'volving objec,:t ’orderingn was s.et to 1

torque sensors, vibrotactile sensor, RGB webacm (right
eye) and the RGB-D ZCam. The next section describgs
the feature extraction routines that were used to compute
features from several of the recorded sensory inputAuditory features were extracted using the log-
streams. normalized Discrete Fourier Transform (DFT) which was
computed for each sound, usiag+ 1 = 129 frequency
bins. The SPHINX4 natural language processing library
A. Proprioceptive Feature Extraction package was used to compute the DFT for each sound

During each interaction, the robot recorded the torqd7]. The DFT encodes the detected intensity for all
applied to each of its 7 joints at 500hz, resulting in 429 frequency bins over time. The DFT is highly-
joint torque record for each interaction. The joint torquéimensional and thus cannot be used directly as an input
record is a series of column vectors through time whet@ most machine learning algorithms. Therefore, given
eachz;; is the amount of torque being applied to jointhe DFT matrix for each sound, a 2-D histogram is com-
7 at timet. puted by discretizing time inté; bins and frequencies

To extract features, an-bin average was used Tointo k¢ bins. The value for each bin in the histogram is

compute this, first each joint torque record was split inr?)et _to th_e average of Fhe values in the DFT matrix that
n bins of sizeb,;,. — L based off temporal relation of all into it. In all experiments conducted; was set to
n

each column (e.g. the firgt,.. columns in the first bin 10 andk; was set to 5. Hence, each sound is represented

5x10 i
and so on) wherd’ is the temporal length of the joint by feature vectorS, where§ € R - Figure 6 shows

torque record. For each bin,, the average of each joint_an example of how the DFT of a sound is transformed

torque was computed, resulting in one column ve&ir into a 2-D histogram across time and frequency.

Auditory Feature Extraction

IV. FEATURE EXTRACTION



C. Visual Feature Extraction of pixels falling into the bins of its corresponding his-

The robot's learning model extracted visual objedPgram. In the following experiments described in this
features from the RGB color images taken during tHe@Per, the histograms produced when using 4 bins for
execution of thdook behavior. Three types of feature€ach color channel were used.
were computed: 1) color: the distribution of colors in Aspect: A feature vector inN* was produced giving
the object’s image, 2) aspect: the width and height 8¢ width and height (in pixel units) of the bounding
a bounding box centered on the object, and 3) size: tgetangle of the object.
area of the object in the robot's image. The image of the Size: A feature vector inN' was produced giving the
object and the surrounding table area was taken by figéal number of pixels comprising the object.
robot’s left eye webcam. The set of pixels representin
the object was computed immediately afterwards
allow the robot to grasp the object by classifying. Pixels During the execution of thgrasp behavior, the re-
not representing the object were blackened in the savadting finger joint angles were recorded. Thus, the
copy of the image. The pixels were classified as “objecgrasp behavior was the only one that produced hand
or “non-object” using a learned visual model of th@roprioception features. Each recorded feature vector
background (see Section 111.C). was 3-dimensional, where each value indicates the end

When the images were loaded for feature computatigugsition for one of the three corresponding fingers of the
pixels with values very close to black were completelBarett Hand. The end position of each finger was always
blackened, because almost all pixels having valuesimthe range of 0 (fully open) to 20000 (fully closed).
this region were compression artifacts and were origi-
nally black. Afterward, the cvFindContours() algorithnf- Summary

from the OpenCV library was used to locate contiguous In our experiments, the robot extracted proprioceptive,
regions of pixels. Finally, all pixels not within theauditory, visual and hand features from each interac-
bounding rectangle of the largest contiguous region wesign. The visual features (color histogram, aspect ratio
blackened, which eliminated regions of the environmeghd visual size) were extracted from the RGB image
that were labeled “object” due to chance variationgken by the robot at the start of each exploration trial.
in their appearance during the experiment. After thehe auditory and proprioceptive features were extracted
object was segmented in the image, visual features weigm the feedback detected over the course of each
computed as follows: manipulation behavior (i.e., all behaviors excépdk).
Color: For each trial with each object, 4 color hisThe hand proprioptive features were extracted only for
tograms were computed, each of which separated #i@ grasp behavior. Note that vibrotactile and Z-Cam
RGB color space into one of’, 8%, 12%, or 16° bins. RGBD data were also recorded for each behavior, but
This was done by dividing th@, 256) range along each are not used in the experiments described in this report
color axis into equal-length segments and classifyifgxtracting features from those two sensory streams will
each pixel according which segment each of its channels done in future work). The next section describes the

. Hand Proprioception Feature Extraction

fell onto. Mathematically, for each theoretical model which uses detected object features for
ne{4,8,12,16) ghbgenglems of recognizing, categorizing and ordering
] :

we assigned a triplet

o 5 V. THEORETICAL MODEL
(bin,., bing, biny) € N

N | with g A. Notation

to each pixel with coordinates i

P Let B be the set of exploratory behaviors and et
(r,g,b) e N> |0 < 7,9,b < 256 be the set of sensory modalities available to the robot.

