
Developmentally Learning the Support
 Affordance of a Platform

Karl Deakyne – Yehoshua Meyter – Brian Russell

CpreE 585x

Developmentally Learning the Support
Affordance of a Platform

Karl Deakyne Yehoshua Meyer Brian Russell

CprE 585x

 2

TABLE of CONTENTS

Abstract…………………………………………………………………………..... 4
Introduction……………………………………………………………………….. 4
Proposed Applications…………………………………………………………….. 5
Related Work……………………………………………………………………… 5
Experimental Set-up………………………………………………………………. 6
 Robot Platform……………………………………………………………. 6
 Data Collection……………………………………………………………. 7
 Objects…………………………………………………………………….. 7
 Constructed Platform……………………………………………………… 7
 Basic Manipulation Strategy……………………………………………… 8
Methodology……………………………………………………………………… 8
 Exploratory Sliding with Self…………………………………………….. 9
 Exploratory Sliding with Objects…………………………………………. 9
Processing and Analyzing Collected Data………………………………………... 10
 Tracking Self Exploration………………………………………………… 10
 Tracking Object…………………………………………………………... 11
 Detecting Edge of Constrained Platform…………………………………. 12
 Detecting Edge of a Cliff…………………………………………………. 13
 Processing Depth…………………………………………………………. 13
Results of Experiments……………………………………………………………. 14
 Algorithms………………………………………………………………… 14
 Results of Classification…………………………………………………... 16
 An Alternative Control Classification…………………………………….. 17
Future Work………………………………………………………………………. 18
Conclusions……………………………………………………………………….. 19
Acknowledgements……………………………………………………………….. 20
Works Cited………………………………………………………………………. 20

 3

List of Figures
Figure 1: Objects used for experiment…………………………………………………… 7
Figure 2: Four orientations of the platform and ramp……………………………………. 8
Figure 3: Robot finger with vibrotactile sensor exploring the table edge……………….. 9
Figure 4: Platform with slanted ramp configuration……………………………………... 9
Figure 5: Color tracking of robot arm and cylinder……………………………………… 10
Figure 6: Point cloud of vibrotactile edge detection…………………………………….. 11
Figure 7: Scatterplot showing vibrotactile measurements over time……………………. 11
Figure 8: Point clouds for horizontal and sloped configurations………………………… 12
Figure 9: Chart showing joint torques when pressing against the upright ramp………… 12
Figure 10: Point cloud generated at the moment where joint torques meet thresholds….. 13
Figure 11: Side by side comparison of horizontal and slanted ramp depth heights …….. 13
Figure 12: Diagram showing the sequence of the project……………………………….. 15
Figure 13: Visualization of entropy calculation over time………………………………. 17
Figure 14: Graph of entropy over time…………………………………………………... 18
Figure 15: Illustration of regions of control……………………………………………... 18

List of Tables
Table 1: Results of classifier accuracy for predicting object support…………………… 16

 4

Abstract
This paper describes an approach to teach a robot the support affordance of a platform. This is
an important concept for robots to learn and one that humans gain knowledge of at an early
age. For this goal, a robot performed a sequence of exploratory behaviors focusing on the edge
of a platform. Four of these behaviors included pushing an object past the boundary of a
platform edge. From these behaviors, the robot’s arm was tracked along with the object it was
pushing. Using this tracking, it became possible to find the point at which the robot’s arm
disassociated from the object it was pushing. Machine learning algorithms were then used to
classify objects as supported or not supported based on this point of disassociation. Results
are drawn from this classification and the concept of self-detection is explored as another
avenue for this research.

Introduction
Support is a fundamental concept that mankind relies on to complete a variety of rudimentary
tasks, such as judging how and where to place objects on a platform. In most cases, humans
can solve this task with minimal effort because they’ve learned the fundamental concepts of
support at a young age. At six and half months, an age where most children are not even
capable of crawling on their bellies, infants have already developed a sense of whether or not
an object should fall when it is placed on the edge of a platform [1]. Though this basic concept
is understood by the simplest of human minds, it escapes the “minds” of complex
machines. Modern robots possess sophisticated hardware, but their lack of sophisticated
software prevents them from autonomously learning the notion of support.

This research works towards teaching a robot to solve support problems by having it build its
own infantile intuition of support. The robot generates this intuition by exploring its
surroundings, a methodology borrowed from developmental psychology. This field provides
evidence that children learn using self-generated rules to build models of their environment
[2]. Validation or violation of these rules will change a child’s exploratory behaviors, and lead to
new rules for an improved understanding of the world [3]. By having the robot push an object
around an edge, it can develop an expectation of where the object is supported. Repeated trials
with a variety of objects and edges have developed these expectations and given the robot a
prediction of support.

An understanding of support is important for any intelligent being, whether it is a human or a
machine. It can keep towers upright, determine if a potentially dangerous object will fall over,
describe if an unattended object will remain where it was last seen, and even identify if an object
can support an intelligent being. In the following sections of this paper we will describe more
applications of this project, look at related work in the fields of artificial intelligence and
developmental psychology, and further explain the approach taken to solve this problem.

