
1

Learning Manipulation of a Flashlight
Tanner Borglum, Nicolas Cabeen, and Todd Wegter

TA – Jivko Sinapov

CPR E 585X – Developmental Robotics

Final Project Report

April 21, 2011

This research was funded in part by the Iowa State University Foundation.

2

Table of Contents

 0 – Summary 3

 1 - Project Overview 3

 1.1 - Motivation 3

 1.2 – Audience & Applications 4

 1.3 - Related Work 4

 1.4 - Individual Skills 6

 1.5 - Responsibilities 6

 1.6 - Timeline 7

 2 - Approach 8

 2.1 - Equipment 8

 2.2 - Method & Algorithms 10

 2.3 - Pseudo Code 14

 3 - Evaluation 18

 3.1 - Goals 18

 3.2 - Definition of Success 18

 4 - Results 18

 4.1 - Data Analysis 18

 4.2 - Test Results 19

 4.3 - Error Calculation 20

 4.4 - Success 22

 4.5 - Future Work 23

 5 - References 24

3

0 - Summary

This paper presents the research done by Todd

Wegter, Nicolas Cabeen, and Tanner Borglum in

Professor Stoychev’s Developmental Robotics

Lab in the Spring of 2011. It is commonplace for

a human to use a flashlight to enhance his or

her vision when ambient light conditions are

not sufficient for sight. This paper proposes a

method by which a robot can learn to use a

flashlight through a developmental approach.

First, the robot explores it field of vision with

the flashlight. Then, the robot can infer where

to move its arm to light up a desired area from

these past experiences.

1 - Project Overview

Robots are slowly becoming more and more

capable of completing everyday human tasks.

The field of developmental robotics is working

to continue this advancement by creating

robots that are capable of learning. For

example, Vladimir Sukhoy and Alexander

Stoytchev [1] created a program by which their

upper-torso humanoid robot was able to learn

to push doorbell buttons based on audio, visual,

and proprioceptive feedback. We set out to

create a program by which a robot can learn to

properly wield a flashlight, shining its beam on a

desired location. This could make it possible for

a robot to push a doorbell button using Sukhoy

and Stoytchev’s algorithms in the dark.

1.1 - Motivation

The inspiration for our project came from a

poorly designed conference room in Howe Hall

at Iowa State University. The light switch is

located a good distance from the main

entrance, above a counter set into the wall. This

makes it nearly impossible to find in the dark

when you first enter the room. One day, when

meeting in this conference room with Professor

Stoytchev, one of our group members quickly

got out his keychain flashlight to illuminate the

light switch for Professor Stoytchev, who was

struggling to turn the lights on in the dark. After

turning the lights on, Professor Stoytchev

wheeled around, exclaiming how it would be

cool to program the robot to learn to do that,

and our project was born.

So why use a flashlight? Why not use infrared

cameras or laser 3D imaging. Flashlights pose

many advantages, one of which is cost. A

standard flashlight costs much less than

infrared cameras and 3D laser scanners.

Another advantage of using a flashlight to

illuminate a robot’s environment is simplicity.

Instead of having to switch to a whole other

system for seeing in the dark, a robot using a

flashlight needs only pick one up, turn it on, and

point it in the desired direction. This would also

allow robots to assist humans. We humans lack

the capability to see in the dark, so if we require

Figure 1 - Illuminated Switch

4

the assistance of a robot in the dark, it should

be able to light the way for us.

Using flashlights to allow robots to see in the

dark will help to better standardize robotic

visual systems. If robots are built using different

methods for seeing in the dark, it will be very

hard for them to communicate visual

information. By developing robots that use

flashlight technology to illuminate their

environment, not only will they be able to

better communicate with and help humans, but

they will be able to more effectively

communicate with other robots.

1.2 - Audience and Applications

Flashlight use has many practical applications to

a wide range of audiences. One day, robots will

be “living” with us as assistants and caretakers,

especially for the elderly. In case of a power

outage or a nighttime emergency, these robots

should be able to help their owners in any

manner they should require. In one of these

situations, an individual will need a flashlight’s

beam to see, so being able to learn to use a

flashlight will be a key skill for caretaker robots.

