Chapter 9: Polymor phism
L ab Exercises
Topics Lab Exercises

Polymorphism via Inheritance Another Type of Employee
Painting Shapes

Sorting & Searching Polymorphic Sorting

Searching and Sorting An Integer List
Comparing Searches Timing Searching and Sorting Algorithms
Color Choosers Coloring aMoveable Circle
Sliders Speed Control

Chapter 9: Polymorphism

171

Another Type of Employee

Thefiles Firmjava, Saff.java, SaffMember.java, Volunteer.java, Employee.java, Executive,java, and Hourly.java are from
Listings 9.1 — 9.7 in the text. The program illustrates inheritance and polymorphism. In this exercise you will add one more
employee type to the class hierarchy (see Figure 9.1 in the text). The employee will be one that is an hourly employee but
also earns a commission on sales. Hence the class, which we'll name Commission, will be derived from the Hourly class.

Write a class named Commission with the following features:

[0 It extends the Hourly class.

[0 It hastwo instance variables (in addition to those inherited): oneis the total sales the employee has made (type double)
and the second is the commission rate for the employee (the commission rate will be type double and will represent the
percent (in decimal form) commission the employee earns on sales (so .2 would mean the employee earns 20%
COmmission on sales)).

[0 The constructor takes 6 parameters: the first 5 are the same as for Hourly (name, address, phone number, social security
number, hourly pay rate) and the 6th isthe commission rate for the employee. The constructor should call the constructor
of the parent class with the first 5 parameters then use the 6th to set the commission rate.

[0 One additional method is needed: public void addSales (double total Sales) that adds the parameter to the instance
variable representing total sales.

[0 The pay method must call the pay method of the parent class to compute the pay for hours worked then add to that the
pay from commission on sales. (See the pay method in the Executive class.) The total sales should be set back to O (note:
you don't need to set the hoursWorked back to 0—why not?).

[0 ThetoString method needsto call the toString method of the parent class then add the total sales to that.

To test your class, update Staff.java as follows:

[Increase the size of the array to 8.

[0 Add two commissioned employees to the staffList—make up your own names, addresses, phone numbers and social
security numbers. Have one of the employees earn $6.25 per hour and 20% commission and the other one earn $9.75 per
hour and 15% commission.

[1 For thefirst additional employee you added, put the hours worked at 35 and the total sales $400; for the second, put the
hours at 40 and the sales at $950.

Compile and run the program. Make sure it is working properly.

//**

// Firm.java Author: Lewis/Loftus

//

// Demonstrates polymorphism via inheritance.
//**

public class Firm

{

public static void main (String[] args)

{

Staff personnel = new Staff();

personnel .payday () ;

}

172 Chapter 9: Polymorphism

//**

// Staff.java Author: Lewis/Loftus
//

// Represents the personnel staff of a particular business.

//**

public class Staff

{

StaffMember[] stafflist;

e R EnRREEEEEEE
// Sets up the list of staff members.
T R R T
public Staff ()
{
stafflList = new StaffMember [6];
stafflList[0] = new Executive ("Sam", "123 Main Line",
"555-0469", "123-45-6789", 2423.07);
stafflList [1] = new Employee ("Carla", "456 Off Line",
"555-0101" "987-65-4321", 1246.15) ;
stafflList [2] = new Employee ("Woody", "789 Off Rocker",
"555-0000", "010-20-3040", 1169.23);
stafflList [3] = new Hourly ("Diane", "678 Fifth Ave.",
"555-0690", "958-47-3625", 10.55);
stafflist[4] = new Volunteer ("Norm", "987 Suds Blvd.",
"555-8374") ;
stafflList [5] = new Volunteer ("Cliff", "321 Duds Lane",
"555-7282") ;
((Executive)staffList [0]) .awardBonus (500.00) ;
((Hourly)staffList [3]) .addHours (40) ;
}
/== oo

public void payday ()

{

double amount;

for (int count=0; count < stafflist.length; count++)

{
System.out.println (stafflList [count]) ;
amount = stafflist[count].pay(); // polymorphic
if (amount == 0.0)
System.out.println ("Thanks!");
else
System.out.println ("Paid: " + amount) ;
System.out.println ("-----------"--"“"-"-"-"-"-—"-—-~—~—~—~—~"—~—~—~—~—~—~—-
}

}
Chapter 9: Polymorphism

173

//**
// StaffMember.java Author: Lewis/Loftus

// Represents a generic staff member.
//**

abstract public class StaffMember

{

protected String name;
protected String address;
protected String phone;

public StaffMember (String eName, String eAddress, String ePhone)

{

name = eName;
address = eAddress;
phone = ePhone;

public String toString()

{

String result = "Name: " + name + "\n";
result += "Address: " + address + "\n";
result += "Phone: " + phone;

return result;

// Derived classes must define the pay method for each type of
// employee.

public abstract double pay () ;

174 Chapter 9: Polymorphism

//**

// Volunteer.java Author: Lewis/Loftus

// Represents a staff member that works as a volunteer.
//**

public class Volunteer extends StaffMember

{

public Volunteer (String eName, String eAddress, String ePhone)

{

super (eName, eAddress, ePhone) ;

// Returns a zero pay value for this volunteer.