 5

Proposed Applications
A robot with the ability to explore an object and determine whether or not it can support another
object can then use this knowledge to begin exploring the support of a tower of objects. To
keep the tower upright, each piece needs to be supported not only by the object directly below
it, but also every other object in the tower. For each new object, the robot would develop new
boundaries of support to predict where to place the next object. In this manner, the robot could
also develop an intuition of what orientations would produce a stable configuration.

There are a large variety of common tasks that involve the notion of support, including placing
objects on tables, carrying objects, and walking. Preprogramming a robot to do every one of
these tasks is infeasible, as the program would have to take into account all the tasks, all the
possible objects the robot would interact with during the tasks and every environment that the
task could be performed in. Preprogramming a robot to do some of the tasks in a specific
environment with a collection of objects is also undesirable, as it limits the usability of the
robot. In order to perform each one of these common human tasks, a robot needs the ability to
learn the relevant support affordances for each problem.

Related Work
For this research, a platform is considered an object capable of supporting another object. As
infants, humans learn about platforms from watching their parents place things on tables,
counters, and desks. As they age, infants are presented with toys and are allowed to explore
placing these toys in a variety of places. During this process we learn to avoid placing things on
the edge of a support platform. This is an important idea to understand as it helps infants avoid
crawling off a cliff such as a staircase. In studies conducted by Walk and Gibson, infants were
presented with a visual cliff, an apparatus that looks like a cliff’s edge but is actually a
traversable platform. In these experiments, most children were able to detect and avoid the
visual cliff [4]. However, in some further studies around 66% of infants would cross to the other
side of the transparent platform [5].

Some animals don’t have the same issues in detecting and avoiding the “visual cliff”. Gibson
conducted studies with the young of many species to determine if visual cliff avoidance is
innately present or if it is learned [6]. The study found that animals determine the presence of a
visual cliff by gravitating toward the shallow side of a visual cliff apparatus, showing an innate
ability to detect depth. In fact, 100% of goats tested within a few hours of their birth avoided the
visual cliff altogether. The differences between the goats and human trials suggested that
humans are not born with an ability to detect depth; instead they have to learn the meaning of it
through locomotor experience [5]. In order to gain this experience, infants use models of
vicarious learning and then apply it towards their own experiential play with toys. Through this
interaction they learn which objects can and cannot support something as well as what parts of
the object will provide support.

Exploration is a concept that is fundamental to human learning. By examining the surrounding
world, an infant begins to develop assumptions about both object and self-support. At a certain
age, infants begin to discover the point at which they can support themselves [7]. However,
before supporting themselves, infants begin to develop some ideas about object support [1].
Young children explore the surface of a table to determine how far a block can be pushed until it
falls. This is a type of balance test that children generate to build a model of rules about
surfaces. When a toy block falls off of the table it changes the child’s beliefs about that surface.

 6

This leads the child to change their exploratory behaviors [2]. While pushing a block towards
the edge of a platform, a child constantly creates new rules for that platform that are based on
the changes that occur during their interactions.

These rules that children create and redefine begin to develop their support affordances for
objects and surfaces. Affordances are relationships between one thing and another, and in
particular they are what one thing can provide another [9]. E. Gibson expanded on this idea and
linked exploratory actions to learning affordances [10]. The children described above are
beginning to develop their knowledge basis of support through exploration and this is the same
method the robot used in this project to develop it’s own affordances.

Affordances for robotics have been explored before in various applications. The understanding
of the relationship between objects, actions, and reactions has been used to perform “task
interpretation and planning capabilities” and perform simple imitation games [11]. Also, a
robotic vehicle at the Middle East Technical University has used affordances to distinguish
between objects that can be moved by the vehicle and those that cannot. The only objects
avoided are those that are considered non-traversable, thus a more intelligent obstacle
avoidance model is created through the use of affordances [8]. Support is a novel application
for robotic affordances and this is the first paper to explore this application.

Problems associated with support, however, have been explored many times before. In one
such case known as Blocks World Planning, AI researches attempt to minimize the number of
steps necessary to rearrange a stack of blocks [12][13][14]. There are many solutions to this
problem, but in all of the proposed solutions one important detail is left out. Not one of these
papers explains how robots will perform the stacking action itself.

In order for a robot to determine that an object is capable of being supported, it has to learn
what part of a platform can offer support. This paper explores affordances as a novel approach
to this support problem. In a study dealing with the robot being capable of detecting itself, it has
been shown that with an efferent-afferent delay system it is possible for a robot to determine
that an object in its field of view is part of self, as long as it follows the same movement patterns.
While moving an object, the robot can determine that the object is a part of self [15]. If the object
is no longer moving in tandem with the robot, it can then be classified as not part of self. Using
techniques that allow the robot to record where it lost control of the object, our project has
created a model for predicting regions of support.

