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Abstract 
This paper describes an approach to teach a robot the support affordance of a platform.  This is 
an important concept for robots to learn and one that humans gain knowledge of at an early 
age. For this goal, a robot performed a sequence of exploratory behaviors focusing on the edge 
of a platform.  Four of these behaviors included pushing an object past the boundary of a 
platform edge.  From these behaviors, the robot’s arm was tracked along with the object it was 
pushing.  Using this tracking, it became possible to find the point at which the robot’s arm 
disassociated from the object it was pushing.  Machine learning algorithms were then used to 
classify objects as supported or not supported based on this point of disassociation.  Results 
are drawn from this classification and the concept of self-detection is explored as another 
avenue for this research. 
 
 
Introduction 
Support is a fundamental concept that mankind relies on to complete a variety of rudimentary 
tasks, such as judging how and where to place objects on a platform. In most cases, humans 
can solve this task with minimal effort because they’ve learned the fundamental concepts of 
support at a young age.  At six and half months, an age where most children are not even 
capable of crawling on their bellies, infants have already developed a sense of whether or not 
an object should fall when it is placed on the edge of a platform [1].  Though this basic concept 
is understood by the simplest of human minds, it escapes the “minds” of complex 
machines.  Modern robots possess sophisticated hardware, but their lack of sophisticated 
software prevents them from autonomously learning the notion of support.   
 
This research works towards teaching a robot to solve support problems by having it build its 
own infantile intuition of support.  The robot generates this intuition by exploring its 
surroundings, a methodology borrowed from developmental psychology.  This field provides 
evidence that children learn using self-generated rules to build models of their environment 
[2].  Validation or violation of these rules will change a child’s exploratory behaviors, and lead to 
new rules for an improved understanding of the world [3].  By having the robot push an object 
around an edge, it can develop an expectation of where the object is supported.  Repeated trials 
with a variety of objects and edges have developed these expectations and given the robot a 
prediction of support. 
 
An understanding of support is important for any intelligent being, whether it is a human or a 
machine.  It can keep towers upright, determine if a potentially dangerous object will fall over, 
describe if an unattended object will remain where it was last seen, and even identify if an object 
can support an intelligent being.  In the following sections of this paper we will describe more 
applications of this project, look at related work in the fields of artificial intelligence and 
developmental psychology, and further explain the approach taken to solve this problem. 
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Proposed Applications  
A robot with the ability to explore an object and determine whether or not it can support another 
object can then use this knowledge to begin exploring the support of a tower of objects.  To 
keep the tower upright, each piece needs to be supported not only by the object directly below 
it, but also every other object in the tower.  For each new object, the robot would develop new 
boundaries of support to predict where to place the next object.  In this manner, the robot could 
also develop an intuition of what orientations would produce a stable configuration. 
 
There are a large variety of common tasks that involve the notion of support, including placing 
objects on tables, carrying objects, and walking.  Preprogramming a robot to do every one of 
these tasks is infeasible, as the program would have to take into account all the tasks, all the 
possible objects the robot would interact with during the tasks and every environment that the 
task could be performed in.  Preprogramming a robot to do some of the tasks in a specific 
environment with a collection of objects is also undesirable, as it limits the usability of the 
robot.  In order to perform each one of these common human tasks, a robot needs the ability to 
learn the relevant support affordances for each problem. 
 
Related Work 
For this research, a platform is considered an object capable of supporting another object.  As 
infants, humans learn about platforms from watching their parents place things on tables, 
counters, and desks.  As they age, infants are presented with toys and are allowed to explore 
placing these toys in a variety of places.  During this process we learn to avoid placing things on 
the edge of a support platform.  This is an important idea to understand as it helps infants avoid 
crawling off a cliff such as a staircase.  In studies conducted by Walk and Gibson, infants were 
presented with a visual cliff, an apparatus that looks like a cliff’s edge but is actually a 
traversable platform.  In these experiments, most children were able to detect and avoid the 
visual cliff [4].  However, in some further studies around 66% of infants would cross to the other 
side of the transparent platform [5].  
 
Some animals don’t have the same issues in detecting and avoiding the “visual cliff”.  Gibson 
conducted studies with the young of many species to determine if visual cliff avoidance is 
innately present or if it is learned [6].  The study found that animals determine the presence of a 
visual cliff by gravitating toward the shallow side of a visual cliff apparatus, showing an innate 
ability to detect depth.  In fact, 100% of goats tested within a few hours of their birth avoided the 
visual cliff altogether.  The differences between the goats and human trials suggested that 
humans are not born with an ability to detect depth; instead they have to learn the meaning of it 
through locomotor experience [5].  In order to gain this experience, infants use models of 
vicarious learning and then apply it towards their own experiential play with toys.  Through this 
interaction they learn which objects can and cannot support something as well as what parts of 
the object will provide support. 
 
