

Chapter 2: Data and Expressions 7

Chapter 2: Data and Expressions
Lab Exercises

Topics Lab Exercises
Print and println
String literals Names and Places
String concatenation A Table of Student Grades
Escape sequences Two Meanings of Plus

Variables Prelab Exercises
Constants Area and Circumference of a Circle
Assignment Painting a Room
Integers and Floating point Ideal Weight
Arithmetic Expressions Lab Grades
Operator Precedence Base Conversion
Input using the Scanner class

HTML Introduction to HTML
Applets Drawing Shapes
Graphics The Java Coordinate System
Colors Drawing a Face

 Creating a Pie Chart
Colors in Java

8 Chapter 2: Data and Expressions

Names and Places

The goal in this exercise is to develop a program that will print out a list of student names together with other information for
each. The tab character (an escape sequence) is helpful in getting the list to line up nicely. A program with only two names is
in the file Names.java.

// ***
// Names.java
//
// Prints a list of student names with their hometowns
// and intended major
// ***

public class Names
{
 // ------------------------
 // main prints the list
 // ------------------------
 public static void main (String[] args)
 {
 System.out.println ();
 System.out.println ("\tName\t\tHometown");
 System.out.println ("\t====\t\t========");
 System.out.println ("\tSally\t\tRoanoke");
 System.out.println ("\tAlexander\tWashington");
 System.out.println ();
 }
}

1. Save Names.java to your directory. Compile and run it to see how it works.
2. Modify the program so that your name and hometown and the name and hometown of at least two classmates sitting near

you in lab also are printed. Save, compile and run the program. Make sure the columns line up.
3. Modify the program to add a third column with the intended major of each person (assume Sally's major is Computer

Science and Alexander's major is Math). Be sure to add a label at the top of the third column and be sure everything is
lined up (use tab characters!).

Chapter 2: Data and Expressions 9

A Table of Student Grades

Write a Java program that prints a table with a list of at least 5 students together with their grades earned (lab points, bonus
points, and the total) in the format below.

///////////////////\\\\\\\\\\\\\\\\\\\
== Student Points ==
\\\\\\\\\\\\\\\\\\\///////////////////

Name Lab Bonus Total
---- --- ----- -----
Joe 43 7 50
William 50 8 58
Mary Sue 39 10 49

The requirements for the program are as follows:

1. Print the border on the top as illustrated (using the slash and backslash characters).
2. Use tab characters to get your columns aligned and you must use the + operator both for addition and string

concatenation.
3. Make up your own student names and points—the ones shown are just for illustration purposes. You need 5 names.

10 Chapter 2: Data and Expressions

Two Meanings of Plus

In Java, the symbol + can be used to add numbers or to concatenate strings. This exercise illustrates both uses.

When using a string literal (a sequence of characters enclosed in double quotation marks) in Java the complete string must fit
on one line. The following is NOT legal (it would result in a compile-time error).

 System.out.println ("It is NOT okay to go to the next line
 in a LONG string!!!");

The solution is to break the long string up into two shorter strings that are joined using the concatenation operator (which is
the + symbol). This is discussed in Section 2.1 in the text. So the following would be legal

 System.out.println ("It is OKAY to break a long string into " +
 "parts and join them with a + symbol.");

So, when working with strings the + symbol means to concatenate the strings (join them). BUT, when working with numbers
the + means what it has always meant—add!

1. Observing the Behavior of + To see the behavior of + in different settings do the following:

a. Study the program below, which is in file PlusTest.java.