Experimental Setup
Robot Platform
The robotic platform in the Developmental Robotics Lab at Iowa State University was used for
this research. It consists of two Barrett Whole Arm Manipulators and two different Barrett
Hands. One hand is equipped with tactile pressure sensors and the other is capable of
vibrotactile sensory feedback with an external sensor. The robot is also equipped with two
Logitech QuickCam Pro 4000 webcams for vision and two Audio-Technica U853AW cardioids
microphones for auditory input. For this particular research, a Zcam 3D camera was used in
order to gain the perception of depth. Because a change in depth is a defining characteristic of
a platform, this camera adds an import sensing modality to this platform.

 7

Data Collection
For these experiments, data was collected for 390 trials and was processed offline. The
modalities of vision, proprioception, and tactition were recorded with the following parameters.
The color vision used the native webcam resolution of 640x480 pixels and with a lowered frame
rate of 10 fps. The Zcam’s images were recorded in 320x240 pixel grayscale at roughly 21
FPS. Proprioceptive data was sampled directly from the Barrett WAM’s motor controller at a
rate of 500 Hz. Tactile data was acquired at a rate of 10 Hz.

Objects
The objects used in this project have been constructed from pieces of wood and are composed
of three distinct shapes: a circle, a square and a triangle. These objects were chosen because
they present variation in shape while still maintaining a manageable data set. Unlike many
household objects, these constructed blocks have a definite form and a uniform material
density. While this may appear as oversimplification, these objects are not unlike various
children’s toys, including building blocks and shape sorters.

In order to track these objects easily, they were colored bright green. Such coloring made these
objects easily separable from the surrounding area. Because the focus of the project was
centered on platform edge exploration, this was deemed to be an acceptable modification of the
objects.

Constructed Platform
Initially, the proposed experiments required the construction of an independent platform.
However, this quickly proved to be infeasible due to the limitations of the robot’s end-effector
space. Additionally, a substantial slope and platform length was necessary in order to track the
objects in vision. Therefore, it was decided that an additional platform would not be constructed
and that a different setup would be created instead.

The modified setup consisted of a standard office table and a removable wooden board. The
board was hinged so that it could be adjusted to fit a variety of configurations. Furthermore, the
board chosen was pre-finished with a low coefficient of friction. Such a surface proved to be
ideal for tracking sliding objects. Its ease of adjustment also made it extremely versatile through
which a variety of experiments could be performed.

In total, the removable board was used in three different configurations and completely removed
for the remaining two configurations. Each configuration gave the robot a different perception of
the platform itself. In configurations where the platform ramp was completely removed, the
robot was essentially exploring a cliff-like environment. This sensation was explored by the
robot’s fingertip and using an object. Both explorations are discussed in the methodology
section.

Figure 1: Objects used for Experiment

 8

In configurations where the board was attached to the table, the robot explored three unique
edge properties. In the first position, the platform was extended horizontally and the robot
pushed objects onto it. Because the objects did not separate from the hand, this gave the robot
an expectation that it could control the object it was pushing. The expectation was
subsequently violated when the board was put in an inclined position. In this position, the ramp
had an approximate slope of -1 and formed an interior angle with the table of approximately 135
degrees. In this position, objects did separate from the hand and thus violated the robot’s
expectation that it had complete control of an object.

The final configuration of the board was unique in that the edge was perceived vertically.
Clamped vertically to the table, the platform served as a bounding wall for the platform. With
this type of edge, objects can be pushed to the limits of the supporting platform but cannot be
pushed past those limits. The intent of this configuration was to explore and determine the
edges of the platform using the joint
torque values of the robot’s arm.

Basic Manipulation Strategy
In each trial of the data set, the robot
moved its hand horizontally across the
table until it reached a predetermined
stop position or encountered a torque
limit. The data set included ten trials for
each object, encountering each surface,
in three different starting positions along
the edge of the table, creating 360 trials
for the object training. Likewise, the
robot performed an additional 30 trials
where it used only its fingertip to explore
the edge of a platform. In the following
section, these behaviors are explained
in greater detail.

Methodology
In this project, the edge of a platform
was explored through several different
manipulation techniques and sensory
modalities. The boundaries of a
platform can occur in several different forms. For instance, the edge of a platform could be a
vertical drop off, a slanted incline, a vertical wall, or unchanging in height. For that reason,
these exploration behaviors were created in order to explore these different properties of
platform edges. These behaviors are detailed in the following section.

Figure 2: Four orientations of the platform and ramp. From the top
left, no ramp, horizontal ramp, slanted ramp, and upright ramp.

 9

Exploratory Sliding with Self
This behavior allowed the robot to determine the location of the edge through embodied
exploration. In order to accomplish this task, the robot performed a sliding motion in which its
finger maintained contact with the table. This slide moved from one of three initial starting
locations to a corresponding destination point. The destination point in each trial was located
beyond the boundaries of the platform. Therefore, it was anticipated that the vibrotactile sensor
data could be used to detect the edge of the platform. For this sliding behavior, ten trials were
collected for each set of terminal coordinates. In total, thirty trials were collected for this
behavior.