These robots must be able to learn to use

flashlights because they will undoubtedly

encounter many different kinds of flashlights.

With each kind being slightly different, a hard

coded “how to use a flashlight” program would

certainly fail, so robots will need to be able to

adapt to different types of flashlights.

Robots built to work in dark environments will

also greatly benefit from flashlight

manipulation. For example, a robot working in a

coal mine will need to be able to see, and it

should also be able to help its human workers

to see to. If the robot were trying to point out

that it had discovered a crack in the bracing of

the mine, it would be hard to point that out to a

human without being able to illuminate it with a

flashlight beam.

Requiring robots to use visible light to see

would also make them more sensitive to visible

light. If a robot were able to see in the dark

using infrared cameras, it would never be able

to understand why a human can’t see in the

dark. We experience blindness in dark

situations quite often, but a robot with the

correct sensors may never have this problem.

By forcing robots to have limitations similar to

ours, it becomes easier for robots to relate to

humans and vice versa.

Flashlight manipulation will also carry over to

anything else that creates a light beam, like a

laser pointer. Tour guide robots and teaching

robots would be able to point out items of

interest to humans by using a laser pointer

much easier than by any other method. For

Professor Stoytchev’s sake, we will omit the

obvious extension to light sabers…

1.3 - Related Work

This section details previous works in robotics

and artificial intelligence that are related to our

project. Our proposal is unique in that there

have been no close attempts at what we are

Figure 2 - Join the Darkside...

5

aiming to do. However, there was a robot

created at MIT that was used to light the area

that a user was working in and respond to voice

commands [6]. This is similar in the respect

that a light was being used to target an area of

interest, but their methods incorporated

technologies that caused the lamp to follow the

movements of a hand that a had a special glove

so it could be detected. The problem of

learning how to move was not solved in this

research.

Another idea that was related to ours involved

searching a space with a light. Lavalle's paper

[7] described how to search a polygon for a

moving target in the dark. The modeled

method works in a situation where there is one

searcher looking for one target. This is related

because it involves the use of light to

manipulate the environment, but once again

this does not address the problem of learning

how to move the light.

Self-detection has an important role in

developmental robotics for a couple of reasons.

One is that self-detection is related to the level

of intelligence of the creatures it is manifested

in. Humans are able to self-detect, some

primates are, and even some other animal

species can. However, most animals are not

able to self-detect and/or recognize themselves

in a mirror. Additionally, if a robot is able to

learn about itself, how it looks, and how it can

move, it should be able to adapt to situations

where it may be upgraded, damaged, or

otherwise changed that would cause a robot

that does not have a knowledge of itself could

fail after such a change [3].

Self-detection is the process through which

something can differentiate “self” between

other. “Self” is defined through action and

outcome pairs in combination with a probability

estimate based on the regularity and

consistency of these pairs [5]. The approach

taken by Alexander Stoytchev [3] first solves the

problem of self-detection in robots by

estimating the efferent-afferent delay. To find

this delay, movement was corresponded with

the time after a motor command was issued.

Once this delay is found, differentiating “self”

from other becomes easier because “self” will

only move a certain amount of time after

commands are issued.

Tool use is a form of self-detection and has a

very important part in our proposal. Stoytchev

has defined four things necessarily involved

with robotic tool use: a robot, something in the

environment labeled as a tool, an object to

which the tool is applied, and a tool task [4].

One of the steps taken by Stoytchev was

babbling with the tool grasped. The effects of

the tool moving through the environment were

associated with motor commands and relating

the motor commands to the changes in the

environment determined how the tool could be

used to best manipulate the environment. Our

project is similar in that it is a form of tool use,

but it differs in that the robot uses tools to alter

its perception rather than its ability to physically

interact with the world. The ability to alter

perception is something that humans use on a

regular basis (one of the most intelligent

animals) that many other animals can't. Some

specific examples include using microscopes to

see small objects, telescopes to see far away

objects, and night vision goggles to see in the

dark. Being able to augment perception would

seem to increase the potential for

understanding something better or even just to

interact with the world better (such as when a

human wears glasses).