Exploration is a concept that is fundamental to human learning.  By examining the surrounding 
world, an infant begins to develop assumptions about both object and self-support.  At a certain 
age, infants begin to discover the point at which they can support themselves [7].  However, 
before supporting themselves, infants begin to develop some ideas about object support [1].  
Young children explore the surface of a table to determine how far a block can be pushed until it 
falls.  This is a type of balance test that children generate to build a model of rules about 
surfaces.  When a toy block falls off of the table it changes the child’s beliefs about that surface.  
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This leads the child to change their exploratory behaviors [2].   While pushing a block towards 
the edge of a platform, a child constantly creates new rules for that platform that are based on 
the changes that occur during their interactions.   
 
These rules that children create and redefine begin to develop their support affordances for 
objects and surfaces.  Affordances are relationships between one thing and another, and in 
particular they are what one thing can provide another [9].  E. Gibson expanded on this idea and 
linked exploratory actions to learning affordances [10].  The children described above are 
beginning to develop their knowledge basis of support through exploration and this is the same 
method the robot used in this project to develop it’s own affordances.  
 
Affordances for robotics have been explored before in various applications.  The understanding 
of the relationship between objects, actions, and reactions has been used to perform “task 
interpretation and planning capabilities” and perform simple imitation games [11].  Also, a 
robotic vehicle at the Middle East Technical University has used affordances to distinguish 
between objects that can be moved by the vehicle and those that cannot.  The only objects 
avoided are those that are considered non-traversable, thus a more intelligent obstacle 
avoidance model is created through the use of affordances [8].  Support is a novel application 
for robotic affordances and this is the first paper to explore this application. 
 
Problems associated with support, however, have been explored many times before.  In one 
such case known as Blocks World Planning, AI researches attempt to minimize the number of 
steps necessary to rearrange a stack of blocks [12][13][14].  There are many solutions to this 
problem, but in all of the proposed solutions one important detail is left out.  Not one of these 
papers explains how robots will perform the stacking action itself. 
 
In order for a robot to determine that an object is capable of being supported, it has to learn 
what part of a platform can offer support.  This paper explores affordances as a novel approach 
to this support problem.  In a study dealing with the robot being capable of detecting itself, it has 
been shown that with an efferent-afferent delay system it is possible for a robot to determine 
that an object in its field of view is part of self, as long as it follows the same movement patterns.  
While moving an object, the robot can determine that the object is a part of self [15]. If the object 
is no longer moving in tandem with the robot, it can then be classified as not part of self.  Using 
techniques that allow the robot to record where it lost control of the object, our project has 
created a model for predicting regions of support.  
 
Experimental Setup 
Robot Platform 
The robotic platform in the Developmental Robotics Lab at Iowa State University was used for 
this research.  It consists of two Barrett Whole Arm Manipulators and two different Barrett 
Hands.  One hand is equipped with tactile pressure sensors and the other is capable of 
vibrotactile sensory feedback with an external sensor.  The robot is also equipped with two 
Logitech QuickCam Pro 4000 webcams for vision and two Audio-Technica U853AW cardioids 
microphones for auditory input.  For this particular research, a Zcam 3D camera was used in 
order to gain the perception of depth.  Because a change in depth is a defining characteristic of 
a platform, this camera adds an import sensing modality to this platform. 
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Data Collection 
For these experiments, data was collected for 390 trials and was processed offline.  The 
modalities of vision, proprioception, and tactition were recorded with the following parameters.  
The color vision used the native webcam resolution of 640x480 pixels and with a lowered frame 
rate of 10 fps.  The Zcam’s images were recorded in 320x240 pixel grayscale at roughly 21 
FPS.  Proprioceptive data was sampled directly from the Barrett WAM’s motor controller at a 
rate of 500 Hz.  Tactile data was acquired at a rate of 10 Hz. 
 
Objects 
The objects used in this project have been constructed from pieces of wood and are composed 
of three distinct shapes: a circle, a square and a triangle. These objects were chosen because 
they present variation in shape while still maintaining a manageable data set.  Unlike many 
household objects, these constructed blocks have a definite form and a uniform material 
density.  While this may appear as oversimplification, these objects are not unlike various 
children’s toys, including building blocks and shape sorters. 
 