Exploratory Sliding with Objects
As previously discussed, humans understand the
affordances of an edge through learning with the
aid of objects. In a similar manner, the robot was
programmed to use objects in order to explore the
test platform’s edge. For the first set of
experiments, the platform ramp was oriented
horizontally and served as an extension of the
platform itself. The reasoning for this was that the
robot would begin to build an assumption that
objects are under its control during a pushing
behavior. With this orientation, the robot explored
the entire width of the ramp by using three beginning and ending positions that covered the
entire board.

For the second experiment, the platform ramp was setup to form an incline against the table.
With this configuration, the robot pushed objects towards the table’s edge and onto the ramp.
Once on the ramp, the object began to disassociate from the hand as it’s speed increased.
Such a behavior is intended to mimic a person knocking objects off of a table or platform. Once
again, the entire board was explored using the same terminal positions tested in the previously
described ramp configuration. Modalities of depth and vision were captured for both of these
experiments in addition to proprioceptive and tactile data. Each object was pushed for ten trials
at each position in order to generate a significant number of trials to build a learning model.

The third experimental setup required the board to be oriented vertically. Instead of falling past
the limits of the platform, the objects’ movements
were instead constrained by the edge. Thus the joint
torques became the primary modality of interest for
this behavior. For the trials, the arm was given an
initial starting position and a goal position. In order to
press against the upright ramp, the goal position
given was approximately three inches past the edge
of the table. Therefore, the goal was impossible to
meet but allowed for the arm to press firmly against
the upright board. As objects were pushed against
the upright ramp, they met resistance until a joint
torque limit was met. Once met, the trial ended and
the arm no longer exerted force on the board.

Figure 3: Robot finger with vibrotactile sensor
exploring the table edge.

Figure 4: Platorm with slanted ramp
configuration.

 10

The fourth experimental setup did not use the platform ramp and instead performed
experiments which an object falling to the ground. Similar to the previous three procedures, the
robot’s arm pushed objects from an origin position to a goal position. Since the goal position
was set past the edge of the platform, the hand continued to move while the objects fell to the
floor. The behavior used terminal points at locations where the removable ramp had been
placed. Therefore, this pushing behavior is identical to the previous pushing behavior with the
exception of the platform ramp being removed.

Processing and Analyzing the Collected Data
The project’s goal of discovering various properties and affordances of a platform edge
necessitated the use of object tracking. As previously stated, the three objects used in these
experiments were colored before data collection began in order to track them using computer
vision software.

As stated in the project proposal, the OpenCV computer vision library was used as a basis for
developing a color tracker. Although OpenCV does not have a standard color tracker, it
provides a strong foundation on which to build a custom color tracker. For this project, the color
tracked objects were distinct from the surrounding environment. Therefore, the color tracker
was tuned to recognize specific RGB values as follows.

The first stage of the color tracker separates the image into three RGB channel images. Each
channel image was then filtered to show pixels within a specific RGB range. As these pixels
were filtered, they were set to the maximum intensity value if they were found within a given
range. With each color channel containing only pixels within a specific range, the three
channels could be merged back into a single image. The newly combined image was
constructed from pixels present at a location in all three RGB channels. Therefore, only objects
within a specific color range appear in the final recombined image.

With this filtered image, OpenCV has built in functions to detect contours in an image. Since the
filtered, recombined image contained only the object of interest, this function needed only to
detect a single, adequately sized contour. With this contour detected, a rectangular bounding
box was drawn over the resulting contour and superimposed onto the original image for visual
verification. In this manner it was possible to track both the robot’s gold colored cuff and the
associated object that it was pushing.

Tracking Self-Exploration
In order to detect the edge of the platform using only
the fingertip, both vision and vibrotactile sensing data
were analyzed. Because the robot’s finger
experienced a jolt as it fell off of the platform, the
accelerometer data values could be analyzed for rapid
changes. When viewing a scatter plot of the
accelerometer data over time, this rapid change is
values was quite apparent. A sample scatter plot of
this data is shown below as an illustration of this
behavior.

Figure 5: Color tracking of robot arm and
cylinder object.

 11

Once it became apparent that the vibrotactile sensor gave a strong indication of the edge, the
readings from the vibrotactile sensor were analyzed to find points where the x,y,z coordinate
values substantially deviated from their normal values. Once these values were detected, that
particular timestamp was recorded for future mapping back to visual space. In order to map the
observed vibrotactile events back into visual space, the arm was visually tracked. Therefore,
the cuff of the arm was tracked and its coordinates were recorded for each time step.