6

1.4 - Individual Skills

Tanner Borglum

Tanner is a first year student at Iowa

State University, sophomore by

classification. He has programming

experience in C and Java, and has

learned to program in OpenCV for

processing the visual sensory

information we collected in our project.

His knowledge of the C programming

language was also helpful as the robot

is programmed in C.

Nicolas Cabeen

Nicolas is also a first year student at

Iowa State University, sophomore by

classification. He has programming

experience in C, Java and Visual Basic,

and learned MATLAB for finding the

error in the results collected in our

project and creating contour maps of

the percent error over the XY visual

field to visualize the results. His

knowledge of the C programming

language was also helpful as the robot

is programmed in C.

Todd Wegter

Todd is also a first year student at Iowa

State University, sophomore by

classification. He has programming

experience in C and Java, and learned to

use UNIX based operating systems,

specifically the terminal, as the robot is

run out of a UNIX terminal. His

knowledge of the C programming

language was also helpful as the robot

is programmed in C.

Jivko Sinapov

Jivko is a graduate student at Iowa State

University who works in Professor

Stoytchev’s developmental robotics lab.

This means he has lots of experience

with the robot. While he was not

technically a member of our group, he

was the TA for the class and helped us

operate the robot and met with us in

the lab for testing. He has years of

programming experience, and his help

has been key to the success of our

project.

1.5 - Responsibilities

For this project, we divided the responsibilities

as equally as possible among the group

members. Nicolas was responsible for managing

the group’s grant money and for devising the

algorithm which calculates where the robot

should move its arm to illuminate a goal point

from the three closest known data points.

Tanner was responsible for researching related

work and for analyzing the collected data. Todd

was responsible for creating the programs

which used the processed data and algorithms

to move the robot’s arm to illuminate a point.

He also handled setting up times to meet in the

lab, collect data, and meet with Alex and Jivko.

7

1.6 – Timeline

Figure 3 - Timeline

8

2 - Approach

2.1 - Equipment

Robot

The flashlight exploration experiments will be

performed with the upper-torso humanoid

robot illustrated in Figure 3. Two Barrett Whole

Arm Manipulators (WAMs) are used for the

robot's arms. Each WAM has seven degrees of

freedom. In addition to that, each arm is

equipped with a three-finger Barrett BH8-262

Hand as an end effector. Each hand has seven

degrees of freedom (two per finger and one

that controls the spread of fingers 1 and 2).

Because fingers one and two can rotate by 180-

degrees, the robot can perform a variety of

grasps. In other words, even though the robot

has only three fingers it can more than

compensate for that because it has not one but

two opposable thumbs.

Flashlights and Batteries

We used three different flashlights for

collecting the data in our experiment: 1 Maglite

flashlight with a standard incandescent lamp

which used 3 C batteries, 1 LED flashlight which

used 3 C batteries, and 1 multicolored LED

flashlight which used 3 AAA batteries. The

Maglite had a focusable beam, which we set to

have the tightest possible radius on our testing

surface for one set of trials. We also set it to be

unfocused for another trial set. The

Figure 4 - Robot with Flashlight - Simulation

Figure 5 - Flashlights

Figure 6 - Red and Green Flashlights

Figure 7 - Grasping the Flashlight

9

multicolored LED flashlight featured white, red,

and green LED’s. This allowed us to collect data

for white, red, and green light beams. In our

experiment, the flashlight is turned on for the

robot, as turning the flashlight on and off is

beyond the scope of this project. It also

assumed to be grasped as that is also beyond

the scope of the project.

Experimental Setup

For our experiment, we pointed the robots

head down at a table and had the robot shine

the flashlight at the table. The robot then

observed and recorded the light patterns

produced on the table in conjunction with its

arm’s joint positions. We chose this position

due to time constrains and others working in

the lab. Since other groups were conducting

research at the same time as us, we needed to

use the robot as it was so as to not interfere.

This setup should not augment or reduce the

performance of our method in any way.