T LT EEEEEEEERES
public double pay ()

{
}

return 0.0;

Chapter 9: Polymorphism

175

//**

// Employee.java Author: Lewis/Loftus
//

// Represents a general paid employee.
//**

public class Employee extends StaffMember

{
protected String socialSecurityNumber;
protected double payRate;

public Employee (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)
{

super (eName, eAddress, ePhone) ;

socialSecurityNumber = socSecNumber;
payRate = rate;

public String toString/()
{
String result = super.toString() ;

result += "\nSocial Security Number: " + socialSecurityNumber;

return result;

public double pay ()

{
}

return payRate;

176 Chapter 9: Polymorphism

//**

// Executive.java Author: Lewis/Loftus

// Represents an executive staff member, who can earn a bonus.
//**

public class Executive extends Employee

{

private double bonus;

public Executive (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

super (eName, eAddress, ePhone, socSecNumber, rate);

bonus = 0; // bonus has yet to be awarded

// Awards the specified bonus to this executive.

T L CLEECEEEEEEES

public void awardBonus (double execBonus)

{

bonus = execBonus;

// Computes and returns the pay for an executive, which is the
// regular employee payment plus a one-time bonus.

public double pay ()
{
double payment = super.pay () + bonus;

bonus = 0;

return payment;

Chapter 9: Polymorphism 177

//**

// Hourly.java Author: Lewis/Loftus

//

// Represents an employee that gets paid by the hour.
//**

public class Hourly extends Employee

{

private int hoursWorked;

public Hourly (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)
{

super (eName, eAddress, ePhone, socSecNumber, rate);

hoursWorked = 0;

// Adds the specified number of hours to this employee's
// accumulated hours.

public void addHours (int moreHours)

{

hoursWorked += moreHours;

public double pay()
{
double payment = payRate * hoursWorked;

hoursWorked = 0;

return payment;

public String toString/()
{
String result = super.toString() ;

result += "\nCurrent hours: " + hoursWorked;

return result;

178 Chapter 9: Polymorphism

Painting Shapes

In thislab exercise you will develop aclass hierarchy of shapes and write a program that computes the amount of paint
needed to paint different objects. The hierarchy will consist of a parent class Shape with three derived classes - Sphere,
Rectangle, and Cylinder. For the purposes of this exercise, the only attribute a shape will have is a name and the method of
interest will be one that computes the area of the shape (surface areain the case of three-dimensional shapes). Do the
following.

1. Write an abstract class Shape with the following properties:
[0 Aninstance variable shapeName of type String
[0 An abstract method area()
[0 A toString method that returns the name of the shape

2. Thefile Sphere.java contains a class for a sphere which is a descendant of Shape. A sphere hasaradius and its area
(surface areq) is given by the formula 4* Pl*radius™2. Define similar classes for arectangle and a cylinder. Both the
Rectangle class and the Cylinder class are descendants of the Shape class. A rectangle is defined by itslength and
width and its areaiis length times width. A cylinder is defined by aradius and height and its area (surface area) is
PI*radius*2* height. Define the toString method in away similar to that for the Sphere class.

3. Thefile Paint.java contains a class for atype of paint (which hasa"coverage" and a method to compute the amount
of paint needed to paint a shape). Correct the return statement in the amount method so the correct amount will be
returned. Use the fact that the amount of paint needed is the area of the shape divided by the coverage for the paint.
(NOTE: Leave the print statement - it is there for illustration purposes, so you can see the method operating on
different types of Shape objects.)

4. Thefile PaintThings.java contains a program that computes the amount of paint needed to paint various shapes. A
paint object has been instantiated. Add the following to complete the program:
[Instantiate the three shape objects: deck to be a 20 by 35 foot rectangle, bigBall to be a sphere of radius 15, and
tank to be a cylinder of radius 10 and height 30.
[0 Make the appropriate method calls to assign the correct values to the three amount variables.
[0 Runthe program and test it. Y ou should see polymorphism in action as the amount method computes the
amount of paint for various shapes.

//***
// Sphere.java
//

// Represents a sphere.
//***

public class Sphere extends Shape

private double radius; //radius in feet

J /==
// Constructor: Sets up the sphere.
e P
public Sphere (double r)

{

super ("Sphere") ;
radius = r;

Chapter 9: Polymorphism 179

return super.toString() + " of radius " + radius;

//**
// Paint.java
//
// Represents a type of paint that has a fixed area
p Yp p

// covered by a gallon. All measurements are in feet.
//**
public class Paint

private double coverage; //number of square feet per gallon

J /=

// Constructor: Sets up the paint object

J /== Do

public Paint (double c)

coverage = C;

}

e e
// Returns the amount of paint (number of gallons)
// needed to paint the shape given as the parameter.
J /= = e
public double amount (Shape s)

{

System.out.println ("Computing amount for " + s);
return 0;

180 Chapter 9: Polymorphism

//**

// PaintThings.java

//

// Computes the amount of paint needed to paint various

// things. Uses the amount method of the paint class which

// takes any Shape as a parameter.
//***

import java.text.DecimalFormat;

public class PaintThings

/ Creates some shapes and a Paint object
/ and prints the amount of paint needed
/ to paint each shape.

final double COVERAGE = 350;
Paint paint = new Paint (COVERAGE) ;

Rectangle deck;
Sphere bigBall;
Cylinder tank;

double deckAmt, ballAmt, tankAmt;
// Instantiate the three shapes to paint

// Compute the amount of paint needed for each shape

// Print the amount of paint for each.

DecimalFormat fmt = new DecimalFormat ("O0.#");
System.out.println
System.out.println
System.out.println
System.out.println

"Deck " + fmt.format (deckAmt)) ;
"Big Ball " + fmt.format (ballAmt)) ;
"Tank " + fmt.format (tankAmt)) ;

—~ o~ o~ —~

Chapter 9: Polymorphism

"\nNumber of gallons of paint needed...