// ***
// PlusTest.java
//
// Demonstrate the different behaviors of the + operator
// ***

public class PlusTest
{
 // ---
 // main prints some expressions using the + operator
 // ---
 public static void main (String[] args)
 {
 System.out.println ("This is a long string that is the " +
 "concatenation of two shorter strings.");

 System.out.println ("The first computer was invented about" + 55 +
 "years ago.");

 System.out.println ("8 plus 5 is " + 8 + 5);

 System.out.println ("8 plus 5 is " + (8 + 5));

 System.out.println (8 + 5 + " equals 8 plus 5.");
 }
}

b. Save PlusTest.java to your directory.
c. Compile and run the program. For each of the last three output statements (the ones dealing with 8 plus 5) write

down what was printed. Now for each explain why the computer printed what it did given that the following rules
are used for +. Write out complete explanations.
� If both operands are numbers + is treated as ordinary addition. (NOTE: in the expression a + b the a and b are

called the operands.)
� If at least one operand is a string the other operand is converted to a string and + is the concatenation operator.
� If an expression contains more than one operation expressions inside parentheses are evaluated first. If there are

no parentheses the expression is evaluated left to right.
d. The statement about when the computer was invented is too scrunched up. How should that be fixed?

Chapter 2: Data and Expressions 11

2. Writing Your Own Program With + Now write a complete Java program that prints out the following sentence:

 Ten robins plus 13 canaries is 23 birds.

Your program must use only one statement that invokes the println method. It must use the + operator both to do
arithmetic and string concatenation.

12 Chapter 2: Data and Expressions

Prelab Exercises

1. What is the difference between a variable and a constant?

2. Explain what each of the lines below does. Be sure to indicate how each is different from the others.

a. int x;

b. int x = 3;

c. x = 3;

3. The following program reads three integers and prints the average. Fill in the blanks so that it will work correctly.

// ***
// Average.java
//
// Read three integers from the user and print their average
// ***

import java.util.Scanner;
public class Average
{
 public static void main(String[] args)
 {
 int val1, val2, val3;
 double average;
 Scanner scan = new Scanner(System.in) ;

 // get three values from user
 System.out.println("Please enter three integers and " +
 "I will compute their average");

 //compute the average

 //print the average

 }
}

Chapter 2: Data and Expressions 13

4. Given the declarations below, find the result of each expression.

int a = 3, b = 10, c = 7;
double w = 12.9, y = 3.2;

a. a + b * c

b. a - b - c

c. a / b

d. b / a

e. a - b / c

f. w / y

g. y / w

h. a + w / b

i. a % b / y

j. b % a

k. w % y

5. Carefully study the following program and find and correct all of the syntax errors.

// File: Errors.java
// Purpose: A program with lots of syntax errors
// Correct all of the errors (STUDY the program carefully!!)

#import java.util.Scanner;

public class errors
{
 public static void main (String[] args)
 {
 String Name; / Name of the user
 int number;
 int numSq;
 Scanner scan = new Scanner(System.in);

 System.out.print ("Enter your name, please: ")
 Name = scan.nextInt();

 System.out.print ("What is your favorite number?);
 number = scan.nextInt();

 numSq = number * number;

 System.out.println (Name ", the square of your number is "
 numSquared);

}

14 Chapter 2: Data and Expressions

6. Trace the execution of the following program assuming the input stream contains the numbers 10, 3, and 14.3. Use a
table that shows the value of each variable at each step. Also show the output (exactly as it would be printed).

 // FILE: Trace.java
 // PURPOSE: An exercise in tracing a program and understanding
 // assignment statements and expressions.

 import java.util.Scanner;

 public class Trace
 {
 public static void main (String[] args)
 {
 int one, two, three;
 double what;
 Scanner scan = new Scanner(System.in);

 System.out.print ("Enter two integers: ");
 one = scan.nextInt();
 two = scan.nextInt();

 System.out.print("Enter a floating point number: ");
 what = scan.nextDouble();

 three = 4 * one + 5 * two;
 two = 2 * one;
 System.out.println ("one " + two + ":" + three);

 one = 46 / 5 * 2 + 19 % 4;
 three = one + two;
 what = (what + 2.5) / 2;
 System.out.println (what + " is what!");
 }
 }

Chapter 2: Data and Expressions 15

Area and Circumference of a Circle

Study the program below, which uses both variables and constants:

//**
// Circle.java
//
// Print the area of a circle with two different radii
//**

public class Circle
{
 public static void main(String[] args)
 {
 final double PI = 3.14159;

 int radius = 10;
 double area = PI * radius * radius;

 System.out.println("The area of a circle with radius " + radius +
 " is " + area);

 radius = 20;
 area = PI * radius * radius;

 System.out.println("The area of a circle with radius " + radius +
 " is " + area);

 }
}

Some things to notice:

� The first three lines inside main are declarations for PI, radius, and area. Note that the type for each is given in these

lines: final double for PI, since it is a floating point constant; int for radius, since it is an integer variable, and double for
area, since it will hold the product of the radius and PI, resulting in a floating point value.

� These first three lines also hold initializations for PI, radius, and area. These could have been done separately, but it is
often convenient to assign an initial value when a variable is declared.

� The next line is simply a print statement that shows the area for a circle of a given radius.
� The next line is an assignment statement, giving variable radius the value 20. Note that this is not a declaration, so the int

that was in the previous radius line does not appear here. The same memory location that used to hold the value 10 now
holds the value 20—we are not setting up a new memory location.

� Similar for the next line—no double because area was already declared.
� The final print statement prints the newly computed area of the circle with the new radius.

Save this program, which is in file Circle.java, into your directory and modify it as follows:

1. The circumference of a circle is two times the product of Pi and the radius. Add statements to this program so that it

computes the circumference in addition to the area for both circles. You will need to do the following:
� Declare a new variable to store the circumference.
� Store the circumference in that variable each time you compute it.
� Add two additional print statements to print your results.
Be sure your results are clearly labeled.

2. When the radius of a circle doubles, what happens to its circumference and area? Do they double as well? You can

determine this by dividing the second area by the first area. Unfortunately, as it is now the program overwrites the first
area with the second area (same for the circumference). You need to save the first area and circumference you compute
instead of overwriting them with the second set of computations. So you'll need two area variables and two

16 Chapter 2: Data and Expressions

circumference variables, which means they'll have to have different names (e.g., area1 and area2). Remember that each
variable will have to be declared. Modify the program as follows:
� Change the names of the area and circumference variables so that they are different in the first and second

calculations. Be sure that you print out whatever you just computed.
� At the end of the program, compute the area change by dividing the second area by the first area. This gives you the

factor by which the area grew. Store this value in an appropriately named variable (which you will have to declare).
� Add a println statement to print the change in area that you just computed.
� Now repeat the last two steps for the circumference.
Look at the results. Is this what you expected?

3. In the program above, you showed what happened to the circumference and area of a circle when the radius went from

10 to 20. Does the same thing happen whenever the radius doubles, or were those answers just for those particular
values? To figure this out, you can write a program that reads in values for the radius from the user instead of having it
written into the program ("hardcoded"). Modify your program as follows:
� At the very top of the file, add the line

import java.util.Scanner;

This tells the compiler that you will be using methods from the Scanner class. In the main method create a Scanner
object called scan to read from System.in.

� Instead of initializing the radius in the declaration, just declare it without giving it a value. Now add two statements
to read in the radius from the user:
� A prompt, that is, a print statement that tells the user what they are supposed to do (e.g., "Please enter a value

for the radius.");
� A read statement that actually reads in the value. Since we are assuming that the radius is an integer, this will

use the nextInt() method of the Scanner class.
� When the radius gets it second value, make it be twice the original value.
� Compile and run your program. Does your result from above hold?

Chapter 2: Data and Expressions 17

Painting a Room

File Paint.java contains the partial program below, which when complete will calculate the amount of paint needed to paint
the walls of a room of the given length and width. It assumes that the paint covers 350 square feet per gallon.