In order to track these objects easily, they were colored bright green.  Such coloring made these 
objects easily separable from the surrounding area.   Because the focus of the project was 
centered on platform edge exploration, this was deemed to be an acceptable modification of the 
objects.   
 

Constructed Platform 
Initially, the proposed experiments required the construction of an independent platform.  
However, this quickly proved to be infeasible due to the limitations of the robot’s end-effector 
space.  Additionally, a substantial slope and platform length was necessary in order to track the 
objects in vision.  Therefore, it was decided that an additional platform would not be constructed 
and that a different setup would be created instead.   
 
The modified setup consisted of a standard office table and a removable wooden board.  The 
board was hinged so that it could be adjusted to fit a variety of configurations.  Furthermore, the 
board chosen was pre-finished with a low coefficient of friction.  Such a surface proved to be 
ideal for tracking sliding objects.  Its ease of adjustment also made it extremely versatile through 
which a variety of experiments could be performed. 
 
In total, the removable board was used in three different configurations and completely removed 
for the remaining two configurations.  Each configuration gave the robot a different perception of 
the platform itself.  In configurations where the platform ramp was completely removed, the 
robot was essentially exploring a cliff-like environment.  This sensation was explored by the 
robot’s fingertip and using an object.  Both explorations are discussed in the methodology 
section. 
 

Figure 1: Objects used for Experiment 
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In configurations where the board was attached to the table, the robot explored three unique 
edge properties.  In the first position, the platform was extended horizontally and the robot 
pushed objects onto it.  Because the objects did not separate from the hand, this gave the robot 
an expectation that it could control the object it was pushing.  The expectation was 
subsequently violated when the board was put in an inclined position.  In this position, the ramp 
had an approximate slope of -1 and formed an interior angle with the table of approximately 135 
degrees.  In this position, objects did separate from the hand and thus violated the robot’s 
expectation that it had complete control of an object.  
 
The final configuration of the board was unique in that the edge was perceived vertically.  
Clamped vertically to the table, the platform served as a bounding wall for the platform.  With 
this type of edge, objects can be pushed to the limits of the supporting platform but cannot be 
pushed past those limits.  The intent of this configuration was to explore and determine the 
edges of the platform using the joint 
torque values of the robot’s arm. 
 
 
Basic Manipulation Strategy 
In each trial of the data set, the robot 
moved its hand horizontally across the 
table until it reached a predetermined 
stop position or encountered a torque 
limit.  The data set included ten trials for 
each object, encountering each surface, 
in three different starting positions along 
the edge of the table, creating 360 trials 
for the object training.  Likewise, the 
robot performed an additional 30 trials 
where it used only its fingertip to explore 
the edge of a platform.  In the following 
section, these behaviors are explained 
in greater detail. 
 
Methodology 
In this project, the edge of a platform 
was explored through several different 
manipulation techniques and sensory 
modalities.  The boundaries of a 
platform can occur in several different forms.  For instance, the edge of a platform could be a 
vertical drop off, a slanted incline, a vertical wall, or unchanging in height.  For that reason, 
these exploration behaviors were created in order to explore these different properties of 
platform edges.  These behaviors are detailed in the following section. 
 
 
 
 
 
 
 
 

Figure 2: Four orientations of the platform and ramp.  From the top 
left, no ramp, horizontal ramp, slanted ramp, and upright ramp. 
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Exploratory Sliding with Self 
This behavior allowed the robot to determine the location of the edge through embodied 
exploration.  In order to accomplish this task, the robot performed a sliding motion in which its 
finger maintained contact with the table.  This slide moved from one of three initial starting 
locations to a corresponding destination point.  The destination point in each trial was located 
beyond the boundaries of the platform.  Therefore, it was anticipated that the vibrotactile sensor 
data could be used to detect the edge of the platform.  For this sliding behavior, ten trials were 
collected for each set of terminal coordinates.  In total, thirty trials were collected for this 
behavior. 
 
 
Exploratory Sliding with Objects 
As previously discussed, humans understand the 
affordances of an edge through learning with the 
aid of objects.  In a similar manner, the robot was 
programmed to use objects in order to explore the 
test platform’s edge.  For the first set of 
experiments, the platform ramp was oriented 
horizontally and served as an extension of the 
platform itself.  The reasoning for this was that the 
robot would begin to build an assumption that 
objects are under its control during a pushing 
behavior. With this orientation, the robot explored 
the entire width of the ramp by using three beginning and ending positions that covered the 
entire board.   
 