181

Polymor phic Sorting

Thefile Sorting.java contains the Sorting class from Listing 9.9 in the text. This class implements both the selection sort and
the insertion sort algorithms for sorting any array of Comparable objects in ascending order. In this exercise, you will use the
Sorting class to sort several different types of objects.

1.

Thefile Numbers.javareadsin an array of integers, invokes the selection sort algorithm to sort them, and then prints
the sorted array. Save Sorting.java and Numbers.javato your directory. Numbers.java won't compile in its current
form. Study it to seeif you can figure out why.

Try to compile Numbers.java and see what the error message is. The problem involves the difference between
primitive data and objects. Change the program so it will work correctly (note: you don't need to make many
changes - the autoboxing feature of Java 1.5 will take care of most conversions from int to Integer).

Write a program Strings.java, similar to Numbers.java, that reads in an array of String objects and sorts them. Y ou
may just copy and edit Numbers.java.

Modify the insertionSort algorithm so that it sortsin descending order rather than ascending order. Change
Numbers.java and Strings.javato call insertionSort rather than selectionSort. Run both to make sure the sorting is
correct.

Thefile Salesperson.java partially defines a class that represents a sales person. Thisis very similar to the Contact
classin Listing 9.10. However, a sales person has afirst name, last name, and atotal number of sales (an int) rather
than afirst name, last name, and phone number. Complete the compareTo method in the Salesperson class. The
comparison should be based on total sales; that is, return a negative number if the executing object has total sales
less than the other object and return a positive number if the sales are greater. Use the name of the sales person to
break atie (alphabetical order).

The file WeeklySales.,java contains a driver for testing the compareTo method and the sorting (thisis similar to
Listing 9.8 in the text). Compile and run it. Make sure your compareT o method is correct. The sales staff should be
listed in order of sales from most to least with the four people having the same number of salesin reverse
alphabetical order.

OPTIONAL: Modify WeeklySales.java so the salespeople are read in rather than hardcoded in the program.

//**

//
//

Sorting.java Author: Lewis/Loftus

// Demonstrates the selection sort and insertion sort algorithms.
//**

public class Sorting

{

Sorts the specified array of objects using the selection
sort algorithm.

public static void selectionSort (Comparable[] 1list)

{

182

int min;
Comparable temp;

for (int index = 0; index < list.length-1; index++)
min index;
for (int scan = index+1l; scan < list.length; scan++)

(
if (list[scan] .compareTo(list [min]) < 0)

Chapter 9: Polymorphism

min = scan;

// Swap the values

temp = list[min];

list [min] = list [index];
list [index] = temp;

// Sorts the specified array of objects using the insertion
// sort algorithm.

public static void insertionSort (Comparable[] list)

{

for (int index = 1; index < list.length; index++)

{

Comparable key = list[index];
int position = index;

// Shift larger values to the right
while (position > 0 && key.compareTo(list [position-1]) < 0)

{

list [position] = list[position-11];
position--;

}

list [position] = key;

khkkkhkkkhkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhkhkkhhkhkkhhkhkkhhkk,kkhkkk,kkhkkk,kkkk,kkk,kkx*x*

Numbers. java

// Demonstrates selectionSort on an array of integers.
// khkkkhkhkhkhkkhkkhkhkhhhhkhkhkhkkhkhkhhhdhhkhkhhkhkhhhdhdhkhkhkhhkhhhdhdhk kikhkk*k),*,k,**%

import java.util.Scanner;

public class Numbers

// Reads in an array of integers, sorts them,
// then prints them in sorted order.

A

public static void main (String[] args)

int [] intList;
int size;

Scanner scan = new Scanner (System.in) ;
System.out.print ("\nHow many integers do you want to sort? ");
size = scan.nextInt() ;
intList = new int[size];
System.out.println ("\nEnter the numbers...");
for (int 1 = 0; i < size; i++)
intList [i] = scan.nextInt () ;

Sorting.selectionSort (intList) ;

Chapter 9: Polymorphism 183

~=g NN
NN

184

System.out.println ("\nYour numbers in sorted order...");
for (int 1 = 0; i < size; i++)

System.out.print (intList [i] + " ") ;
System.out.println () ;

kkkkhkkkhkhkkhkhkkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhhhkhkhhkhkkhkhkhkkhkhkk khkk kk***x

Salesperson.java

Represents a sales person who has a first name, last
name, and total number of sales.

khkkkhkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhhkhkkhkhkkhhkhkhhkhkkhhkhkkhkhkk,kkhkhkk,kkhkhkk,khkk,kkk,*k*x

ublic class Salesperson implements Comparable

private String firstName, lastName;
private int totalSales;

f /===
// Constructor: Sets up the sales person object with
// the given data.

/=== e

public Salesperson (String first, String last, int sales)
firstName = first;

lastName = last;
totalSales = sales;

return lastName + ", " + firstName + ": \t" + totalSales;

/

// Returns true if the sales people have
// the same name.
/
1%
{

return (lastName.equals(((Salesperson)other).getLastName()) &&
firstName.equals (((Salesperson)other) .getFirstName())) ;

}

f /=== e
// Order is based on total sales with the name

// (last, then first) breaking a tie.

/=== == e
public int compareTo (Object other)

{

int result;

return result;

——

Chapter 9: Polymorphism

return firstName;

Last name accessor.

blic String getLastName ()

[T

return lastName;

Total sales accessor.

ublic int getSales()

NN

return totalSales;

WeeklySales.java

Sorts the sales staff in descending order by sales.