Let C be a set of behavior-modality contexts such that

such that . T
bi bi . each context; € C refers to a uniqgue combination of
Mr oe6 <r< buny + 1 256 a behavior and a sensory modality (e.drpp-audiq.
n n Note that it is not necessary for every combination to be

and etc. forg, b. A feature vector inN"’ was produced present in the sef, since in our case certain behaviors
for each of the 4 histograms which gave the numbetl® not produce sensations in certain modalities.



During each object exploration trial, the robot isf the class label of the remaining neighbor wBsthen
presented with an objeat € O, the set of all ob- Pr(o; = B) = % The k-NN implementation included
jects, and subsequently applies its set of exploratarythe WEKA machine learning library [60] was used to
behaviors on the object. Hence, when executing behavadotain the results.

b € B, the robot observes a set of sensory signalsAfter executing its full set of behavior$ on the

Xy, = {x1...2my, } Where each; represents the sensorytest object, the robot combined the outputs of each
feedback observed from some known sensory modalibdividual context-specific model/,. in order to get a

in S. Note that the number of sensory feedback sigrore accurate estimate for the identity of the object. Let
nals detected when performing some specific behavigs, = [z}, 22,... ,zlC|;] be the resulting set of sensory
|Xy| = my, may be less than the number of sensoiyiputs detected in all sensorimotor conte&tsThe robot
modalities, |S|, since certain behaviors do not producean get a combined probabilistic estimate for the identity
sensations in certain modalities (e.g., looking at an dbjesf the object,Pr(o|X}) by summing up the outputs of

does not produce tactile sensations). the individual models:
After all behaviors are applied on the test object, the .
ith exploration trial may be summarized by the collection Pr(o])) = Z Pre(o]z7)

of observed sensory feedback signdls= { X }yen- In eeC

practice, the signals;; may be encoded as numerical The robots recognition model is evaluated using
vectors, real-valued time series, or discrete sequenced0ld cross validation: during each round of cross-
For this project, several different representations wal bvalidation, data from 4 of the exploratory trials with each

used, including sequences object is used for training the models, while the data
from the remaining trial is used for testing whether the
B. Object Recognition recognition model is correct. This is repeated five time,

For this problem, the robot is tasked with recognizinguch that each trials is used once in the test set and four
the identity of the object (one out of the 100) beianeS in the training set. The model's performance is
explored, given some sensory feedbackdetected in reported in terms of percent object recognition accuracy
sensorimotor context. To solve this task, an object(% Accuracy), defined as:
recognition modelM., is trained for each contexte C, # correct outputs

such that given input¢, the robot outputs\/, (z$) — 6, % Accuracy = & total outputs

(2

such that is the estimated object identity of the object _ _
present in the interaction. In other words, for each: ©OPiect Grouping
viable combination of behavior and sensory modality, In a typical categorization experiment in psychology,
the robot learns a recognition model specifically adaptéae participant is presented with a set of objects and then
for data from that behavior-modality combination. Giverither asked to group them or allowed to freely explore
sensory feedback feature$, the model), outputs a them to see if spontaneous sorting behavior occurs.
probabilistic object identity estimatBr.(o|xS) for each Hence, in this task the robot’s categorization model is
objecto € O. given sensorimotor experience with objects from two ob-