For the second experiment, the platform ramp was setup to form an incline against the table.  
With this configuration, the robot pushed objects towards the table’s edge and onto the ramp.  
Once on the ramp, the object began to disassociate from the hand as it’s speed increased.  
Such a behavior is intended to mimic a person knocking objects off of a table or platform.  Once 
again, the entire board was explored using the same terminal positions tested in the previously 
described ramp configuration.  Modalities of depth and vision were captured for both of these 
experiments in addition to proprioceptive and tactile data.  Each object was pushed for ten trials 
at each position in order to generate a significant number of trials to build a learning model. 
 
The third experimental setup required the board to be oriented vertically.  Instead of falling past 
the limits of the platform, the objects’ movements 
were instead constrained by the edge.  Thus the joint 
torques became the primary modality of interest for 
this behavior.  For the trials, the arm was given an 
initial starting position and a goal position.  In order to 
press against the upright ramp, the goal position 
given was approximately three inches past the edge 
of the table.  Therefore, the goal was impossible to 
meet but allowed for the arm to press firmly against 
the upright board.  As objects were pushed against 
the upright ramp, they met resistance until a joint 
torque limit was met.  Once met, the trial ended and 
the arm no longer exerted force on the board. 
 

Figure 3:  Robot finger with vibrotactile sensor 
exploring the table edge. 

Figure 4:  Platorm with slanted ramp 
configuration. 
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The fourth experimental setup did not use the platform ramp and instead performed 
experiments which an object falling to the ground.  Similar to the previous three procedures, the 
robot’s arm pushed objects from an origin position to a goal position.  Since the goal position 
was set past the edge of the platform, the hand continued to move while the objects fell to the 
floor.  The behavior used terminal points at locations where the removable ramp had been 
placed.  Therefore, this pushing behavior is identical to the previous pushing behavior with the 
exception of the platform ramp being removed. 
 
 
Processing and Analyzing the Collected Data 
The project’s goal of discovering various properties and affordances of a platform edge 
necessitated the use of object tracking.  As previously stated, the three objects used in these 
experiments were colored before data collection began in order to track them using computer 
vision software.   
 
As stated in the project proposal, the OpenCV computer vision library was used as a basis for 
developing a color tracker.  Although OpenCV does not have a standard color tracker, it 
provides a strong foundation on which to build a custom color tracker.  For this project, the color 
tracked objects were distinct from the surrounding environment.  Therefore, the color tracker 
was tuned to recognize specific RGB values as follows. 
 
The first stage of the color tracker separates the image into three RGB channel images.  Each 
channel image was then filtered to show pixels within a specific RGB range.  As these pixels 
were filtered, they were set to the maximum intensity value if they were found within a given 
range.  With each color channel containing only pixels within a specific range, the three 
channels could be merged back into a single image.  The newly combined image was 
constructed from pixels present at a location in all three RGB channels.  Therefore, only objects 
within a specific color range appear in the final recombined image.   
 
With this filtered image, OpenCV has built in functions to detect contours in an image.  Since the 
filtered, recombined image contained only the object of interest, this function needed only to 
detect a single, adequately sized contour.  With this contour detected, a rectangular bounding 
box was drawn over the resulting contour and superimposed onto the original image for visual 
verification.  In this manner it was possible to track both the robot’s gold colored cuff and the 
associated object that it was pushing. 
 
 

 
Tracking Self-Exploration  
In order to detect the edge of the platform using only 
the fingertip, both vision and vibrotactile sensing data 
were analyzed.  Because the robot’s finger 
experienced a jolt as it fell off of the platform, the 
accelerometer data values could be analyzed for rapid 
changes.  When viewing a scatter plot of the 
accelerometer data over time, this rapid change is 
values was quite apparent.  A sample scatter plot of 
this data is shown below as an illustration of this 
behavior.  
 

Figure 5:  Color tracking of robot arm and 
cylinder object. 
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Once it became apparent that the vibrotactile sensor gave a strong indication of the edge, the 
readings from the vibrotactile sensor were analyzed to find points where the x,y,z coordinate 
values substantially deviated from their normal values.  Once these values were detected, that 
particular timestamp was recorded for future mapping back to visual space.  In order to map the 
observed vibrotactile events back into visual space, the arm was visually tracked.  Therefore, 
the cuff of the arm was tracked and its coordinates were recorded for each time step. 
 