To show the effective of vibrotactile changes visually, a point cloud was generated from the
processed vibrotactile data. Points from the point cloud were generated using the following
method. If the accelerometer values substantially deviated from their normal values, a point
was generated and placed at the location of the robot’s wrist for that time. The point cloud
below shows how the robot consistently experienced sharp changes in its vibrotactile sense
when arriving at the edge of the platform. One will notice; however, that the points are shifted
away from the platform. This occurs because the points represent the location of the wrist at
that time and not the finger experiencing the vibrotactile event. While tracking the finger would
have been a preferable alternative, this research aimed to maintain consistency when tracking
the arm. Because the wrist was tracked (and not the finger) for all other behaviors, it was
decided that the wrist would be tracked for this behavior as well.

Tracking the Object
Once visually tracked, the objects’ and arm’s movements needed to be numerically extracted in
order to perform an analysis of their behavior. Since bounding boxes were created for the
tracked object and the arm, it was possible to simply track the center of each bounding box as it
changed position over time. Therefore, files of the object and hand coordinates for a given trial
were created. In each coordinate file, the object’s position in visual space and the hand’s
position in visual space were recorded. With this information, it became possible to determine
each object’s speed for a given frame. Using this speed, a decision could be made whether the
hand and object were moving at differing rates. Subsequently, it could be inferred that differing
speeds indicate a loss of control over an object.

Figure 7: Scatterplot showing vibrotactile measurements over time
(for a particular trial). Note the large value change where the edge
occurs.

Figure 6: Point cloud of vibrotactile edge detection. The
points indicate the location of the robot's wrist when the
edge was detected. There are 30 points in this image but
they are clustered tightly together.

 12

With the assumption that differing speeds indicate a loss of control over the object, it became
necessary to visualize the results of this implication. For that reason, point clouds were
generated to show the first occurrence of disassociation between the object and robot’s arm.
Points were placed at the threshold where the object moved faster than the hand pushing it.
These points mapped to visual space cluster around the edge at each of the three pushing
trajectories. The figures below show this mapping.

Similar to the slanted ramp setup, the object and hand were tracked visually when the platform
ramp was oriented horizontally. After this tracking, the object and hand coordinates were
extracted and processed to look for a disassociation. Predictably, no disassociation was found
because the object never moved faster than the hand in these trials. Still, this data was used for
classification of supported object positions

Detecting the Edge of a Constrained Platform
While vision was the modality of interest for the horizontal plane and slanted ramp
configurations, it was not of great interest to detect the edge in this particular configuration.
Instead, the modality of proprioception was used to detect the point where the platform ended
and the upright board began. To use proprioception, it was necessary process the joint torques

to find instances where they
exceeded their standard values.
When viewing the proprioceptive
data as a scatter plot over time, it is
obvious that certain joints
experience a sharp torque increase
when the bounding board is met. A
plot of proprioceptive data over time
is shown to the left.

After tracking the joint values over
time, it became necessary to map
them to visual space in order to

Figure 8: Point clouds for horizontal and sloped configurations. Note that points are generated when the object moves
faster than the hand. Because this only occurs for the sloped configuration, points do not occur in the horizontal
configuration.

Figure 9: Chart showing the joint torques when pressing against the
upright ramp. Note that joint 2 is particularly affected.

 13

verify the accuracy of this detection method. In order to accomplish that task, a series of steps
needed to take place. First, OpenCV was employed to visually track the objects as they were
pushed against the board. Therefore, the joint and hand positions were recorded for each time
step in a trial. With these coordinates, it became possible to associate the location of the object
with a particular timestamp. Since the joint tracker determined the time at which torque
thresholds were exceeded, it was possible to determine the location of the pushed object at the
time where the joint torque threshold was exceeded. Given this information, a point cloud was
generated that showed the center of a pushed objected when a joint threshold was exceeded.
An image of the created point cloud is shown below.

Detecting the Edge of a Cliff
Although an attempt was made to track the
object falling off of the platform, it soon
proved to be a difficult problem. The object
could be tracked as long as it remained on
the table but after it was pushed over the
edge, it fell to the floor and was no longer in
visual space. This was an anticipated
problem from this project’s inception and was
the motivating reason behind constructing the
platform ramp. Therefore, this portion of the
dataset is being retained for future work.

Processing Depth
The change of height is a key property of a
platform’s edge. Therefore, the Zcam 3D

camera was used in order to detect this change in height. Although the Zcam captures the
depth in a scene, this depth image still requires processing in order to be used. For this project,
OpenCV was again used to process the images. Although several methods of processing the
image were considered, it was ultimately decided that all of the pixel intensities could simply be
summed to find overall depth changes in the image.

For each trial, only the first frame of depth data was analyzed to find a change in depth. At the
recording of the first frame, the arm, object, table, and platform ramp were all in approximately
the same positions regardless of trial. Therefore, the only changes in the image when varying
the platform were in the intensity values of the platform itself. For that reason, the method of
pixel summation was implemented as a simple means of detecting depth changes within an
image.

Figure 10: Point cloud generated from the moment where
joint torques meet predefined thresholds.

Figure 11: Side by side comparison of horizontal and slanted ramp depth images. The horizontal
platform ramp is shown on the left and the sloped ramp is shown on the right.