NN

ublic class WeeklySales

~=g NN

public static void main(String[] args)

Salesperson[] salesStaff = new Salesperson[10];

salesStaff [0] = new Salesperson("Jane", "Jones",
salesStaff [1] = new Salesperson("Daffy", "Duck",
salesStaff [2] = new Salesperson("James", "Jones",
salesStaff [3] = new Salesperson("Dick", "Walter",
salesStaff [4] = new Salesperson("Don", "Trump", 1570);
salesStaff [5] = new Salesperson("Jane", "Black",
salesStaff[6] = new Salesperson("Harry", "Taylor",
salesStaff [7] = new Salesperson("Andy", "Adams",
salesStaff [8] = new Salesperson("Jim", "Doe", 2850) ;
salesStaff [9] = new Salesperson("Walt", "Smith",

Sorting.insertionSort (salesStaff) ;

System.out.println ("\nRanking of Sales for the Week\n");

for (Salesperson s : salesStaff)
System.out.println (s);

Chapter 9: Polymorphism

khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkkkhkkk,kk,kkkkkk*k*x*

khkkkhkkhkhkkhkhhhkhhkhkhkhhhkhhhhhhkhkhkkhkhhkhkhhhkhhhkhhkhhhkhhkkkhhkkkhkkkhkk kk***

185

Searching and Sorting In An Integer List

File IntegerList.java contains a Java class representing alist of integers. The following public methods are provided:

I

O

IntegerList(int size)—creates anew list of size elements. Elements are initialized to 0.

void randomize()—fills the list with random integers between 1 and 100, inclusive.

void print()—prints the array elements and indices

int search(int target)—looks for value target in the list using a linear (also called sequential) search algorithm. Returns
the index where it first appearsif it isfound, -1 otherwise.

void selectionSort()—sorts the lists into ascending order using the selection sort algorithm.

File IntegerListTest.java contains a Java program that provides menu-driven testing for the IntegerList class. Copy both files
to your directory, and compile and run IntegerListTest to see how it works. For example, create alist, print it, and search for
an element in the list. Does it return the correct index? Now ook for an element that is not in the list. Now sort the list and
print it to verify that it isin sorted order.

Modify the code in these files as follows:

1.

//
//
//
//
//
//
//

Add a method void replaceFirst(int oldVal, int newVal) to the IntegerList class that replaces the first occurrence of
oldval inthelist with newVal. If oldVal does not appear in the list, it should do nothing (but it's not an error). If oldVal
appears multiple times, only the first occurrence should be replaced. Note that you already have a method to find oldval
inthelist; useit!

Add an option to the menu in IntegerListTest to test your new method.

Add a method void replaceAll(int oldVal, int newVal) to the IntegerList class that replaces all occurrences of oldval in
thelist with newVal. If oldVa does not appear in thelist, it should do nothing (but it's not an error). Does it still make
sense to use the search method like you did for replaceFirst, or should you do your own searching here? Think about
this.

Add an option to the menu in IntegerListTest to test your new method.

Add a method void sortDecreasing() to the IntegerList class that sorts the list into decreasing (instead of increasing)
order. Use the selection sort algorithm, but modify it to sort the other way. Be sure you change the variable names so
they make sensel

Add an option to the menu in IntegerListTest to test your new method.

Add amethod int binarySearchD (int target) to the IntegerList class that uses a binary search to find the target assuming

thelist is sorted in decreasing order. Y our algorithm will be a modification of the binary search algorithmin listing
9.12 of the text.

Add an option to the menu in IntegerListTest to test your new method. In testing, make sure your method works on a list
sorted in descending order then see what the method does if the list is not sorted (it shouldn't be able to find some things
that areinthelist).

khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhhkhkkhhkhkkhhkdhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkkhhkhkkhhkk,kkhkkk,kk,kkk,kkk,k*x*

IntegerList.java

Define an IntegerList class with methods to create, £fill,
sort, and search in a list of integers.

khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhhkkkhkkk,kk,kkk,kkk,k*x*

import java.util.Scanner;

186

Chapter 9: Polymorphism

public class IntegerList

{

int[] list; //values in the list

public IntegerList (int size)

{

list = new int[size];

//£1i1l array with integers between 1 and 100, inclusive

public void randomize ()

{
for (int i=0; i<list.length; i++)
list[i] = (int) (Math.random() * 100) + 1;

public void print ()

{
for (int i=0; i<list.length; i++)
System.out.println(i + ":\t" + list[i]l);

//return the index of the first occurrence of target in the list.
//return -1 if target does not appear in the list

public int search(int target)

{

int location = -1;
for (int i=0; i<list.length && location == -1; i++)
if (list[i] == target)

location = 1i;
return location;

public void selectionSort ()
{
int minIndex;
for (int i=0; i < list.length-1; i++)
{
//find smallest element in list starting at location i
minIndex = i;
for (int j = i+1l; j < list.length; j++)
if (list[j] < list[minIndex])
minIndex = j;

//swap list[i] with smallest element
int temp = list[i];

Chapter 9: Polymorphism 187

list[i] = list [minIndex];
list [minIndex] = temp;

}

// khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhhkhkkhhkhkkhkhkhkkhkhkdkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkhhkk,kkhkk,kk,kkk,kkk,k*x*

// IntegerListTest.java
//

// Provide a menu-driven tester for the IntegerList class.