 
 
To show the effective of vibrotactile changes visually, a point cloud was generated from the 
processed vibrotactile data.  Points from the point cloud were generated using the following 
method.  If the accelerometer values substantially deviated from their normal values, a point 
was generated and placed at the location of the robot’s wrist for that time.  The point cloud 
below shows how the robot consistently experienced sharp changes in its vibrotactile sense 
when arriving at the edge of the platform.  One will notice; however, that the points are shifted 
away from the platform.  This occurs because the points represent the location of the wrist at 
that time and not the finger experiencing the vibrotactile event.  While tracking the finger would 
have been a preferable alternative, this research aimed to maintain consistency when tracking 
the arm.  Because the wrist was tracked (and not the finger) for all other behaviors, it was 
decided that the wrist would be tracked for this behavior as well. 
 
 
 
Tracking the Object  
Once visually tracked, the objects’ and arm’s movements needed to be numerically extracted in 
order to perform an analysis of their behavior.  Since bounding boxes were created for the 
tracked object and the arm, it was possible to simply track the center of each bounding box as it 
changed position over time.  Therefore, files of the object and hand coordinates for a given trial 
were created.  In each coordinate file, the object’s position in visual space and the hand’s 
position in visual space were recorded.  With this information, it became possible to determine 
each object’s speed for a given frame.  Using this speed, a decision could be made whether the 
hand and object were moving at differing rates.  Subsequently, it could be inferred that differing 
speeds indicate a loss of control over an object. 
 

Figure 7:  Scatterplot showing vibrotactile measurements over time 
(for a particular trial).  Note the large value change where the edge 
occurs. 

Figure 6:  Point cloud of vibrotactile edge detection.  The 
points indicate the location of the robot's wrist when the 
edge was detected.  There are 30 points in this image but 
they are clustered tightly together. 
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With the assumption that differing speeds indicate a loss of control over the object, it became 
necessary to visualize the results of this implication.  For that reason, point clouds were 
generated to show the first occurrence of disassociation between the object and robot’s arm.  
Points were placed at the threshold where the object moved faster than the hand pushing it.  
These points mapped to visual space cluster around the edge at each of the three pushing 
trajectories.  The figures below show this mapping. 
 
Similar to the slanted ramp setup, the object and hand were tracked visually when the platform 
ramp was oriented horizontally.  After this tracking, the object and hand coordinates were 
extracted and processed to look for a disassociation.  Predictably, no disassociation was found 
because the object never moved faster than the hand in these trials.  Still, this data was used for 
classification of supported object positions 

 
  
Detecting the Edge of a Constrained Platform 
While vision was the modality of interest for the horizontal plane and slanted ramp 
configurations, it was not of great interest to detect the edge in this particular configuration.  
Instead, the modality of proprioception was used to detect the point where the platform ended 
and the upright board began.  To use proprioception, it was necessary process the joint torques 

to find instances where they 
exceeded their standard values.  
When viewing the proprioceptive 
data as a scatter plot over time, it is 
obvious that certain joints 
experience a sharp torque increase 
when the bounding board is met.  A 
plot of proprioceptive data over time 
is shown to the left. 
 
 
 
After tracking the joint values over 
time, it became necessary to map 
them to visual space in order to 

Figure 8:  Point clouds for horizontal and sloped configurations.  Note that points are generated when the object moves 
faster than the hand.  Because this only occurs for the sloped configuration, points do not occur in the horizontal 
configuration. 

Figure 9:  Chart showing the joint torques when pressing against the 
upright ramp.  Note that joint 2 is particularly affected. 
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verify the accuracy of this detection method.  In order to accomplish that task, a series of steps 
needed to take place.  First, OpenCV was employed to visually track the objects as they were 
pushed against the board.  Therefore, the joint and hand positions were recorded for each time 
step in a trial.  With these coordinates, it became possible to associate the location of the object 
with a particular timestamp.  Since the joint tracker determined the time at which torque 
thresholds were exceeded, it was possible to determine the location of the pushed object at the 
time where the joint torque threshold was exceeded.  Given this information, a point cloud was 
generated that showed the center of a pushed objected when a joint threshold was exceeded.  
An image of the created point cloud is shown below. 

 
 
Detecting the Edge of a Cliff 
Although an attempt was made to track the 
object falling off of the platform, it soon 
proved to be a difficult problem.  The object 
could be tracked as long as it remained on 
the table but after it was pushed over the 
edge, it fell to the floor and was no longer in 
visual space.  This was an anticipated 
problem from this project’s inception and was 
the motivating reason behind constructing the 
platform ramp.  Therefore, this portion of the 
dataset is being retained for future work. 
 