 14

Results of Experiments
Initial results for this project showed the effectiveness of the edge detection through the various
modalities. These results, shown as point clouds in the preceding section, show the
effectiveness of the platform sensing visually, but not quantifiably. Therefore, the question
became whether or not a robot could determine if an object was still under its control given a
coordinate position and a depth image. While similar to the initial idea proposed or this
research, the experiment changed as follows.

In the proposal, it was stated that a regression would be fit for the object coordinate positions in
order to determine the distance each could be pushed. Basically, for a given object and table
position, the classifier would determine the distance that an object could be pushed before
reaching the edge. This prediction would be output as a numerical value. However, the slow
frame rate of the data captured made this an infeasible task. Whenever the object neared the
platform’s edge, there were only around three frames in the video stream that captured this
moment. Therefore, the experiment changed to include other platform variants and a modified
classifier.

With this change in analysis, the learning method becomes the following. Given a depth d ∈ D
where D = Σ depth pixel intensities, t ∈ T where T = object type, and a hand position h ∈ H
where H = {horizontal center of hand, vertical center of hand}, classify c ∈ C where C = {0 –
Supported, or 1 - Unsupported}. In this way the classifier is predicting the notion of support
based on the training data.

The training data for this classifier was selected from a subset of the entire dataset. Trials
where the platform ramp was oriented horizontally and trials where the ramp was slanted were
used for the training and test data. Using these two configurations, it was possible to use depth
as an input to the classifier. The horizontal ramp orientation appeared with a greater intensity
compared to the slanted ramp. Therefore, all of the trials containing the horizontal platform
ramp contained significantly different depth values than the slanted ramp.

After collecting the data for this project, it became clear that learning the affordances of a
platform’s edge was more difficult to quantify that initially assumed. For this first stage in the
overall goal, the focus of this project centered around two platform ramp positions. The
positions where the platform was oriented horizontally and placed slanted against the platform
became the dataset from which results were drawn. However, there is proposed future work
that uses all collected data for analysis.

Algorithms
As the name implies, the J48 tree builds a decision tree to determine if the robot has control of
the object or not. Beginning at the top of the tree, each node splits the data into subsets based
on one attribute. Selecting the attribute for the each node is based on the information gained,
with larger gains placed higher on the tree. The bottom nodes of the tree are the decision
values, which in our case are “control” or no control”. In this project Weka was used to create
the information statistic for each attribute and to generate the decision tree used for
classification [16][17].

 15

The k nearest algorithm uses the four
attributes to map the data set into R4. Each
point in this space also has the classification
of controlled or uncontrolled. This method
differs from the other two because instead
of creating a predictive model, it stores all of
the data from the learned set and uses it to
find a classification for new data points.
The control of a new point is found based
on the known points surrounding it. The k
closest known points vote for the
classification of the new point, with the
majority votes determining control. For this
experiment, k=5 was selected [18].

The naïve Bayesian classifier assumes that
all the attributes are conditionally
independent of each other for a given
classification of “control” or “no control”.
Using the training dataset, this algorithm
generates probability distributions for each
classification P(C), and the conditional
probabilities of the attributes given a
classification P(Xi|C), where Xi represents
hand position, object type and depth
measurement. The probability distribution
of control given a novel data point is given
as

! ! ! = ℎ,! = !,! = !) =

! ! = ℎ ! ∗ ! ! = ! ! ∗ ! ! = ! ! ∗ ! !
! ! = ℎ ! ∗ ! ! = ! ! ∗ ! ! = ! ! ∗ ! !!

Where the hand position, object type and
depth value are given by H, T, and D
respectively and the current data point has
values of h, t, and d. This algorithm will use
the probability distribution of the training
data set to predict control for the points in
the testing data set [18].

Each of these algorithms was tested using a
five fold cross-validation method. This
method first splits the training data into five
different subsets. Then four of these
subsets are used as training data, with the
fifth used as testing data. This process is
then repeated four more times until every
subset has been used as testing data.

Perform trials
with slanted

board

Perform trials
with flat board

RGB Video Z- Cam Depth

Color Track Sum Intensity
Values

Compare
Speeds

 Classification Algorithms

Hand Position
Object
Position

Depth
Measurement

Object Type

Control/
No Control

Prediction of control
given a Hand Position,
an Object Type, and a
Depth Measurement

Figure 12: Diagram showing the sequence of the project.

 16

When this process is finished, the results from each of the five iterations can are averaged or
combined to create a single model for each algorithm.

Results of Classification
The data used for training and testing was comprised of 3 objects pushed for 10 trials in two
board configurations for a total of 3x10x2 = 60 trials. However, each trial lasted a varying
amount of time and thus yielded 9772 specific instances for testing and training data. For these
9772 data points, 5475 were instances of supported objects and the remaining 4297 were
unsupported objects. Thus, classifying by chance P(C) = 0.56.