//***
//File: Paint.java
//
//Purpose: Determine how much paint is needed to paint the walls
//of a room given its length, width, and height
//***
import java.util.Scanner;

public class Paint
{
 public static void main(String[] args)
 {
 final int COVERAGE = 350; //paint covers 350 sq ft/gal
 //declare integers length, width, and height;
 //declare double totalSqFt;
 //declare double paintNeeded;
 //declare and initialize Scanner object

 //Prompt for and read in the length of the room

 //Prompt for and read in the width of the room

 //Prompt for and read in the height of the room

 //Compute the total square feet to be painted--think
 //about the dimensions of each wall

 //Compute the amount of paint needed

 //Print the length, width, and height of the room and the
 //number of gallons of paint needed.
 }
}

Save this file to your directory and do the following:

1. Fill in the missing statements (the comments tell you where to fill in) so that the program does what it is supposed to.

Compile and run the program and correct any errors.
2. Suppose the room has doors and windows that don't need painting. Ask the user to enter the number of doors and number

of windows in the room, and adjust the total square feet to be painted accordingly. Assume that each door is 20 square
feet and each window is 15 square feet.

18 Chapter 2: Data and Expressions

Ideal Weight

Write a program to compute the ideal weight for both males and females. According to one study, the ideal weight for a
female is 100 pounds plus 5 pounds for each inch in height over 5 feet. For example, the ideal weight for a female who is 5'3"
would be 100 + 15 = 115 pounds. For a male the ideal weight is 106 pounds plus 6 pounds for each inch in height over 5 feet.
For example, the ideal weight for a male who is 6'2" would be 106 + 14*6 = 190 pounds. Your program should ask the user
to enter his/her height in feet and inches (both as integers—so a person 5'3" would enter the 5 and the 3). It should then
compute and print both the ideal weight for a female and the ideal weight for a male. The general outline of your main
function would be as follows:

� Declare your variables (think about what variables you need—you need to input two pieces of information (what?), then

you need some variables for your calculations (see the following steps)
� Get the input (height in feet and inches) from the user
� Compute the total number of inches of height (convert feet and inches to total inches)
� Compute the ideal weight for a female and the ideal weight for a male (here you basically convert the "word" description

above to assignment statements)
� Print the answers

Plan your program, then type it in, compile and run it. Be sure it gives correct answers.

Enhance the Program a Bit The weight program would be a bit nicer if it didn't just give one number as the ideal weight for
each sex. Generally a person's weight is okay if it is within about 15% of the ideal. Add to your program so that in addition to
its current output it prints an okay range for each sex—the range is from the ideal weight minus 15% to the ideal weight plus
15%. You may do this by introducing new variables and assignment statements OR directly within your print statements.

Chapter 2: Data and Expressions 19

Lab Grades

Suppose your lab instructor has a somewhat complicated method of determining your grade on a lab. Each lab consists of two
out-of-class activities—a pre-lab assignment and a post-lab assignment—plus the in-class activities. The in-class work is
60% of the lab grade and the out-of-class work is 40% of the lab grade. Each component of the grade is based on a different
number of points (and this varies from lab to lab)—for example, the pre-lab may be graded on a basis of 20 points (so a
student may earn 17 out of 20 points) whereas the post-lab is graded on a basis of 30 points and the in-class 25 points. To
determine the out-of-class grade the instructor takes the total points earned (pre plus post) divided by the maximum possible
number of points, multiplied by 100 to convert to percent; the in-class grade is just the number of points earned divided by
the maximum points, again converted to percent.

The program LabGrade.java is supposed to compute the lab grade for a student. To do this it gets as input the number of
points the student earned on the prelab assignment and the maximum number of points the student could have earned; the
number of points earned on the lab itself and the maximum number of points; the number of points earned on the postlab
assignment and the maximum number of points. The lab grade is computed as described above: the in-class and out-of-class
grades (in percent) are computed separately then a weighted average of these is computed. The program currently assumes
the out-of-class work counts 40% and the in-class counts 60%. Do the following:

1. First carefully hand trace the program assuming the input stream contains the values 17, 20, 23, 25, 12, 15. Trace the

program exactly as it is written (it is not correct but it will compile and run so the computer would not know it isn't
correct). Fill in the answers to the following questions:
a. Show exactly how the computer would execute the assignment statement that computes the out of class average for

this set of input. Show how the expression will be evaluated (the order in which the operations are performed) and
what the result will be.

b. Show how the computer would execute the assignment statement that computes the in-class average. What will the
result be?

c. Show how the computer would execute the assignment statement that computes the lab grade.