Processing Depth 
The change of height is a key property of a 
platform’s edge.  Therefore, the Zcam 3D 

camera was used in order to detect this change in height.  Although the Zcam captures the 
depth in a scene, this depth image still requires processing in order to be used.  For this project, 
OpenCV was again used to process the images.  Although several methods of processing the 
image were considered, it was ultimately decided that all of the pixel intensities could simply be 
summed to find overall depth changes in the image.   
 
For each trial, only the first frame of depth data was analyzed to find a change in depth.  At the 
recording of the first frame, the arm, object, table, and platform ramp were all in approximately 
the same positions regardless of trial.  Therefore, the only changes in the image when varying 
the platform were in the intensity values of the platform itself.  For that reason, the method of 
pixel summation was implemented as a simple means of detecting depth changes within an 
image. 
  
 
 
 
 
 
 
 
 
 

Figure 10: Point cloud generated from the moment where 
joint torques meet predefined thresholds. 

Figure 11:  Side by side comparison of horizontal and slanted ramp depth images.  The horizontal 
platform ramp is shown on the left and the sloped ramp is shown on the right. 
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Results of Experiments 
Initial results for this project showed the effectiveness of the edge detection through the various 
modalities.  These results, shown as point clouds in the preceding section, show the 
effectiveness of the platform sensing visually, but not quantifiably.  Therefore, the question 
became whether or not a robot could determine if an object was still under its control given a 
coordinate position and a depth image.  While similar to the initial idea proposed or this 
research, the experiment changed as follows. 
 
In the proposal, it was stated that a regression would be fit for the object coordinate positions in 
order to determine the distance each could be pushed.  Basically, for a given object and table 
position, the classifier would determine the distance that an object could be pushed before 
reaching the edge.  This prediction would be output as a numerical value.  However, the slow 
frame rate of the data captured made this an infeasible task.  Whenever the object neared the 
platform’s edge, there were only around three frames in the video stream that captured this 
moment.  Therefore, the experiment changed to include other platform variants and a modified 
classifier. 
 
With this change in analysis, the learning method becomes the following.  Given a depth d ∈ D 
where D = Σ depth pixel intensities, t ∈ T where T = object type, and a hand position h ∈ H 
where H = {horizontal center of hand, vertical center of hand}, classify c ∈ C where C = {0 – 
Supported, or 1  - Unsupported}.  In this way the classifier is predicting the notion of support 
based on the training data. 
 
The training data for this classifier was selected from a subset of the entire dataset.  Trials 
where the platform ramp was oriented horizontally and trials where the ramp was slanted were 
used for the training and test data.  Using these two configurations, it was possible to use depth 
as an input to the classifier.  The horizontal ramp orientation appeared with a greater intensity 
compared to the slanted ramp.  Therefore, all of the trials containing the horizontal platform 
ramp contained significantly different depth values than the slanted ramp. 
 
After collecting the data for this project, it became clear that learning the affordances of a 
platform’s edge was more difficult to quantify that initially assumed.  For this first stage in the 
overall goal, the focus of this project centered around two platform ramp positions.  The 
positions where the platform was oriented horizontally and placed slanted against the platform 
became the dataset from which results were drawn.  However, there is proposed future work 
that uses all collected data for analysis. 
 
 
Algorithms 
As the name implies, the J48 tree builds a decision tree to determine if the robot has control of 
the object or not.  Beginning at the top of the tree, each node splits the data into subsets based 
on one attribute.  Selecting the attribute for the each node is based on the information gained, 
with larger gains placed higher on the tree.  The bottom nodes of the tree are the decision 
values, which in our case are “control” or no control”.  In this project Weka was used to create 
the information statistic for each attribute and to generate the decision tree used for 
classification [16][17]. 
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The k nearest algorithm uses the four 
attributes to map the data set into R4.  Each 
point in this space also has the classification 
of controlled or uncontrolled.  This method 
differs from the other two because instead 
of creating a predictive model, it stores all of 
the data from the learned set and uses it to 
find a classification for new data points.  
The control of a new point is found based 
on the known points surrounding it.  The k 
closest known points vote for the 
classification of the new point, with the 
majority votes determining control.  For this 
experiment, k=5 was selected [18].  
  
The naïve Bayesian classifier assumes that 
all the attributes are conditionally 
independent of each other for a given 
classification of “control” or “no control”.  
Using the training dataset, this algorithm 
generates probability distributions for each 
classification P(C), and the conditional 
probabilities of the attributes given a 
classification P(Xi|C), where Xi represents 
hand position, object type and depth 
measurement.  The probability distribution 
of control given a novel data point is given 
as 
 

! ! ! = ℎ,! = !,! = !) = 
 
! ! = ℎ ! ∗ ! ! = ! ! ∗ ! ! = ! ! ∗ ! !
! ! = ℎ ! ∗ ! ! = ! ! ∗ ! ! = ! ! ∗ ! !!