The models)M, are trained on data pointg{,o;] ject categories and outputs an object grouping consisting
for which the true object identityp;, is known. In of two groups of objects. For example, if presented with
the experiments presented in this report, the recognitite object categoriesonesandpop canswe epxect that
models for each sensorimotor context were implementdte robot’s categorization model will group the items
by the k-Nearest Neighbor (kNN) classifier, a memorynto two groups, each corresponding to one of the two
based algorithm, which does not build an explicit modehtegories.
of the data [1], [4]. Instead, given a test data point, More specifically, the robot's categorization model
kK-NN finds the £ closest neighbors in its training setakes as input a set of 50 exploration trials,,,; =
and outputs a prediction, which is a smoothed averaf@, T, ..., T5] in which the robot explored a set of
over those neighbors. In this study, the paraméter10 objects,O;,pu:, (With known object identity) from
was set to 3. Class label probabilities for each objento different categories (unknown to the robot). The
o € O were computed by counting the labels of the model is tasked to output two object sy and Oy,
neighbors. For example, if two of the three neighborgpresenting the estimated object categories, such that
had object identityA then Pr(o; = A) = % Similarly, O, U Oy = Oippur and O, N Oy = 0.

x 100




The robot produces the categorization using the fdhe case of object recognition, the robot uses the k-NN
lowing steps. First, the robot’s object recognition modetdassifier model this task. Similarly, the robot is also
are evaluated on the set of input tridls,,,; by perform- evaluated on how well it performs as model outputs from
ing 5-fold cross-validation as described in the previowdifferent sensorimotor contexts are combined.
subsection. The result of this procedure is a confusionThe robot’s category recognition model is evaluated
matrix A € RIOnrulx|Omrul such that each entryl;; by performing object-based cross-validation as follows:
specifies how often objeet was recognized as objeet. during each round of cross validation, the full set of
Next, an object similarity matriW e RICrue[x|0mrul  trials in split into a test and train set, such that the
is computed such that each ent#; = % Finally, train set contains trials with 4 out of the 5 objects for
the resulting symmetric object similarity matriW is each category, while the test set contains the trial for
given as input to a partitioning algorithm, which splitshe remainder object of each category. This is repeated
the set of objects into two groups such that the similarify times, such that each object serves once as a test
(as encoded ifW) between objects in the same set isbject with unknown category label and four times as a
maximized while the similarity between objects in twdraining object with a known label. The performance of
different sets is minimized. the category recognition model is reported in terms of %

In our experiments, the robot used tBpectral Clus- accuracy. In addition, for each of the 20 categories, the
tering partitioning algorithm, which falls into the family f-Measure is reported. The f-Measure is the harmonic
of graph-basedr similarity-basedclustering algorithms mean between the precision and recall for a given
[58]. Given a similarity matrix,W, the algorithm parti- category label and is computed by:
tions the set of object into disjoint clusters by exploiting precision * recall
the eigenstructure of the matri¥%v. Because finding [ — Measure =2 x
an (_)ptlmal graph partitioning 1S N_P-complete_, .Sh' and The f-Measure is always in the range of 0.0 to 1.0;
Malik [43] proposed an approximation that optimizes thﬁi

. . . . h -M re for iven indi hat th
normalized cubbjective function. The algorithm, can be g easure for a give cate_gory dicates that the
i . . . category is easy to recognize while low f-Measure shows
summarized with the following steps:

) ] o that the category is difficult to recognize.
1) LetW,,, be the symmetric matrix containing the

similarity score for each pair of objects. E. Object Ordering
2) Let D,,», be the degree matrix oW, i.e.,, a  For this problem, the robot is tasked with correctly
diagonal matrix such thdDd,;; = Zj Wi;. sorting objects by some external criterta given some
3) Solve the eigenvalue systeffd — W)z = A\Dz sensory feedback and z{ detected in sensorimotor
for the eigenvector corresponding to the secormbntextc. To solve this task, an object comparison model
smallest eigenvalue and use it to bi-partition thé/. is trained for each contexte C, such that given:§
graph. and z¢, the robot outputs\.(z$, z§) — {>, <} where
The resulting partition encodes how the robot would indicates that the robot estimates thais less tham;
group the object based on its experience with them. ThRAEd > indicates that it is greater than. In other words, the
robot’s categorizations are evaluated in terms of whethi@bot learns a model for each viable context that outputs
the discovered partitioning matches the true categorié§ comparison of two objects.

precision + recall

assigned to the objects. The mode_IsMC are trained on data poin{s§, zf, {>
_ N ,<}] for which the true outcome of the comparison
D. Object Category Recognition for o; and o; is known. In the experiments presented

The third task consists of training the robot to rean this report, the comparison models used for each
ognize the category labels of objects given a certasgnsorimotor context were implemented by the Support
amount of objects with known labels. For example, Nector Machine (SVM) algorithm, as implemented in the
the robot interacts with a large set of objects, and if th&//EKA machine learning library [60].
user specifies that two of those objects are called “cups”,To evaluate the robot, first the objects were split into
then the robot’s model should be able to infer what oth@0 sets of 5. For each external criterla, sets were
objects are cups as well. pruned if they did not have at least A% difference

To solve this problem, for each sensorimotor contekietween each pair of objects in the set, leaving the set
¢, the robot learns a category recognition model traingdl; as the set of all objects that vary based on criteria
on input datapoints with known category labels. As ifw. For this experimen# was set tol0.