2. Now run the program, typing in the input you used in your trace. Compare your answers to the output. Clearly the output

is incorrect! Correct the program. This involves writing the expressions to do calculations correctly. The correct answers
for the given input should be an out of class average of 82.857 (the student earned 29 points out of a possible 35 which is
approximately 82.857%), an in-class average of 92 (23 points out of 25), and a lab grade of 88.34 (40% of 82.857 plus
60% of 92).

3. Modify the program to make the weights for the two components of the grade variable rather than the constants 0.4 and

0.6. To do this, you need to do four things:
a. Change the declarations so the weights (IN_WEIGHT and OUT_WEIGHT) are variables rather than constants. Note

that you should also change their names from all capital letters (the convention for constants) to lowercase letters
with capitals starting new words (the convention for variables). So IN_WEIGHT should become inWeight. Of
course, you'll also have to change it where it's used in the program.

b. In the input section, add statements that will prompt the user for the weight (in decimal form—for example .4 for
40%) to be assigned to the in-class work, then read the input. Note that your prompt should explain to the user that
the weight is expected to be in decimal form.

c. In the section that calculates the labGrade add an assignment statement that calculates the weight to be assigned to
the out of class work (this will be 1 minus the in-class weight).

Compile and run your program to make sure it is correct.

// **
// LabGrade.java
// This program computes a student's lab grade from
// the grades on the three components of lab: the pre-lab
// assignment, the lab itself, and the post-lab assignment.
// ***

import java.util.Scanner;

20 Chapter 2: Data and Expressions

public class LabGrade
{
 public static void main (String[] args)
 {
 // Declare constants
 final double IN_WEIGHT = 0.6; // in-class weight is 60%
 final double OUT_WEIGHT = 0.4; // out-of-class weight is 40%

 // Declare variables
 int preLabPts; //number of points earned on the pre-lab assignment
 int preLabMax; //maximum number of points possible for pre-lab
 int labPts; //number of poitns earned on the lab
 int labMax; //maximum number of points possible for lab
 int postLabPts; //number of points earned on the post-lab assignment
 int postLabMax; //maximum number of points possible for the post-lab
 int outClassAvg; //average on the out of class (pre and post) work
 int inClassAvg; //average on the in-class work
 double labGrade; //final lab grade

 Scanner scan = new Scanner(System.in);

 // Get the input
 System.out.println("\nWelcome to the Lab Grade Calculator\n");
 System.out.print("Enter the number of points you earned on the pre-lab: ");
 preLabPts = scan.nextInt();
 System.out.print("What was the maximum number of points you could have earned? ");
 preLabMax = scan.nextInt();
 System.out.print("Enter the number of points you earned on the lab: ");
 labPts = scan.nextInt();
 System.out.print("What was the maximum number of points for the lab? ");
 labMax = scan.nextInt();
 System.out.print("Enter the number of points you earned on the post-lab: ");
 postLabPts = scan.nextInt();
 System.out.print("What was the maximum number of points for the post-lab? ");
 postLabMax = scan.nextInt();
 System.out.println();

 // Calculate the average for the out of class work
 outClassAvg = preLabPts + postLabPts / preLabMax + postLabMax * 100;

 // Calculate the average for the in-class work
 inClassAvg = labPts / labMax * 100;

 // Calculate the weighted average taking 40% of the out-of-class average
 // plus 60% of the in-class
 labGrade = OUT_WEIGHT * outClassAvg + IN_WEIGHT * inClassAvg;

 // Print the results
 System.out.println("Your average on out-of-class work is " + outClassAvg + "%");
 System.out.println("Your average on in-class work is " + inClassAvg + "%");
 System.out.println("Your lab grade is " + labGrade + "%");
 System.out.println();
 }
}

Chapter 2: Data and Expressions 21

Base Conversion

One algorithm for converting a base 10 number to another base b involves repeatedly dividing by b. Each time a division is
performed the remainder and quotient are saved. At each step, the dividend is the quotient from the preceding step; the
divisor is always b. The algorithm stops when the quotient is 0. The number in the new base is the sequence of remainders in
reverse order (the last one computed goes first; the first one goes last).