//

// khkkkhkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkkhkhkkdkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhhkhkkhhkkkhkk,kkhkkk,kkk,k*x*

import java.util.Scanner;

public class IntegerListTest

{

static IntegerList list = new IntegerList (10);
static Scanner scan = new Scanner (System.in) ;

// Create a list, then repeatedly print the menu and do what the
// user asks until they quit

public static void main(String[] args)
{
printMenu () ;
int choice = scan.nextInt () ;
while (choice != 0)
{
dispatch (choice) ;
printMenu () ;
choice = scan.nextInt();

public static void dispatch(int choice)

{
int loc;
switch (choice)

{

case O0:
System.out.println ("Bye!") ;
break;
case 1:
System.out.println ("How big should the list be?");
int size = scan.nextInt() ;
list = new IntegerList (size);
list.randomize () ;
break;
case 2:
list.selectionSort () ;
break;
case 3:
System.out.print ("Enter the value to look for: ");
loc = list.search(scan.nextInt()) ;

188 Chapter 9: Polymorphism

if

else

(loc != -1)
System.out.println ("Found at location " + loc);

System.out.println ("Not in list");

break;

case 4:
list.print () ;

break;
default:
System.out.println("Sorry, invalid choice");

{

System.
System.
System.
System.
System.
System.
System.
System.

out

out.
out.
out.
out.
out.
out.
.print ("\nEnter your choice: ");

out

.println("\n Menu ")

(
println(" ====")
println("0: Quit");
println("l: Create a new list (** do this first!! **x)");
println("2: Sort the list using selection sort");
println("3: Find an element in the list using linear search");
println("4: Print the list");

Chapter 9: Polymorphism

189

Timing Sear ching and Sorting Algorithms

Chapter 9 has a brief discussion comparing sorting alorithms (page 506) and searching algorithms (page 513). In this exercise
you will use an IntegerList class (in the file IntegerList.java) and a driver (in the file IntegerListTest.java) to examine the
runtimes of the searching and sorting algorithms. The IntegerListTest class has several options for creating alist of agiven
size, filling the list with random integers or with already sorted integers, and searching or sorting the list. (NOTE: Y ou may
have used a version of these classesin the last 1ah.) Save these files to your directory and run IntegerListTest afew timesto
explore the options.

The runtimes of the sorting and searching algorithms can be examined using the Java method System.currentTimeMillis(),
which returns the current system time in milliseconds. (Note that it returns along, not an int.) You will have to import
java.util.* to have access to this method. In IntegerListTest, just get the system time immediately before and immediately
after you perform any of the searches or sorts. Then subtract the first from the second, and you have the time required for the
operation in milliseconds. WARNING: Be sure you are not including any input or output in your timed operations; these are
very expensive and will swamp your algorithm times!

Add appropriate callsto System.currentTimeMillis() to your program, run it and fill out the tables below. Note that you will
use much larger arrays for the search algorithms than for the sort algorithms; do you see why? Also note that the first couple
of times you run a method you might get longer runtimes as it |oads the code for that method. Ignore these times and use the
"steady-state” times you get on subsequent runs. On a separate sheet, explain the times you see in terms of the known
complexities of the algorithms. Remember that the most interesting thing is not the absol ute time required by the algorithms,
but how the time changes as the size of the input increases (doubles here).

Array Size Selection Sort (random Selection Sort Insertion Sort Selection Sort
array) (sorted array) (random array) (sorted array)
10,000
20,000
40,000
80,000
Array Size Linear Search (unsuccessful) Binary Search (unsuccessful)
100,000
200,000
400,000
800,000
1,600,000

190 Chapter 9: Polymorphism

kkhkhkkkhkkhhkkhkkhhkhkkhkdhhkhkkhhhkkhdhhhhhhkhdhhhkhdhhkhdhhhdhhkhdhhhdhkhddhhkdddhdhhkrd,kkk,*x*%x
FILE: IntegerList.java

//
//
//
// Purpose: Define an IntegerList class with methods to create, £ill,
// sort, and search in a list of integers.

//

//

kkhkhkkkhkkhhkkhkkhhkhkkhhhkhkkhhhkkhdhhhhhhkhdhhhkkhdhhkhdhhkhdhhkhdhhkkhdhkhdhhkddhhdd,hkrd,kk**x*%x
import java.util.Scanner;
public class IntegerlList

int[] list; //values in the 1list

/= = oo
// Constructor -- takes an integer and creates a list of that
// size. All elements default to value O.

= =

public IntegerList (int size)

list = new int [size];

R DT EEEE
// randomize -- fills the array with randomly generated integers
// between 1 and 100, inclusive
/= = e oo
public void randomize ()
int max = list.length;
for (int i=0; i<list.length; i++)
list[i] = (int) (Math.random() * max) + 1;
}
e
/ fillSorted -- fills the array with sorted values
= mm e e e

for (int i=0; i<list.length; i++)
list[i] = 1 + 2;

String s = "";
for (int i=0; i<list.length; i++)

s 4= 1 + ":\t" + list[i] + "\n";
return s;

——

e PR PR R RS PP
// linearSearch -- takes a target value and returns the index
// of the first occurrence of target in the list. Returns -1
// if target does not appear in the list
e L EEEECEEEEEEEREE
public int linearSearch(int target)
{

int location = -1;

for (int i=0; i<list.length && location == -1; i++)

if (list[i] == target)

Chapter 9: Polymorphism 191

location =
return location;

——

for (int i=0;

int minIndex =
swap (list,

FILE:

/
/
/
/ Purpose:
/
/
m

i N N N N

i<list.length-1;

ij;

i+4+4)
minIndex (list, 1) ;

i, minIndex) ;

khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhhkhkkhhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhhkk,kk,kkk,kk,kkk,kk*k*x*

IntegerListTest.java
Provide a menu-driven tester for the IntegerList class.