TABLE I

Each ObjeCtOj was interacted withn;, times, gener- OBJECTRECOGNITION FROM ASINGLE BEHAVIOR
ating m,, feature vectors in the context To train the
model, object-based cross-validation was used. For each Audio | Proprioception| Proprioception
object o;, all feature vectorss; generated by; were Behavior (Arm) (Hand)
removed from the set. Then the model was trained on grasp || 10.44 % 9.21 % 11.02 %
every pair of feature vectors; andz; such thato; and lift 17.44 % 37.07 % -
o are in the same set of 5 objects amd=# o5 given hold 6.81 % 26.25 % -
the true comparison between the two objects. Then every | shake | 30.26 %|  47.90 % -
feature vector for object;, z;, was paired with every drop | 3126 %  9.22% -
other feature vector; such thato; and o; are in the tap || 31.86 % 14.23 % -
same set of 5 objects anrg # o;. push |l 39.4 % 43.0 % -
The accuracy for each contextis reported as poke || 28.06 %  38.48 % -
crush 28.25 % 64.12 % -
A, = ZOJEOE Ty
ZoJeOE tj 100
where r; is the number of correct comparisons when 90}

evaluating objecto; and t; is the total number of
comparisons when evaluating.

To evaluate multiple contexts together, a weighted
voting approach was used. For ea¢hC C (for each
combination of contexts), to calculate the accuragy,
each model)M,, wherec € C’, voted on the outcome
of every pair of feature vectors; andz; such thato;
ando; are in the same set of 5 objects and# o;. The
estimated comparison then for andzx; is
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o _ ~C
Vij = E Acvi,j 0

ceC’

0O 2 4 6 8 10 12 14 16 18 20 22
Number of Sensorimotor Cotnexts
where ¢f ; is the vote of context for z; and z;. The

accuracy ofC’ is calculated as Fig. 7. Object recognition performance as the number of sensori-
R motor contexts (i.e., behavior-modality combinations) is varied from

thxieoE [Uz’,j = Uz‘,j] 1to 22. At each level, the cross-validation is repeated 200 times with

Acr = Ty a random set of contexts selected. The solid line corresponds to the

mean accuracy for the given number of contexts, while the dotted
where[9; ; = v; ;] is 1 iff the estimated comparison forlines denote the standard deviation.
x; andz; is equal to the actual comparison afg is

the total number of comparisons for objects(n.. . . .
P ) an To compare, a model which randomly assigns object

VI. RESULTS identity is expected to achievé.0% accuracy, since
A. Object Recognition the number of object identities is 100. The results
show that nearly every sensorimotor context contains

The first experiment evaluates the performance of triFPformation useful for object recognition. As expected,

robot's recog_?lttl)cl)n mlode:js :‘Ior EaCh p(r)]ssmle SENSONMRBa tain behaviors work better with certain modalities: for
]Eor con:]ex'_[. bla es b_an. Sf OWbS :] e.accugacy rat%%ampple, the proprioceptive features produced by the
or each viable combination of a behavior and Sensofy penavior are better for object recognition than the

modality. auditory features detected in that same context.
TABLE | Following, the robot's performance at the object
OBJECTRECOGNITION FROMLOOKBEHAVIOR recognition task is also computed as a function of the

mnumber of sensorimotor contexts available to the robot
during the exploration trial (both for training and testing
the recognition models). To do this, the number of

’ Behavior H Color Histogram\ Aspect Ratio\ Visual Size‘
| look || 6633% | 3346% | 17.64% |
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Fig. 8. A histogram of individual f-Measures per object identity. The

histogram shows that most objects can be recognized almost perfectly
(with 10 ten behaviors). One object (object 3 from the wooden blocks
category) is almost impossible to recognize.