Each classification algorithm classified significantly better than chance. The results are
summarized in the table below. Overall, the decision tree, J48, slightly outperforms the k-NN in
correct classification percentage. Upon examination of the generated decision tree structure, it
was found that the tree first looked at the hand’s x coordinate in the frame. Below a certain x-
coordinate, all y-coordinates for the first two objects are irrelevant. Only the triangle needs
additional information before a classification can be made. Depth begins to factor into the
decision as the object begins to near the edge of the platform. Given the few number of
attributes to classify over and the strong structure of the data, it is fitting that the decision tree
has a strong performance. On this dataset, this classifier has a correct classification rate of
98.75%.

Like the J48 decision tree, the k-NN with k=5 also shows strong performance in classification.
With each of the attributes providing meaningful information, the k-NN predictably performs
quite well. As seen in the visual point clouds, the objects clustered around the edge of the
table. Since k-NN looks for similar data points in order to perform a classification, this dataset is
classified correctly at a rate of 97.88%.

For this particular dataset, the Naïve Bayes classifier displayed the worst performance among
the three algorithms. Because the Naïve Bayes approach considers all inputs separately, this
dataset became more difficult to classify. Depth and the x coordinate of the hand are both
needed to provide a correct classification. By considering these attributes separately, the
correct classification rate falls short of the levels achieved by the other two classifiers.
Ultimately, this classifier still performs significantly better than chance with a correct
classification rate of 85.24%.

 17

An Alternative Control Classification

As a parallel to the discussion above, self-detection
was explored as an alternative way to classify
control. Using this method, the object is controlled
only if the robot considers it a part of its own body.
The tracking data from the RGB video was
processed offline and input into a program to
process the entropy measurement of the hand and
an associated object. Screenshots of this program
are found on the right and show the progression of
the program’s execution. At the top of each image
are two statistical measurements, where each frame
considers the information from all previous frames to
find the newest value on the far right. The p-value is
a measure of the probability that the current
observation would be made, assuming that the
object is a part of the robot’s hand. A larger p value
indicates greater confidence that the two objects are
dependent, and is a good indication of where the
robot has control of the object.

The other measurement is the mutual information of
the object and the hand, and indicates the
dependence of the two variables on each other. This
measurement sometimes provides good information
on whether the hand is in control of the object, but it
is a less reliable indicator than the p value. For
instance, this value drops with the p value as the
object begins sliding down the ramp, but rises again
towards the end of the video when both the object
and the hand come to rest.

If the data used to calculate these statistical
measurements is altered to include only the previous
three frames instead of every previous frame, they
produce a much clearer result. The two graphs
below are taken from one trial and show a clear drop
off confidence and mutual dependence at around 1.3
seconds. This self-detection classification of control
has produced data consistent with the previous
classification and is deemed an acceptable
alternative.

Figure 13: Visualizations of entropy calculation
over time.

 18

Future Work

In this project, data was collected for four different
orientations of the table and the board, but different
modalities required different types of measurements.
This differing data made it difficult to create a standard
attribute list that could be used to classify the data
across all orientations. Currently only the two most
similar orientations are used by the machine learning
algorithms to predict the control of new data, though
future work will include all the gathered data.

As shown before, the training data currently provides
the machine learning algorithm with the hand position,
a depth value from the first frame of the trial, and the
object type from each frame of the video. Each frame
is also labeled as having “control” or “no control” based
on whether the object is moving faster than the hand.
This classification works well for the flat plane and the
ramp, though it needs to be reconsidered for the other
two cases. For instance, in the case of the edge of the
table, the object leaves the field of view, making
calculating velocity impossible. Also, the current
attributes would not be able to distinguish the case of
no board from the case of the vertical board because
the depth value is not much different between these
two cases. A new classification that accounted for

Figure 14: Graph of entropy change over time. Note the cliff when the object separates from the hand. This drop
indicates a loss in confidence that the arm has control of the object.

Control

Control

Control

Control

No Control

No Control

Flat Board

Slanted Board

No Board

Vertical Board

Figure 15: Illustration of regions of control.

 19

these problems was identified, but only after finalizing the current results, making it impossible
to incorporate within this project’s planned timeline.

The new classification is as follows. First, in any frame that the block could not be seen; the
block velocity is given a null value. Second, in addition to the attributes already given to the
machine learning algorithm, the new model will provide the maximum sum of the absolute
values of the joint torques for each trial. Like the depth measurement, each trial will have one
reading of this torque value and it will be shared among all of the frames in the trial. Finally, the
requirement for control is changed slightly and will show loss of control if the object’s velocity is
faster than the hand’s velocity or if the object velocity is a null value. Naturally, if the robot can’t
sense the object, it can’t have control over the object.

The expected result is pictured on the previous page, illustrating the regions of control and no
control for a given object. The first two are the orientations considered in this project, where the
robot has control in every position on the flat board, but loses control on the slanted board at a
certain point.

By adding a null object velocity as a condition for no control, the orientation of no board can be
added to the data set and should produce control boundaries similar to the slanted board. The
robot will maintain control of the object as it moves across the table, but loses control when the
object falls off the table and out of view. Here the object has a null velocity and the robot loses
control of the object.