Software

The robot is controlled using C++ on a UNIX

platform. OpenCV, an open-source library, was

used for image processing. Matlab was used to

handle post-experiment data analysis. A

simulation/demo program was also created.

Both the robot program and the simulation take

in processed image data with corresponding

joint positions, determine a random point to

shine the light, and calculate the joint positions

necessary to shine the light there.

Figure 8 - Experimental Setup

10

2.2 – Method & Algorithms

Figure 5 - Algorithms and Data Flow

11

Figure 9 outlines the general process we used to

collect and analyze data and test our program.

Initial data was collected using a program

developed by Jivko to randomly babble the arm

to 20 different randomly generated points. The

points were generated from the 3D plane

whose corners were defined by the robot’s arm

in setup while holding the flashlight. First a

background set was collected by letting the

robot babble its arm with the flashlight off. We

then turned the flashlight on, and the robot

recorded visual and proprioceptive data. We

then repeated the babbling process with two

additional flashlights, one of which had three

different colors of lights. Each flashlight was

tested ten times, resulting in a vast collection of

visual and proprioceptive data.

Our experiment is assuming that the flashlight is

grasped and turned on as these parameters are

outside the scope of this project.

The background used for image differencing

was created by adding all of the images in the

background set and equally weighting them.

This background was used in the processing of

all flashlights. The background changed during

some sets so the average background was

affected, but did not cause the algorithms to

fail.

In order to process the images, we first took the

absolute value of the difference between the

current image and the average background,

which worked in most cases except where the

entire frame was lit by the flashlight. We then

used Gaussian and blur smoothing on the

captured images to reduce noise. The next step

was to remove the background. To further

reduce error, we did a binary threshold (in

color) on the image, shown in the middle image

of figure 10. After this step, we converted the

image to grayscale and used a Canny edge

detection algorithm on it. We

produced contours from the binary output of

this algorithm and decided to use the largest

contour to capture the motion of the light. To

determine how the light moved, we estimated

the largest contour with an ellipse (which is

represented as the closest fitting rectangle in

OpenCV) and used the center of the ellipse as

the center of light/motion in each frame. As

you can see below, this algorithm worked even

when most of the background was different

Figure 6 – Image Processing for White Light

12

from the average background and if the input

was irregular, as seen in figures 11 and 12.

Matching the proprioceptive data with the right

image was a relatively short process. The first

step was to take the difference between the

time stamp of the first image and the time

stamp of the first piece of recorded

proprioceptive data. This was used as an

estimated delay. The next step was to search

through the data file and find the time stamp

that was closest to the current picture time

stamp plus the delay. The proprioceptive time

stamp with the least difference was used as the

proprioceptive data for the current image. This

proprioceptive data was then output to a text

file and was followed by the center of light for

the current image.

Two different files were created from the vision

and proprioceptive data for each flashlight, a

data.txt and a test.txt. The data file contained

80% of the trials and was used as the robot’s

“memory”. The test file contained the

remaining 20% of the trials and was used to

verify the joint positions calculated from the

data file using data cross-validation.

Figure 11 - Image Processing for Green Light

Figure 12 - Image Processing for Red Light

13

Three different methods were used to find the

joint positions for the arm in the test program.

The first method was a guess and check. The

robot went through data file and randomly

selected an XY point in its field of vision that

corresponded to known joint positions. This

was then compared to the goal XY point,

generated randomly from the test file. One goal

for our algorithm was to be more accurate than

this random process.

The second method was a simple closest point

method. The robot selected the XY point from

the data file that was closest to the randomly

generated goal point from the test file and

moved to the corresponding joint positions.

The third method was a “3 Nearest Neighbors”

calculation. A goal XY point was selected from

the test file. Then, the three closest XY points to

the goal point were selected. The centroid of

the triangle formed by these three points was

calculated. The joint positions for the center of

the triangle were then calculated by averaging

the three values for each joint, and the robot

moved its arm to this location under the

assumption that these joint positions would

illuminate the center of the triangle. This XY

point was named the target point and the

calculated joint positions were named the

target joint positions.