1 2 3 4 5 6 7 8 9 10

Fig. 9. Resulting object recognition confusion matrix after perform-
contexts is varied from 1 to 22. At each level, the cros&g cross validation on the 10 objects in thig stuffed animalsand

validation is repeated 200 times with a random set Elfastic bottlescategories. Each entry in the confusion matrix specifies
ow often objecti was recognized as objegt In this example, the

contexts Sele_Cted- The 'je_SUItS are then _used to es“mﬁléﬁfive objects are from theig stuffed animalset while the last five
the mean object recognition rate for a given number ebjects are from thelastic bottlesset. Values close to white indicate

contexts as well as its standard deviation. that a pair of objects are often confused. In this case, most errors
happen within the category, i.e., stuffed animals are rarely recognized

Figure 7 shows the results of this experiment. Th& a plastic bottle object.
plot shows that as the robot experiences the objects with
more behaviors and modalities, its object recognition
rate improves substantially. With all 22 sensorimotasbjects in thebig stuffed animalsand plastic bottles
contexts, the robot’s recognition rate hi#8.0%. This categories. Figure 9 shows the resulting confusion matrix
result shows that the diversity of the robot's behavioralfter the robot has cross-validated its object recognition
repertoire is important (and necessary) in order to scaitodels trained to recognize these 10 specific objects.
up object recognition methods to a large number @fach entry in the confusion matrix specifies how often
objects.

Finally, Figure 8 shows a histogram of individual f- 60
Measures (as defined in the previous section) per object
identity. Objects that are easy to recognize have high f- [
Measures while those that are difficult have low ones.
The figure shows that most objects can be recognized all
almost perfectly when using all 10 ten behaviors. The |
right-most bar of the histogram corresponds to the 49 out
of the 100 objects that are always correctly recognized -2ot
with all 10 behaviors.

big stuffed animals
s plastic bottles
o links

0 50

o
o

-40

B. Object Grouping ~60

The next set of experiments evaluates how the robot
can group objects without knowing their true categorfyig. 10. An ISOMAP embedding of the similarity matrW used

labels. First, we look at whether the confusion matriRy the robot’s model to group the presented set of objects. In this
example, the robot's model was presented with 10 objects, the five

computed Wheln Perform'“g cross-validation can be usﬁ stuffed animals and the five plastic bottles. The spectral clustering
for categorization. In the first test, the robot’s model igartitioning algorithm discovered two object clusters, each perfectly

presented with the set of trials performed on the I1@rresponding to one of the two human-provided object categories.



TABLE 11l

60

OBJECTORDERING ACCURACY BY HEIGHT USINGSVM MODEL
50 Q : i

sl S : ] Behavior H Audio \ Proprioception
a0l I B e | Grasp || 69.1 % 69.8 %
S0l B _‘;‘:,__ : ‘ | Slow Lift || 56.1 % 76.7 %
e e Hold 58.9 % 79.2 %
I R R N U ] Shake || 64.7%| 843 %
or D e P 7 Drop 70.1 % 68.1 %
SOf et T e e Tap || 79.7%| 523 %
ol A — Crush || 93.1 % 96.8 %

© 1 O metal objects

aolB o @ metltins || Poke | 73.7 % 68.1 %
g links Push 69.1 % 85.4 %
_4—040 —’3:0 —2‘0 —£0 (3 1:2) 2‘0 3‘0 4‘0 5‘0 60 Average 705 % 756 %

Fig. 11. An ISOMAP embedding of the similarity matrW used
by the robot's model to group the presented set of objects. In this

example, the robot's model was presented with 10 objects, the fiye : :
big stuffed animals and the five plastic bottles. The spectral clusteriﬁwﬁc‘gjbjectS The 2D embedding shows that the confusion

partitioning algorithm discovered two object clusters, each perfectjlatrix for this set of objects has many mistakes in
corresponding to one of the two human-provided object categorievhich a tin objects is confused as one of the metal

objects that is not a tin and thus the categories cannot

be separated when looking at the confusion matrix. In
objecti was recognized as objegt In this example, this example, the robot's model produced two object
the first five objects are from thisig stuffed animalset groups, one containing 3 of the metal tins and 2 of
while the last five objects are from tipdastic bottlesset. the metal objects (non-tins) and the other containing the
Values close to white indicate that a pair of objects afgst. Following, the next set of experiments examines
often confused. In this case, most errors happen withigw well the robot can explicitly learn to classify novel

the category, i.e., stuffed animals are rarely recognizggjects into one of the twenty categories.
as a plastic bottle object. This indicates that the robot