khkkkhkkkhkhkkhkhhkhkhhhkhkhhhkhhhhhhkhkkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhdkkkhkk kkk **x*

port java.util.Scanner;

public class IntegerListTest

static IntegerList list =
static Scanner scan

D

// main -- creates an initial 1list,

new IntegerList (10) ;
= new Scanner (System.in) ;

then repeatedly prints

// the menu and does what the user asks until they quit

printMenu() ;
int choice =
while (choice

public static void main(Stringl]

args)

scan.nextInt () ;

0)

dispatch (choice) ;
printMenu () ;

choice = scan.nextInt () ;
}

}
J /= = e e
// dispatch -- takes a choice and does what needs doing
/== = el
public static void dispatch(int choice)
{

int loc;

int val;

long timel,
switch (choice)

case O0O:

System.

break;
case 1:

System.

break;
case 2:

System.

list =
System

192

.out

time2;

out.println("Bye!") ;

out.println(list) ;

out.println ("How big should the list be?");
new IntegerList (scan.nextInt());
.println("List is created.");

Chapter 9: Polymorphism

break;
case 3:
list.randomize () ;
System.out.println("List is filled with random elements.");
break;
case 4:
list.fillSorted() ;
System.out.println("List is filled with sorted elements.");

break;
case 5:
System.out.print ("Enter the value to look for: ");
val = scan.nextInt () ;
loc = list.linearSearch(val) ;
if (loc != -1)
System.out.println ("Found at location " + loc);
else
System.out.println ("Not in list");
break;
case 6:
System.out.print ("Enter the value to look for: ");
val = scan.nextInt () ;
loc = list.binarySearch(val) ;
if (loc != -1)
System.out.println ("Found at location " + loc);
else
System.out.println ("Not in list");
break;
case 7:

list.sortIncreasing() ;
System.out.println("List has been sorted.");
break;

case 8:
list.sortDecreasing() ;
System.out.println("List has been sorted.");
break;

default:
System.out.println("Sorry, invalid choice");

System.out.println
System.out.println
System.out.println
System.out.println
System.out.println
System.out.println

Quit") ;
Print the 1list");
Create a new list of a given size");
Fill the list with random ints in range 1-length");
System.out.println("4: Fill the list with already sorted elements");
System.out.println("5: Use linear search to find an element");
System.out.println("6: Use binary search to find an element " +

"(list must be sorted in increasing order)");

~ o~~~ o~~~ —~

System.out.println("7: Use selection sort to sort the list into " +
" increasing order") ;
System.out.println("8: Use insertion sort to sort the list into " +

" decreasing order") ;
System.out .print ("\nEnter your choice: ");

Chapter 9: Polymorphism 193

Coloring aMovable Circle

File MoveCirclejava contains a program that uses CirclePanel.java to draw a circle and | et the user moveit by pressing
buttons. Save these files to your directory and compile and run MoveCircle to see how it works. Then study the code, noting
the following:

[CirclePanel uses aBorderLayout so that the buttons can go on the bottom. But the buttons are not added directly to the
south of the main panel—if they were they would all be on top of each other, and only the last one would show. Instead,
anew panel buttonPanel is created and the buttons are added to it. buttonPanel uses a flow layout (the default panel
layout), so the buttons will appear next to each other and centered. This panel is added to the south of the main panel.

[0 Thelisteners for the buttons are all instances of the MoveL istener class, which is aso defined here. The parametersto the
congtructor tell how how many pixelsin the x and y directions the circle should move when the button is pressed.

[0 Thecircleisnot drawn in the constructor, asit is not a component. It is drawn in paintComponent, which provides a
graphics context for drawing on CirclePanel.

[0 InMoveCircle the frame sizeis explicitly set so there will be room to move the circle around.

Modify the program as follows.

1. Moadify CirclePanel so that in addition to moving the circle, the user can press a button to change its color. The color
buttons should be on the top of the panel; have four color choices. Y ou will need to do the following:
[0 Create abutton for each color you want to provide, and label them appropriately.
[0 Write anew listener class ColorListener whose constructor takes the color the circle should change to. When the
button is pressed, just change the circle's color and repaint.
[0 Create anew ColorListener for each color button, and add the listeners to the buttons.
[0 Createapanel for the color buttons to go on, and add them to it.
[0 Add the color panel to the north part of the main panel.

Y ou do not need to make any changes to MoveCircle.
2. Set the background or text (you choose) of each button to be the color that it represents.

3. Add another button to the top that says "Choose Color." Place the button in the middle of your other color buttons. When
pressed, this button should bring up a JColorChooser, and the circle color should become the color that the user chooses.
Y ou can use the same ColorListener classthat you used for the other buttons; just pass null for the color when the user
wants to choose their own, and in the actionPerformed method bring up a JColorChooser if the color is null. Remember
that the easiest way to use a JColorChooser isto call its static showDialog method, passing three parameters: the
component to add it to (the "Choose Color" button), a string to title the chooser window, and a default color (the current
circle color). Note that the "Choose Color" button will have to be an instance variable (instead of being local to the
CirclePanel constructor like the other buttons) to be visible in the listener.

194 Chapter 9: Polymorphism

// kkkkhkkkhkhkkhkhhkhkhhkhkhhkhhkhhhhhhkhkhhkhkhhkhkhkhkhhhkhhhkhhhkhhkhhhkkhkkkhhkkkhkkk,kk kk***

// MoveCircle.java

//
// Uses CirclePanel to display a GUI that lets the user move
// a circle by pressing buttons.