These methods utilized data cross-validation to

determine if our method was accurate. After

the program calculated the target XY point and

joint positions, MatLab was used to find the

average percent error for each joint, the

average percent error for the whole arm

position, the average percent error for each

method for each flashlight, and finally the

average percent error for each method.

From the percent error data, we were able to

create maps of the XY visual field showing the

relative differences between percent errors

across the visual plane. This also allows us to

easily compare different methods and

flashlights. These maps are included in Section

4.3.

14

2.3 - Pseudo Code

Visual Analysis

AVERAGEBACKGROUNDS()

for i ← 0 to backgrounds.size() - 1 do

averageBackground ← averageBackground * (numImages - 1) /

numImages + backgrounds[i] / numImages

end for

return averageBackground

FINDCENTEROFLIGHT(currentImage)

absDifference(currentImage – averageBackground)

blurSmooth(currentImage)

gaussianSmooth(currentImage)

threshold(currentImage)

convert2Grayscale(currentImage)

getCannyEdges(currentImage)

contourList[] ← findContours(currentImage)

maxIndex ← 0

for i ← 0 to contourList.size() – 1 do

 if area(contourList[i]) > area(contourList[maxIndex])

 maxIndex ← i

 end if

end for

return contourList[maxIndex].center

MATCHPROPRIOCEPTIVEDATA(image, proprioceptionData)

decreasingDifference ← true

positionTimestamp ← proprioceptionData.getNextTimestamp()

jointAngles[] ← proprioceptionData.getNextJointAngles(numJoints)

difference ← positionTimestamp - image.timestamp - DELAY

while decreasingDifference == true do

positionTimestamp ← proprioceptionData.getNextTimestamp()

if (positionTimestamp – image.timestamp - DELAY) < difference do

difference ← positionTimestamp - image.timestamp – DELAY

jointAngles ← getNextJointAngles(numJoints)

else

 //don't use these joint angles

 getNextJointAngles(numJoints)

 decreasingDifference ← false

 end if

end while

data[numJoints + 2]

15

data[] ← jointAngles

data[numJoints] ← image.center.x

data[numJoints + 1] ← image.center.y

return data[]

Testing

GUESSANDCHECKMETHOD()

//select random target point from test file

for i ← 0 to random position in test file do

test ← xy point and joint positions

end for

//select chosen point at random

for i ← 0 to random position in data file do

data ← xy point and joint positions

end for

fprintf(trial number, data, test)

printf(trial number, data)

return

CLOSESTPOINTMETHOD(){

//select random target point from test file

for i ← 0 to random position in test file do

test ← xy point and joint positions

end for

//select closest point from data

for i ← 0 to length of data file do

if distance < previous_minimum_distance do

data ← xy point and joint positions

 previous_minimum_distance ← distance

end if

end for

fprintf(trial number, data, test)

printf(trial number, data)

return

16

INTERPOLATIONMETHOD()

//select random target point from test file

for i ← 0 to random position in test file do

test ← xy point and joint positions

end for

//select 3 closest points from data and “interpolates” goal

for i ← 0 to 3 do

min_distance ← 800 //corner to corner of field of view

for j ← 0 to length of dataset do

 if j == 0 do

closest[j] ← xy point and joint positions

closest_distances[j] ← distance

min_distance ← distance

else

if distance < min_distance && distance >

closest_distances[j-1] do

closest[j] ← xy point and joint positions

closest_distances[j] ← distance

min_distance ← distance

end if

 end if

 end for

end for

//interpolate target (finds WAM angles and target point)

for i ← 0 to 7 do

target.joints[i] ← (closest[0].joints[i] + closest[1].joints[i] +

closest[2].joints[i]) / 3.0

end for

target.x ← (closest[0].x + closest[1].x + closest[2].x) / 3.0

target.y ← (closest[0].y + closest[1].y + closest[2].y) / 3.0

fprintf(trial number, target, test)

printf(trial number, target)

return

17

Error Calculation

GETINDIVIDUALJOINTPERCENTERROR()

for i ← 0 to nPositions do

 for j ← 0 to nJoints do

 JointPercentError[i][j] ← abs((calcPosition[i][j]-

goalPosition[i][j])/goalPosition[i][j])*100)

end for

end for

return JointPercentError[][]