may be able to use its object recognition models to -
perform cross-validation on a given set of objects, arfet Category Recognition

subsequently use the resulting confusion matrix aste third sets of experiments evaluates the performance
measure for similarity when grouping the given set Qf¢ the rohot's category recognition models. In this set-
objects into two groups. ting, the model is trained with known labels for 4 out of 5
Following, the confusion matrix is converted into abjects for each category and evaluated on the remaining
symmetric similarity matrix and used as an input to set. As with object recognition, the evaluation is also
partitioning algorithm which groups the objects into tw@erformed when varying the number of sensorimotor
sets. In this example, the spectral clustering algorithaontexts from 1 to 22. The reported performance measure
divided the set of objects into two groups, where eadh the f-Measure for each category type. An f-Measure
corresponded to one of the two object categories. Figue1.0 indicates that the category was always recognized
10 shows an ISOMAP embedding [56] of the similaritysee theoretical model section for further explanation).
matrix. The robot's model for grouping the objects Figure 12 shows the recognition rates for all 20 cate-
produced two object sets, each perfectly correspondiggries as the number of behavior-modality combinations
to one of the two human-provided object categories. used to train recognition models is varied from 1 to 22.
Similar results were observed with other object cat@s the robot is allowed to experience objects in more
gory pairs. This results indicates that the robot’s modgénsorimotor contexts, its ability to classify them into
for spontaneous object grouping produces object clusteegegories increases. With all 22 sensorimotor contexts,
which closely match human category names. Neverthe robot can recognize the correct category of a novel
less, not all categories are perfectly separable by tBBject with89.1% accuracy (a chance model is expected

robot's grouping model. Figure 11 shows an examptg achieve5.0% accuracy as there are 20 categories).
in which the robot’s model is presented with objects

from two categoriesmetal tin containersand metal
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D. Object Ordering
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Fig. 13. Object sets for ordering by height

figure 13. The object sets used for weight evaluation are
shown in figure 14.

The accuracy is reported as the number of compar-
isons between feature vectors for objects in the same cat-
egory that were correctly predicted over the total number
of comparisons. As a reference, chance accuratgis
For height there were 2 objects sets with 5 interactions
with each object (and thus 5 feature vectors for each
object), for a total of 500 comparisons. Fareight
there were 7 sets with 5 interactions with each object
(and thus 5 feature vectors for each object), for a total
of 1750 comparisons. As with object recognition and
category recognition, the evaluation is also performed
when varying the number of sensorimotor contexts from
1 to 18. In this case though, every combination of
contexts was used, rather than a random sample.

As  expected, some behaviors, such as
{proprioception, tap} and {audio, slow lift}
for height, perform near chance. For height, the
crush behavior for both audio and proprioception
perform significantly better than chance. Also as
expected, the contexts{proprioception, slowlift},
{proprioception, hold}, and {proprioception, shake}

TABLE IV
OBJECTORDERING ACCURACY BY WEIGHT USINGSVM MODEL

Behavior H Audio \ Proprioception

Grasp 65.2 % 67.8 %
Slow Lift || 77.9 % 97.3 %
Hold 64.2 % 96.5 %
Shake 81.1 % 96.9 %
Drop 65.9 % 83.2 %

The external criteria used to evaluate the robot were
heightandweight Tables Ill and 1V show the results for
single contexts. The contexts used for ordering included
audio and proprioception and every behavior excpet look.
The object sets used for height evaluation are shown in

Tap 67.3 % 72.2 %
Crush 63.1 % 63.5 %
Poke 75.4 % 71.0 %
Push 69.1 % 84.2 %
Average || 69.9 % 81.4 %
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Fig. 15. Object ordering accuracy for height as the number of
sensorimotor contexts (i.e., behavior-modality combinations) is varied
from 1 to 18. At each level, every possible combinations of contexts
is evaluated. The solid line corresponds to the mean accuracy for the
given number of contexts, while the dotted lines denote the standard
deviation.
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Fig. 16. Object ordering accuracy for weight as the number of
sensorimotor contexts (i.e., behavior-modality combinations) is varied

perform the best for weight, significantly above Chancgf’m 1 to 18. At each level, every possible combinations of contexts
' Is evaluted. The solid line corresponds to the mean accuracy for the

Interestingly enough, the robot is able to get.1% given number of contexts, while the dotted lines denote the standard
for weight accuracy with the contexXtaudio, shake}, deviation.
suggesting that there is some relation between the noise
an object makes when being shook and its weight.