// khkkkhkkkhkhkkhkhhkhkhhkhkhhhhhhhhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhhhkhhkhkkhhkhkkhkkkhkkkhkk kk*x**

import java.awt.*;
import javax.swing.*;

public class MoveCircle

{

public static void main(String[] args)

{

JFrame frame = new JFrame ("MoveCircle");
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
frame.setPreferredSize (new Dimension(400,300)) ;

frame.getContentPane () .add (new CirclePanel (400,300)) ;

frame.pack () ;
frame.setVisible (true) ;

Chapter 9: Polymorphism 195

// khkkkhkkkhkhkkhkhhhkhhkhkhkhhhhhhhkhhkhkhhkhkhhkhkhkhkhkhkhhhkhhhkhhkkhhkhkkhkkkhhkkkhkkk,kk kk***

// CirclePanel.java

//

// A panel with a circle drawn in the center and buttons on the

// bottom that move the circle.

// khkkkhkkhkhkhkkhkkhkhkhhhhkhkhkhhkhkhhhdhdhkhkhhkhkhhhdhdhkhkhkhhkhhhdhdhkhkhkhhkhhhdhdhkhkhkhhkhddd),k k,kh**x*x
import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class CirclePanel extends JPanel

{

private final int CIRCLE_SIZE = 50;
private int x,y;
private Color c;

// Set up circle and buttons to move it.

e ECEECEEEEEEEEERREEES
public CirclePanel (int width, int height)

{

// Set coordinates so circle starts in middle

x = (width/2)- (CIRCLE SIZE/2) ;
y = (height/2) - (CIRCLE SIZE/2) ;
c = Color.green;

// Need a border layout to get the buttons on the bottom
this.setLayout (new BorderLayout ()) ;

// Create buttons to move the circle
JButton left = new JButton ("Left");
JButton right = new JButton ("Right") ;
JButton up = new JButton ("Up") ;
JButton down = new JButton ("Down") ;

// Add listeners to the buttons
left.addActionListener (new MovelListener (-20,0)) ;
right.addActionlListener (new MovelListener (20,0)) ;
up.addActionlListener (new MovelListener (0,-20)) ;
down.addActionListener (new MoveListener (0,20)) ;

// Need a panel to put the buttons on or they'll be on
// top of each other.

JPanel buttonPanel = new JPanel () ;
buttonPanel.add(left) ;

buttonPanel.add (right) ;

buttonPanel.add (up) ;

buttonPanel.add (down) ;

// Add the button panel to the bottom of the main panel
this.add (buttonPanel, "South") ;

public void paintComponent (Graphics page)

{
196 Chapter 9: Polymorphism

super .paintComponent (page) ;

page.setColor(c) ;
page.fillOval (x,y,CIRCLE SIZE,CIRCLE SIZE);

private class Movelistener implements ActionListener

{

private int dx;
private int dy;

public Movelistener (int dx, int dy)

{

this.dx = dx;
this.dy = dy;
}
f /==
// Change x and y coordinates and repaint
/=== mm e

public void actionPerformed (ActionEvent e)

{

X += dx;

y += dy;
repaint () ;

Chapter 9: Polymorphism 197

Speed Control

The files SpeedControl.java and SpeedControl Panel.java contain a program (and its associated panel) with a circle that
moves on the panel and rebounds from the edges. (NOTE: the program is derived from Listing 8.15 and 8.16 in the text. That
program uses an image rather than a circle. Y ou may have used it in an earlier lab on animation.) The Circle classisin the
file Circlejava. Save the program to your directory and run it to see how it works.

In thislab exercise you will add to the panel a dlider that controls the speed of the animation. Study the code in
SlideColorPanel .java (Listing 9.16 in the text) to help understand the steps below.

1. SetupaJSider object. You need to
[0 Declareit.
[0 Instantiate it to be a JSlider that is horizontal with values ranging from 0 to 200, initially set to 30.
[Setthe mgjor tick spacing to 40 and the minor tick spacing to 10.
[Set paint ticks and paint labels to true and the X alignment to | eft.

2. Set up the change listener for the dider. A skeleton of a class named SideListener is already in SpeedControl Panel .java.
Y ou need to
[0 Complete the body of the statedChanged function. This function must determine the value of the dider, then set the
timer delay to that value. The timer delay can be set with the method setDelay (int delay) in the Timer class.
[0 Add the change listener to the JSlider object.

3. Createalabe ("Timer Delay") for the slider and align it to the | eft.

4. Create aJPanel object and add the label and dlider to it then add your panel to the SOUTH of the main panel (note that it
has already been set up to use a border layout).

5. Compile and run the program. Make sure the speed is changing when the slider is moved. (NOTE: Larger delay means
slower!)

6. You should have noticed one problem with the program. The ball (circle) goes down behind the panel the dider ison. To
fix this problem do the following:
[0 InactionPerformed, declare a variable slidePanelHt (type int). Use the getSize() method to get the size (whichisa
Dimension abject) of the panel you put the dider on. Assign slidePanelHt to be the height of the Dimension object.
For example, if your panel is named slidePanel the following assignment statement is what you need:

slidePanelHt = slidePanel.getSize () .height;

[0 Now use this height to adjust the condition that tests to seeif the ball hits the bottom of the panel.
[0 Test your program to make sure it is correct.

198 Chapter 9: Polymorphism

// * %k *

// 8
//
// D

kkkkhkkkhkhkkhkhhkhkhhhkhhhkhhhhhhhkhkhhhkhhkhkhhkkhkhhkhkhhhkhhhkhkhhhkhhkhkkhkkkhkkkhkk kkk **x*

peedControl.java

emonstrates animation -- balls bouncing off the sides of a panel -

// with speed controlled by a slider.