The fourth picture illustrates the final case, where the board is placed vertically against the
table. Here the robot will have control of the object everywhere that it can move, but will be
physically constrained by the board. The black region of the diagram is a region where control
cannot be determined because the region is never explored by the robot.

With this model, each frame of the RGB video will have a hand position, an object type, a depth
value for the trial, a torque value for the trial, and a control classification. This data can be given
to the same machine learning algorithms used for this project to find a more robust prediction of
control that incorporates all of the data gathered in this project.

Conclusions
The purpose of this project was to explore the properties and affordances of a platform edge. In
order to accomplish this task, the robot performed two experimental behaviors using three
different setup configurations. By using the pushing behavior and running tests with a horizontal
and slanted platform, machine learning classifiers were able to determine whether an object
was supported on a platform with a correct classification rate significantly better than chance.
Classification was accomplished using the Naïve Bayes, k-NN, and J48 (C4.5) classifiers.

While the focus of this research was directed toward support classification, the aspect of self-
detection also arose as a finding. As the robot moved an object with its hand along a platform, it
built the assumption that the object was part of itself. However, this hypothesis was rejected
once the object separated from the hand at the edge of the platform. Thus the robot could
begin to differentiate the object from its own hand using measurements of entropy.

Future work for this research has been outlined and should focus on analyzing the remainder of
the dataset. The robot can truly begin to build its own models of a platform edge once it has

 20

explored the edge using a variety of modalities and learning techniques. Various
implementations for this future work have been investigated but the most promising avenue
appears in the preceding section of this report.

Acknowledgements
This group would like to thank Jivko Sinapov and Vladimir Sukhoy for their help on this project.
Jivko provided a program used to control the robot and record depth data. This program was
modified to perform all of the data collection for this project. Vlad used his entropy program to
process our data for the alternative control classification.

Work Cited:
[1] R. Baillargeon et al., “The Development of Young Infant’s Intuition About Support.” Early
Development and Parenting Vol 1 (2), 69-78, 1992
[2] B. R. J. Jansen, H. L. J. van der Maas, “ The Development of Children’s Rule Use on the
Balance Scale Task.” Journal of Experimental Psychology 81, 383-416, 2002
[3] E. B. Bonawitz, S. Lim, & L. E. Schultz, “Weighing the evidence: Children’s naive theories of
balance effect their exploratory play.” Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology. Cambridge, MA
[4] Walk, R., & Gibson, E. A comparative and analytical study of visual depth perception,
Psychological Monographs, 1961, 75(15, Whole No. 519)
[5] Campos, J. J., Hiatt, S., Ramsay, D., Henderson, C., & Svejda, M. The emergence of fear
on the visual cliff. In M. Lewis & L. Rosenblum (Eds.), The origins of affect. New York: Plenum
Press, 1978
[6] Gibson, E. J., & Walk, R. The "visual cliff." Scientific American, 1960, 202, 64-71
[7] S. Berger, C. Theuring, K. E. Adolph, “How and when infants learn to climb stairs.” Infant
Behavior & Development 30, 36-49, 2007
[8] Ugur, E.; Dogar, M.R.; Cakmak, M.; Sahin, E.; , "The learning and use of traversability
affordance using range images on a mobile robot," Robotics and Automation, 2007 IEEE
International Conference on , vol., no., pp.1721-1726, 10-14 April 2007
[9] Gisbon, J.J. 1966. "The Senses Considered as Perceptual Systems." Boston: Houghton
Mifflin
[10] Gibson, E. J. (1988). "Exploratory behavior in the development of perceiving, acting, and
the acquiring of knowledge". Annual Review of Psychology, 39, 1-41.
[11] Montesano, L.; Lopes, M.; Bernardino, A.; Santos-Victor, J.; , "Affordances, development
and imitation," Development and Learning, 2007. ICDL 2007. IEEE 6th International Conference
on , vol., no., pp.270-275, 11-13 July 2007

[12] Winograd, Terry. 1971. Procedures as a representation for data in a computer program for
understanding natural language. Technical report AI TR-17, MIT Artificial Intelligence Laboratory
[13] P. H. Winston, Learning Structural Descriptions from Examples. In P. H. Winston
(Ed.), The Psychology of Computer Vision. New York: McGraw-Hill, 1975. pp. 157-209
[14] John Slaney, Sylvie Thiebaux, Blocks World revisited, Artificial Intelligence, Volume 125,
Issues 1-2, January 2001, Pages 119-153
[15] Stoytchev, A., "Behavior-Grounded Representation of Tool Affordances," In Proceedings of
IEEE International Conference on Robotics and Automation (ICRA), pp. 3071-3076, Barcelona,
Spain, April 18-22, 2005

 21

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005
[17] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993
[18] Pool, David L. and Alan K. Mackworth. Artificial Intelligence: Foundations of
Computational Agents. New York: Cambridge University Press, 2010. Print.