In this exercise you will use this algorithm to write a program that converts a base 10 number to a 4-digit number in another
base (you don't know enough programming yet to be able to convert any size number). The base 10 number and the new base
(between 2 and 9) will be input to the program. The start of the program is in the file BaseConvert.java. Save this file to your
directory, then modify it one step at a time as follows:

1. The program will only work correctly for base 10 numbers that fit in 4 digits in the new base. We know that in base 2 the

maximum unsigned integer that will fit in 4 bits is 11112 which equals 15 in base 10 (or 24 – 1). In base 8, the maximum
number is 77778 which equals 4095 in base 10 (or 84 – 1). In general, the maximum base 10 number that fits in 4 base b
digits is b4 – 1. Add an assignment statement to the program to compute this value for the base that is input and assign it
to the variable maxNumber. Add a statement that prints out the result (appropriately labeled). Compile and run the
program to make sure it is correct so far.

2. Now add the code to do the conversion. The comments below guide you through the calculations—replace them with the

appropriate Java statements.

 // First compute place0 -- the units place. Remember this comes
 // from the first division so it is the remainder when the
 // base 10 number is divided by the base (HINT %).
 // Then compute the quotient (integer division / will do it!) -
 // You can either store the result back in base10Num or declare a
 // new variable for the quotient

 // Now compute place1 -- this is the remainder when the quotient
 // from the preceding step is divided by the base.
 // Then compute the new quotient

 // Repeat the idea from above to compute place2 and the next quotient

 // Repeat again to compute place3

3. So far the program does not print out the answer. Recall that the answer is the sequence of remainders written in reverse

order— note that this requires concatenating the four digits that have been computed. Since they are each integers, if we
just add them the computer will perform arithmetic instead of concatenation. So, we will use a variable of type String.
Note near the top of the program a variable named baseBNum has been declared as an object of type String and
initialized to an empty string. Add statements to the program to concatenate the digits in the new base to baseBNum and
then print the answer. Compile and run your program. Test it using the following values: Enter 2 for the base and 13 for
the base 10 number—the program should print 1101 as the base 2 value; enter 8 for the base and 1878 for the number—
the program should print 3526 for the base 8 value; enter 3for the base and 50 for the number—the program should print
1212.

22 Chapter 2: Data and Expressions

// **
// BaseConvert.java
//
// Converts base 10 numbers to another base
// (at most 4 digits in the other base). The
// base 10 number and the base are input.
// **

import java.util.Scanner;

public class BaseConvert
{
 public static void main (String[] args)
 {
 int base; // the new base
 int base10Num; // the number in base 10
 int maxNumber; // the maximum number that will fit
 // in 4 digits in the new base

 int place0; // digit in the 1's (base^0) place
 int place1; // digit in the base^1 place
 int place2; // digit in the base^2 place
 int place3; // digit in the base^3 place

 String baseBNum = new String (""); // the number in the new base
 Scanner scan = new Scanner(System.in);

 // read in the base 10 number and the base
 System.out.println();
 System.out.println ("Base Conversion Program");
 System.out.println();
 System.out.print ("Please enter a base (2 - 9): ");
 base = scan.nextInt();

 // Compute the maximum base 10 number that will fit in 4 digits
 // in the new base and tell the user what range the number they
 // want to convert must be in

 System.out.print ("Please enter a base 10 number to convert: ");
 base10Num = scan.nextInt();

 // Do the conversion (see notes in lab)

 // Print the result (see notes in lab)

 }
}

Chapter 2: Data and Expressions 23

Introduction to HTML

HTML is the HyperText Markup Language. It is used to describe how text, images, and multimedia are displayed by Web
browsers. In this lab you will learn a little about HTML so that you can create a web page containing headings, interesting
fonts, lists, and links as well as applets.