GETPOSITIONPERCENTERROR()

for i ← 0 to nPositions do

 sum ← 0

 for j ← 0 to nJoints do

 sum ← sum + JointPercentError [i][j]

end for

PositionPercentError[i] ← sum/nJoints

end for

return PositionPercentError[]

GETFLASHLIGHTMETHODPERCENTERROR()

sum ← 0

for i ← 0 to nPositions do

 sum ← sum + PositionPercentError [i]

end for

FlashlightMethodPercentError ← sum/nPositions

return FlashlightMethodPercentError

GETMETHODPERCENTERROR()

sum ← 0

for i ← 0 to nFlashlights do

 sum ← sum + FlashlightMethodPercentError [i]

end for

MethodPercentError ← sum/nFlashlights

return MethodPercentError

18

3 - Evaluation

3.1 – Goals

This project’s goals are developmental in nature

and build off each other.

Goal 1) Repeat the process with

different flashlights and bulb

types.

Goal 2) Have the robot be able to shine

the light beam on a given

position.

Goal 3) Have the robot self-detect

control of the changing light in

its field of vision.

3.2 –Definition of Success

Goal 1:

Goal 3 ensures the universal

applicability of our algorithms since the

different bulbs will alter RGB values of

illuminated areas. In this stage in

particular, we will make any

modifications in the algorithms as

necessary to solve problems we will

surely encounter during the

experiments. Success will be defined as

the ability for the robot to complete

Goal 3 with different flashlights with

different bulb types.

Goal 2:

The robot will have “learned” how the

flashlight is manipulated through its

preliminary data collection. With the

gained knowledge of the relationship

between proprioceptive data and visual

data from previous experiments, the

robot will be able to adjust the joint

positions to direct the light beam to

illuminate the goal point. By considering

the location of the beam to be the

center of the light, the algorithms will

permit for a fairly large margin of error.

Goal 3:

With real-time analysis of visual and

proprioceptive data, we will develop

algorithms to relate joint positions to

visual changes caused by the moving

light beam. From this data, we should

be able to obtain consistent estimates

of the time difference between motor

commands (efferent signals) and visual

movements (afferent signals) to find

the efferent-afferent delay [3].

4 - Results

4.1 - Data Analysis

We experienced some very intriguing results

when collecting our data. We noticed that the

white LED flashlights and the Maglite showed

up on the robot’s cameras as one would expect:

Figure 7 - Maglite (Unfocused)

19

However, when the red and green beams of the

small silver LED flashlight were used, the images

detected by the robot’s camera were very

interesting:

As you can see, the green LEDs produced a vivid

electric blue illumination against the

background. The red LEDs produced an even

more interesting effect. The middle of the

illuminated area is not detected by the robot’s

camera. We’re not sure why, but since a ring of

illumination is still detected, our algorithm for

processing the data still works.

4.2 - Test Results

We tested our method using data cross-

validation. This allowed us to test our methods

in a non-real time environment using the data

from a single session in the lab. This allowed us

to compare calculated joint positions to actual

joint positions and find the percent error

Figure 8 – Maglite (Focused)

Figure 9 - Silver LED Flashlight (White LEDs)

Figure 10 - Yellow Flashlight (White LEDs)

Figure 15 - Silver LED Flashlight (White LEDs)

Figure 17 - Silver LED Flashlight (Green LEDs)

Figure 18 - Silver LED Flashlight (Red LEDs)

20

between the two. This gives a great

representation of how accurate the method is.

We had originally planned on testing our

method on the robot by using it to see if the

target joint positions illuminated the target xy

point. This would confirm proper calculation of

the joint positions. We then wanted to see how

close the target xy point was to the randomly

generated goal point. However, since we were

not able to develop a real time approach in the

time allotted, we tested the method via data

cross-validation.

4.3 - Error Calculation

A MATLAB analysis of our data showed that

both of our methods were very accurate. The

Interpolation method was the most accurate,

followed closely by Closest Point, and both

were significantly better than Guess and Check.