// * * k

import
import
import

public
{
//
//
//
pu

{

khkkkhkkkhkhkkhkhhkhkhhhkhhhkhhhhhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhkhhhkhkhhkhkhkkkhkkkhkk kkk **x*

java.awt. *;
java.awt.event. *;
javax.swing. *;

class SpeedControl

blic void static main (Stringl[] args)

JFrame frame = new JFrame ("Bouncing Balls");
frame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;

frame.getContentPane.add (new SpeedControlPanel ()) ;
frame.pack() ;
frame.setVisible (true) ;

Chapter 9: Polymorphism

199

// khkkkhkkkhkhkkhkhhhkhhkhkhkhhhhhhhkhhkhkhhkhkhhkhkhkhkhkhkhhhkhhhkhhkkhhkhkkhkkkhhkkkhkkk,kk kk***

// SpeedControlPanel.java

//
// The panel for the bouncing ball. Similar to
// ReboundPanel.java in Listing 8.16 in the text, except a circle

// rather than a happy face is rebounding off the edges of the

// window.
// ER IR I P I I I R I P P P P 0 IR P I I I R S I I R I I I S I I R I I S b S I I

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class SpeedControlPanel extends JPanel
private final int WIDTH = 600;
private final int HEIGHT = 400;
private final int BALL SIZE = 50;

private Circle bouncingBall; // the object that moves
private Timer timer;

private int moveX, moveY; // increment to move each time
T

// Sets up the panel, including the timer
// for the animation

J)
public SpeedControlPanel ()

{

timer = new Timer (30, new ReboundListener()) ;
this.setLayout (new BorderLayout()) ;
bouncingBall = new Circle (BALL SIZE) ;

moveX = moveY = 5;

// Set up a slider object here

setPreferredSize (new Dimension (WIDTH, HEIGHT)) ;
setBackground (Color.black) ;
timer.start () ;

R
// Draw the ball

/] =mmmmmmmm e

public void paintComponent (Graphics page)

{

super .paintComponent (page) ;
bouncingBall.draw (page) ;

}

// kkkkhkkkhkhkkhkhhkkhkhhkhkhhhkhhhkhhhkhhhhkhkhhhkkhhkkkhkkkhkkkhkk k,kk kk**x

// An action listener for the timer
// PR R R R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EE

public class ReboundListener implements ActionListener

{

200 Chapter 9: Polymorphism

// actionPerformed is called by the timer -- it updates
// the position of the bouncing ball
T ShETEEEEEREES
public void actionPerformed (ActionEvent action)

{

bouncingBall.move (moveX, moveY) ;

// change direction if ball hits a side

int x = bouncingBall.getX() ;

int vy bouncingBall.getY () ;

if (x < 0 || x »>= WIDTH - BALL SIZE)
moveX = moveX * -1;

if (y <= 0 || y »= HEIGHT - BALL_ SIZE)
moveY = moveY * -1;
repaint () ;

}
}

// PR B R RS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR E
// A change listener for the slider.
// PR B R R E R EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEE RS RS R RS

private class Slidelistener implements ChangelListener

{
J] =
// Called when the state of the slider has changed;
// resets the delay on the timer.
/] m
public void stateChanged (ChangeEvent event)

{

Chapter 9: Polymorphism

201

// kkkkhkkkhkhkkhkhhkhkhhkhkhkhhkhhhhhhhhkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhkkkkhdkkkhkk k,kk **x*

// FILE: Circle.java

//
// Purpose: Define a Circle class with methods to create and draw
// a circle of random size, color, and location.

// khkkkhkkkhkhkkhkhhkhkhhkhkhkhhkhkhhhhhhkhkhhkhkhhhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhdkkkhkk k,kk **x*

import java.awt.*;
import java.util.Random;

public class Circle

{

private int x, vy; // coordinates of the corner
private int radius; // radius of the circle
private Color color; // color of the circle

static Random generator = new Random() ;

f /=
// Creates a random circle with properties in ranges given:
// -- radius 25..74

// -- color RGB value 0..16777215 (24-bit)

// -- x-coord of upper left-hand corner 0..599

// -- y-coord of upper left-hand corner 0..399
s

public Circle()
{
radius = Math.abs (generator.nextInt())%50 + 25;
color = new Color (Math.abs (generator.nextInt())% 16777216) ;
x = Math.abs (generator.nextInt()) %$600;
y = Math.abs (generator.nextInt ())%400;

/=
// Creates a circle of a given size (diameter). Other

// attributes are random (as described above)
/===

public Circle(int size)

{

radius = Math.abs (size/2);

color = new Color (Math.abs (generator.nextInt())% 16777216) ;
x = Math.abs (generator.nextInt ())%600;

y = Math.abs (generator.nextInt ()) %$400;

// Draws circle on graphics object given

/= s
public void draw (Graphics page)

{

page.setColor (color) ;
page.filloOval (x,y,radius*2,radius*2) ;

// Shifts the circle's position -- "over" is the number of
// pixels to move horizontally (positive is to the right;

202 Chapter 9: Polymorphism

// negative to the left); "down" is the number of pixels
// to move vertically (positive is down; negative is up)

public void move (int over, int down)

{

%
Il

X + over;
y =y + down;

/] mmmmmm e
// Return the x coordinate of the circle corner

[/ mmmmm e
public int getX()

{
}
T RRTREEEEEEEES

// Return the y coordinate of the circle corner
/] ==
public int getY ()

{
}

return Xx;

return y;

Chapter 9: Polymorphism 203