 

 
  
Where the hand position, object type and 
depth value are given by H, T, and D 
respectively and the current data point has 
values of h, t, and d.  This algorithm will use 
the probability distribution of the training 
data set to predict control for the points in 
the testing data set [18]. 
  
Each of these algorithms was tested using a 
five fold cross-validation method.  This 
method first splits the training data into five 
different subsets.  Then four of these 
subsets are used as training data, with the 
fifth used as testing data.  This process is 
then repeated four more times until every 
subset has been used as testing data.  

Perform trials 
with slanted 

board 

Perform trials 
with flat board 

RGB Video Z- Cam Depth 

Color Track Sum Intensity 
Values 

Compare 
Speeds 

      Classification Algorithms 

Hand Position 
Object 
Position 

Depth 
Measurement 

Object Type 

Control/  
No Control 

Prediction of control 
given a Hand Position, 
an Object Type, and a 
Depth Measurement 

Figure 12:  Diagram showing the sequence of the project. 
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When this process is finished, the results from each of the five iterations can are averaged or 
combined to create a single model for each algorithm. 
 
 
Results of Classification 
The data used for training and testing was comprised of 3 objects pushed for 10 trials in two 
board configurations for a total of 3x10x2 = 60 trials.  However, each trial lasted a varying 
amount of time and thus yielded 9772 specific instances for testing and training data.  For these 
9772 data points, 5475 were instances of supported objects and the remaining 4297 were 
unsupported objects.  Thus, classifying by chance P(C) = 0.56.   
 
Each classification algorithm classified significantly better than chance.  The results are 
summarized in the table below.  Overall, the decision tree, J48, slightly outperforms the k-NN in 
correct classification percentage.  Upon examination of the generated decision tree structure, it 
was found that the tree first looked at the hand’s x coordinate in the frame.  Below a certain x-
coordinate, all y-coordinates for the first two objects are irrelevant.  Only the triangle needs 
additional information before a classification can be made.  Depth begins to factor into the 
decision as the object begins to near the edge of the platform.  Given the few number of 
attributes to classify over and the strong structure of the data, it is fitting that the decision tree 
has a strong performance.  On this dataset, this classifier has a correct classification rate of 
98.75%. 
 
Like the J48 decision tree, the k-NN with k=5 also shows strong performance in classification.  
With each of the attributes providing meaningful information, the k-NN predictably performs 
quite well.   As seen in the visual point clouds, the objects clustered around the edge of the 
table.  Since k-NN looks for similar data points in order to perform a classification, this dataset is 
classified correctly at a rate of 97.88%. 
 
For this particular dataset, the Naïve Bayes classifier displayed the worst performance among 
the three algorithms.  Because the Naïve Bayes approach considers all inputs separately, this 
dataset became more difficult to classify.  Depth and the x coordinate of the hand are both 
needed to provide a correct classification.  By considering these attributes separately, the 
correct classification rate falls short of the levels achieved by the other two classifiers.  
Ultimately, this classifier still performs significantly better than chance with a correct 
classification rate of 85.24%.  
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An Alternative Control Classification 
 
As a parallel to the discussion above, self-detection 
was explored as an alternative way to classify 
control.  Using this method, the object is controlled 
only if the robot considers it a part of its own body.  
The tracking data from the RGB video was 
processed offline and input into a program to 
process the entropy measurement of the hand and 
an associated object.  Screenshots of this program 
are found on the right and show the progression of 
the program’s execution.  At the top of each image 
are two statistical measurements, where each frame 
considers the information from all previous frames to 
find the newest value on the far right. The p-value is 
a measure of the probability that the current 
observation would be made, assuming that the 
object is a part of the robot’s hand.  A larger p value 
indicates greater confidence that the two objects are 
dependent, and is a good indication of where the 
robot has control of the object.   
 
The other measurement is the mutual information of 
the object and the hand, and indicates the 
dependence of the two variables on each other.  This 
measurement sometimes provides good information 
on whether the hand is in control of the object, but it 
is a less reliable indicator than the p value.  For 
instance, this value drops with the p value as the 
object begins sliding down the ramp, but rises again 
towards the end of the video when both the object 
and the hand come to rest.  
 