The average percent errors of the flashlights

(Table 1) are closely clustered, suggesting that

our OpenCV visual analysis algorithms were

able to handle the differences between the

beam types, such as focused and unfocused,

and beam color, such as red, green, and white.

With these overwhelmingly positive results, it is

evident that our methods could be extended

into real time exploration methods for robots.

Flashlight Beam Interpolation Closest Point Guess and Check Average

Silver LED White 2.111699 % 2.535617 % 4.618721 % 3.088679 %

Silver LED Green 1.743071 % 2.247754 % 4.181938 % 2.7242543 %

Silver LED Red 1.929001 % 2.218931 % 4.347955 % 2.8319623 %

Yellow LED White 1.741829 % 2.287456 % 4.297386 % 2.775557 %

MagLite Focused 2.162559 % 2.509875 % 3.738037 % 2.8034903 %

MagLite Unfocused 2.000364 % 2.295011 % 4.19247 % 2.8292817 %

Average 1.9480872 % 2.3491073 % 4.2294178 %

Table 1 – Percent Errors of Flashlights and Methods

Figure 19 - Silver LED Flashlight (White LEDs) Figure 20 - Yellow LED Flashlight (White LEDs)

The following contour maps plot the percent error of data over the XY visual plane for each flashlight. The

vertical and horizontal scales are the pixels of the field of view, and the color scale is the percent error.

One should note that not all the pixel scales are the same. This is because the random exploration was

different for each set of trials.

21

The next three contour maps plot the

percent error of data over the XY visual

plane for each algorithm used. These

figures illustrate that both the Interpolation

and Closest Point methods have

significantly lower error rates than the

guess and check method.

Figure 22 - Silver LED Flashlight (Red LEDs) Figure 11 - Silver LED Flashlight (Green LEDs)

Figure 23 - MagLite Flashlight (Focused) Figure 24 - MagLite Flashlight (Unfocused)

Figure 25 - Guess and Check

22

4.4 - Success

We successfully met two of our three goals in

this experiment. Our second goal, which was to

program the robot to move its arm to control a

flashlight, was met. While we did not get into

the lab, our data cross-verification shows that

our method produced very low deviations from

known joint positions when calculating how to

move the arm. Our “Interpolation” method had

an average 1.948% error from the known joint

positions, which was significantly better than

the “Guess and Check” method’s average

4.229% error. This means that, using our

algorithm, the arm would have been in a

position nearly identical to the positions that

were known to illuminate the goal xy point.

When you consider that a flashlight produces a

very wide beam of light, this means that the

goal xy point would certainly have been

illuminated in a real world test.

We also met our third goal, which was to create

a method robust enough to deal with different

colors and types of flashlights. Even though the

red and green flashlights created very odd

reading on the robot’s camera, we were still

able to accurately calculate the robot’s arm

movements.

Unfortunately we were not able to meet our

first goal. There are two main reasons for this.

First, we greatly miscalculated our timeline. We

were not able to get into the lab to collect our

preliminary data as early as we wanted. We

subsequently did not have enough time to

create a real time version of our method. While

this would have been an excellent addition to

our experiment, the data cross-validation is

more than sufficient to prove the idea behind

our method. We should, however, complete a

real time method in the future, as our

algorithms may prove less accurate in real time.

We also were not able to incorporate the self-

detection part of our project into the

experiment. Again, because we were not able

to get into the lab as early as we wanted, we

did not have time to incorporate this portion of

the project into the experiment.

Our timeline was simply too ambitious and

unrealistic. Considering that had to learn new

programming languages and how to use a very

complex robot, we did not give ourselves

enough to complete the project as designed. In

reality, it took us the first four weeks to develop

our algorithms and collect preliminary data. The

fifth week and half of the sixth week were spent

processing the data and finding results, and the

Figure 27 – Interpolation Figure 26 - Closest Point

23

last half of the sixth week was spent writing the

paper.