Figures 15 and 16 show the accuracy when varyirigat if accuracy is known for each contextpriori, then
the number of sensorimotor contexts from 1 to 18 is not beneficial to combine contexts; but if accuracy
for height and weight respectively. For each numbé$ not knowna priori, then combing contexts will, on
of sensorimotor contexts, every possible combinatig@verage, improve performance.
of that size was evaluated using weighted-voting (seeFigures 17 and 18 show the error rate plotted against
theoretical model for details), and the mean and standdhne difference between the object pairs that were evalu-
deviation is reported. The robot is able to acheive% ated (where error rate is the number of incorrect predic-
accuracy for height anfi3.8% accuracy for weight when tions over the total number of predictions). The differ-
using all combinations of contexts. This is lower than thence for height is reported in inches, and the difference
maximum value for each9¢.8% and97.3% respectively) for weight is reported in ounces. The figures show that
when using only the best single context. This suggeskeere is a relation between the difference between objects



according to the correct human-given category

4) object ordering the ability to order novel objects
according to various properties (e.g., height, and
weight) based on pairs of objects for which the
order relation is known.

The trained recognition model was able to estimate
the identity of the present object by training a series
of recognition models, each corresponding to a specific
behavior-modality combination (i.e., sensorimotor con-
text) that produces sensory feedback. This representa-
0 1232 5 7 9 10 tign allowed the robot to estimate j[he object_ identity

Difference in Height (in) given sensory feedback detected with the object when
performing any of the 10 behaviors that the robot was
Fig. 17. The error rate (i.e. the number of incorrect predictions ovgrogrammed with. In addition, the robot was able to
the number .of total predict.ions) for object grdering by height Vers‘écignificantly improve its recognition rate by combining
the actual difference in height between object pairs. . . .
the outputs of multiple models after performing a series
of behaviors on the object and detecting the resulting
sensory feedback features. These results make a strong
case that robots should experience objects using a diverse
set of behaviors and sensory modalities in order to
scale up their recognition abilities to a large number of

I ] household objects.
Following, the robot’s recognition models were used
=l to estimate a measure for pair-wise object similarity,
such that objects that are often confused with each other
ol are considered similar, while objects that are never con-
fused with each other are considered different. After the
0
0

5 10 15 20 robot's model estimated the pair-wise object similarity,
Difference in Weight (0z) it used the resulting matrix to partition the object set
_ _ _ o into two groups using the spectral clustering graph-
Fig. 18. The error rate (l.g. the numbgr of |ncorrect predllctlons Ovli{ased algorithm. The results showed that the model's
the number of total predictions) for object ordering by weight vers ) :
the actual difference in weight between object pairs. choice for object groups matched closes the human-
provided category labels - for example, when the model
was presented with 5 stuffed animals and 5 plastic
and the error rate: as the difference grows, the error rdgettles (without knowing the category of each object), it
declines. But for the weight that relation is not as cle@roduced two object groups, such that each group was a
as it is for height. perfect match to the human-provided category label. This
result shows that robots can estimate object groups that
match category nouns even without explicitly knowing
This project explored the development of a behaviofhat the objects fall into human-provided categories.
grounded framework for object perception by a hun addition, the result also shows that if a robot can
manoid robot. Several problems were addressed:  recognize objects, it can also categorize them based on
1) object recognition the ability to recognize the how easy it is to distinguish between each pair of objects.
object identity of the object that the robot interacts For the third task, a model was trained to explicitly
with, based on prior experience with that object.estimate the category label ofreovel object (i.e., one
2) object grouping the ability to group objects into for which training data is not available) given training
categories without specific human-provided guidetata with objects for which the category labels are
lines. provided by a human. The evaluation of the robot’s
3) object category recognitionthe ability to learn category recognition model showed that, just as with
object category labels, and classify novel objectsbject recognition, the number of behaviors and modal-
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ities available to the robot can greatly influence thige used to organize a particular set of objects — in other
classification performance. The results imply that a robaiords, the structure used to sort the object is induced by
may ground category nouns (e.gyp, container ball, the model, rather then specified by the programmer.
etc.) in its own behavioral repertoire.