If the data used to calculate these statistical 
measurements is altered to include only the previous 
three frames instead of every previous frame, they 
produce a much clearer result.  The two graphs 
below are taken from one trial and show a clear drop 
off confidence and mutual dependence at around 1.3 
seconds.  This self-detection classification of control 
has produced data consistent with the previous 
classification and is deemed an acceptable 
alternative.  
  
 
 
 
 
 
 

Figure 13:  Visualizations of entropy calculation 
over time. 
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Future Work 
 
In this project, data was collected for four different 
orientations of the table and the board, but different 
modalities required different types of measurements.  
This differing data made it difficult to create a standard 
attribute list that could be used to classify the data 
across all orientations.  Currently only the two most 
similar orientations are used by the machine learning 
algorithms to predict the control of new data, though 
future work will include all the gathered data. 
  
As shown before, the training data currently provides 
the machine learning algorithm with the hand position, 
a depth value from the first frame of the trial, and the 
object type from each frame of the video.  Each frame 
is also labeled as having “control” or “no control” based 
on whether the object is moving faster than the hand.  
This classification works well for the flat plane and the 
ramp, though it needs to be reconsidered for the other 
two cases.  For instance, in the case of the edge of the 
table, the object leaves the field of view, making 
calculating velocity impossible.  Also, the current 
attributes would not be able to distinguish the case of 
no board from the case of the vertical board because 
the depth value is not much different between these 
two cases.  A new classification that accounted for 

Figure 14:  Graph of entropy change over time.  Note the cliff when the object separates from the hand.  This drop 
indicates a loss in confidence that the arm has control of the object. 

Control 

Control 

Control 

Control 

No Control 

No Control 

Flat Board 

Slanted Board 

No Board 

Vertical Board 

Figure 15:  Illustration of regions of control. 
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these problems was identified, but only after finalizing the current results, making it impossible 
to incorporate within this project’s planned timeline. 
  
The new classification is as follows.  First, in any frame that the block could not be seen; the 
block velocity is given a null value.  Second, in addition to the attributes already given to the 
machine learning algorithm, the new model will provide the maximum sum of the absolute 
values of the joint torques for each trial.  Like the depth measurement, each trial will have one 
reading of this torque value and it will be shared among all of the frames in the trial.  Finally, the 
requirement for control is changed slightly and will show loss of control if the object’s velocity is 
faster than the hand’s velocity or if the object velocity is a null value.  Naturally, if the robot can’t 
sense the object, it can’t have control over the object. 
  
The expected result is pictured on the previous page, illustrating the regions of control and no 
control for a given object. The first two are the orientations considered in this project, where the 
robot has control in every position on the flat board, but loses control on the slanted board at a 
certain point. 
  
By adding a null object velocity as a condition for no control, the orientation of no board can be 
added to the data set and should produce control boundaries similar to the slanted board.  The 
robot will maintain control of the object as it moves across the table, but loses control when the 
object falls off the table and out of view.  Here the object has a null velocity and the robot loses 
control of the object. 
  
The fourth picture illustrates the final case, where the board is placed vertically against the 
table.  Here the robot will have control of the object everywhere that it can move, but will be 
physically constrained by the board.  The black region of the diagram is a region where control 
cannot be determined because the region is never explored by the robot.  
  
With this model, each frame of the RGB video will have a hand position, an object type, a depth 
value for the trial, a torque value for the trial, and a control classification.  This data can be given 
to the same machine learning algorithms used for this project to find a more robust prediction of 
control that incorporates all of the data gathered in this project. 
 
 
Conclusions 
The purpose of this project was to explore the properties and affordances of a platform edge.  In 
order to accomplish this task, the robot performed two experimental behaviors using three 
different setup configurations.  By using the pushing behavior and running tests with a horizontal 
and slanted platform, machine learning classifiers were able to determine whether an object 
was supported on a platform with a correct classification rate significantly better than chance.  
Classification was accomplished using the Naïve Bayes, k-NN, and J48 (C4.5) classifiers.   
 
While the focus of this research was directed toward support classification, the aspect of self-
detection also arose as a finding.  As the robot moved an object with its hand along a platform, it 
built the assumption that the object was part of itself.  However, this hypothesis was rejected 
once the object separated from the hand at the edge of the platform.  Thus the robot could 
begin to differentiate the object from its own hand using measurements of entropy.   
 
Future work for this research has been outlined and should focus on analyzing the remainder of 
the dataset.  The robot can truly begin to build its own models of a platform edge once it has 
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explored the edge using a variety of modalities and learning techniques.  Various 
implementations for this future work have been investigated but the most promising avenue 
appears in the preceding section of this report.   
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