4.5 - Future Work

Short-Term Research

The first extension of this research would be to

develop a real time program to run the method

on the robot. This would allow a greater variety

of tests to be run, and self-detection could be

implemented. We hope to be able to continue

this portion of the research over the summer

through the REU program at ISU.

One of the possible tests we would like to see

done is to detect movement and move the arm

to illuminate it. This would be quite difficult, but

the results could be quite rewarding. This would

fairly easy to implement using our developed

image processing technique. A video stream

would be processed on the fly, and if a

difference was detected, the robot would move

it’s arm to illuminate the center of the

movement. This could then be expanded to

follow a continually moving target

This research could also be combined with the

button recognition and button pressing

algorithms to allow the robot to use one hand

to hold a flashlight to guide its other hand to

press doorbells in low light to no-light

conditions [1][2].

It would also be beneficial to experiment with

adapting our method to a moving field of view.

Currently, the method only works on a

stationary field of view (i.e. the head isn’t

moving). Being able to move the head and still

manipulate the flashlight accurately would be

quite challenging as an additional step would

need to be conceived to account for the

rotation of the head.

As described in Section 1.1, it is not always ideal

to have a single robot perform an operation

independently. Research could be done in

having multiple robots working together to

accomplish an objective. For example, give one

robot a flashlight to illuminate a button or

switch across the lab while another robot

handles pressing the button or switching the

switch.

Long-Term Extensions

A long-term extension for this research, with

application of future research topics discussed

above, would be the utilization of full humanoid

robots to assist police officers in chasing and

apprehending fugitives in nighttime scenarios.

These robots could also work as security guards,

a scenario where the motion detection

mentioned in the short-term research would be

quite helpful

Another similar extension would be the use of

robots for search and rescue missions. A robot

with only night vision and infrared sensors

would likely frighten the victim and increase the

likelihood of injury or death. The ability to

utilize flashlights would make the robots seem

more familiar and would likely make the victim

more comfortable and calm. We are not saying

that robots with night vision are inherently bad,

just that there are some situations in which a

flashlight would be better.

Robots will certainly be used in the household

someday, and as everyone knows, the lights in a

house are not always on. There will certainly be

times when a robot will need to be able to see

in the dark. We contended that flashlight

24

manipulation the best solution to this problem

due to cost and the relationship between

robots and humans. Equipping a robot with the

knowledge to learn to use a flashlight is much

less costly than equipping the same robot with

an infrared camera or a 3D laser scanner. Also,

a robot navigating the dark with a flashlight is

much less scary than a robot that can navigate a

dark household with no visible light.

5 - References

[1] Sukhoy, V. and Stoytchev, A., "Learning

to Detect the Functional Components of

Doorbell Buttons Using Active

Exploration and Multimodal

Correlation," In Proceedings of the 10th

IEEE International Conference on

Humanoid Robots (Humanoids),

Nashville, Tennessee, December 6-8,

pp. 572-579, 2010.

[2] V. Sukhoy, J. Sinapov, L. Wu, and A.

Stoytchev, “Learning to press doorbell

buttons,” in Proc. of ICDL, 2010, pp.

132–139, 2010.

[3] Stoytchev, A., “Self-Detection in Robots:

A Method Based on Detecting Temporal

Contingencies,” Robotica, volume 29,

pp. 1-21, 2011.

[4] Stoytchev, A., "Behavior-Grounded

Representation of Tool Affordances," In

Proceedings of IEEE International

Conference on Robotics and

Automation (ICRA), pp. 3071-3076,

Barcelona, Spain, April 18-22, 2005.

[5] Lewis, Michael, and Jeanne Gunn. Social

Cognition and the Acquisition of Self.

New York: Plenum Press, 1979.

[6] Hoffman, G. and Breazeal C.,

“Anticipatory perceptual simulation for

human-robot joint practice: Theory and

application study,” In AAAI, pp. 1357–

1362, 2008.

[7] S. LaValle, B. Simov, and G. Slutzki. “An

Algorithm for Searching a Polygonal

Region with a Flashlight,” In

Proceedings of the Sixteenth Annual

Symposium on Computational

Geometry , Hong Kong, June 12-14, pp.

260-269, 2000.