In the final task, a model was trained to predict VIIl. A PPENDIX
the outcome of a pairwise comparison between WO Taam
objects (i.e. greater than or less than). Givemavel
object, it had to determine how it compared to objects 1) Kerrick Staley is a first-year student in Com-
it had previously interacted with. The evaluation of this ~ Puter Engineering. He is interested, in general, in
model showed that a robot can in fact learn these object COmputer science, mathematics, and the physical
orderings and that certain contexts are best at comparing Sciences; he has specific interests in robotics, cryp-

by certain properties, such atow lift, hold and shake tography and data security, user interface design,
with proprioceptionfor comparing by weight andrush and the practicalization of open source software.
for both audio and proprioception for comparing by He programs primarily in C/C++ and Python.
height. Unlike the other models, though, this model has He enjoys reading Slashdot.org, and his Kirby
shown that if a robot knowa priori which sensorimotor skills in SSB64 will stomp most competitors. He

contexts are best suited for comparing which properties, has a website with further biographical details at
then combing modalities and behaviors does not improve  Kerrickstaley.com.

accuracy. On the other hand, if the robot does not2) Connor Schenckis a senior in Computer Sci-
know the accuracies for individual contexés priori, ence. He has experience with C/C++, Java, and
then combing them significantly improves accuracy. This ~ Matlab. He has used OpenCV, Weka, Java Swing,
suggests that at least for object ordering, there are cer- and MATLAB's Image Processing Toolkit. He
tain sensorimotor contexts that specialize at perceiving has taken courses on Machine Learning, Artificial
certain properties about objects. A robot that wants to be  Intelligence, Algorithms, and Statistics. He is a
able to order by a diverse set of properties, then, would ~ coauthor for the papeinteractive Object Recog-

find it beneficial to equip itself with multiple, diverse ~ nition Using Proprioceptive Feedbadind Inter-

sensorimotor contexts for performing object interactions ~ active Object Recognition Using Proprioceptive

in. and Auditory FeedbackHe has also worked on
There are many directions for future work. First, incor- ~ Multiple projects in the Developmental Robotics

porating features extracted from the robot’s vibrotactile ~ Laboratory at lowa State University.
sensor and the RGBD Z-Cam is a direct extension to
this project that we plan to pursue. US|_ng RGBD datads) Jivko Sinapov received the B.S. degree in Com-
gathered from the Z-Cam, more properties can be use . : ,
for ordering such as color or volume. As well, adding in puter Science from the University of Rochester,
g . T ' 9 NY in 2005. He is currently a PhD student in
RGBD data would increase the diversity of the ordering ,
redictors. Based on the results in this paper, we can Computer Science and works at the Developmen-
P . . . Paper, ) tal Robotics Laboratory at lowa State University,
safely predict that with an even richer experience with . . .
. ) ) Ames. His research interests include developmen-
objects, a robot may be able to scale up object perception : . . ) )
: tal robotics, robotic perception, manipulation, and
methods to an even larger object sets. : .
. machine learning.
Finally, we also plan to pursue novel methods for
unsuperwsgd object grouping with the goal of enablmg_ Software Packages
a robot to discover object concepts that may be relevant o o _
category nouns as well as the adjectives that descrfigé this project:
them). The drawback of most existing algorithms is that 1) The WEKA Java Machine Learning Library :
they assume a specific form (e.g., a hierarchy, or a contains a number of implementations for popu-
grouping) that describes how objects are related to each lar machine learning algorithms for the tasks of
other. To avoid this pitfal, in future work, we plan to classification, and unsupervised clustering [60].
implement methods such as the one described in [20] ta2) Structural Form Discovery MATLAB package:
allow the robot to determine which structure type should  implementation of the model proposed by Kemp



3)

4)

5)

6)

et al. [20] for the purposes of fitting structures tq12]
data.
OpenCV: C++ computer vision library, used when
detecting the object on the table, as well as extragis)
ing visual object features.
GHSOM package: a Java library implementing [14]
the Growing-Hierarchical Self-Organizing Map al-
gorithm [7] for dimensionality reduction. The
package will be used to turn high-dimensional sen-
sory feedback data into low dimensional discreté®!
sequence.
Sparse Coding MATLAB package: a MATLAB
library developed by Leet al. [26], which will be [16]
used to extract features given depth images taken
by the robot's ZCam. [
robocop: C++ software, written by Vlad Sukhoy,
which wraps the Barett WAM API and is used!8]
for recording the robot’s sensorimotor data durinﬁg]
object exploration trials.

[20]

C. Future Timeline

1)

[1] W. Aha, D. Kibler, and M. Albert.

Submit paper to Humanoids Conference: May 2.
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