HTML uses tags to describe the layout of a document; the browser then uses these tags to figure out how to display the
document. Tags are enclosed in angle brackets. For example, <title> is a tag that indicates that this section contains the title
of the document. Many tags, including <title>, have corresponding end tags that indicate where the section ends. The end
tags look just like the start tags except that they start with the character /, e.g., </title>. So the following text indicates that the
title of the document is Introduction to HTML:

<title>Introduction to HTML</title>

There are a few tags that almost every document will have: <html>, <head>, <title>, and <body>. Here is an example of a
simple HTML document:

<HTML>
 <HEAD>
 <TITLE>Introduction to HTML</TITLE>
 </HEAD>

 <BODY>
 In this lab you will learn about HTML, which is lots of fun
 to use. In particular, you will learn how to use fonts,
 paragraphs, lists, links and applets in a web page. Now you
 can make your own web page for your friends to visit!
 </BODY>
</HTML>

To see what this looks like, open the file in the web browser. Change the size of the browser window (click and drag any
corner) and see how the text is reformatted as the window changes. Note that the title appears on the window, not as part of
the document.

The HEAD of a document (everything between <HEAD> and </HEAD>) contains the introduction to the document. The title
goes in the head, but for now we won't use the head for anything else. The BODY of a document (everything between
<BODY> and </BODY>) contains everything that will be displayed as part of the document. Both the HEAD and the BODY
are enclosed by the HTML tags, which begin and end the document.

This document contains only plain text, but an HTML document can have much more structure: headings, paragraphs, lists,
bold and italic text, images, links, tables, and so on. Here is a document containing a heading, two paragraphs, and some
fancy fonts:

24 Chapter 2: Data and Expressions

<HTML>
 <HEAD>
 <TITLE>Introduction to HTML</TITLE>
 </HEAD>

 <BODY BGCOLOR="lightgreen">
 <H1 align="center">Introduction to HTML</H1>

 <P>In this lab you will learn about <I>HTML</I>, which
 is lots of fun
 to use. In particular, you will learn how to use fonts,
 paragraphs, lists, links, and colors in a web page. Now you
 can make your own web page for your friends to visit!</P>

 <P>Later in this lab you will do some fancier stuff with
 applets and graphics and include an applet on your web page.
 Can't you just feel the job offers start rolling in?</P>
 <U>Yippee!</U>
 </BODY>
</HTML>

Run the HTML document to see what this looks like in the browser.

In this document the <H1> tag creates a level 1 heading. This is the biggest heading; it might be used at the beginning of the
document or the start of a new chapter. Level 2 through level 6 headings are also available with the <H2> through <H6> tags.

The <P> tag creates a new paragraph. Most browsers leave a blank line between paragraphs. The tag creates bold text,
the <I> tag creates italic text, and the <U> tag creates underlined text. Note that each of these tags is closed with the
corresponding end tag. The BGCOLOR attribute on the BODY tag sets the background color.

Note that line breaks and blank lines in the HTML document do not matter—the browser will format paragraphs to fit the
window. If it weren't for the <P> tag, the blank line between the paragraphs in this document would not show up in the
displayed document.

--
Exercise #1: For a file to be visible on the Web, it must be where the web server knows how to find it. *** Instruct students
how to create and/or access the public html directory on the local system. ***

Open a new file called MyPage.html in a directory where it will be accessible from the web. Write a simple web page about
things that interest you. Your page should contain at least the following:

� A title (using the <TITLE> tag)
� Two different levels of headings
� Two paragraphs
� Some bold, italic, or underlined text

Your name should appear somewhere in the document.

When you are done, view your document from the browser. Just type in the URL, don't use File | Open Page.
--

Chapter 2: Data and Expressions 25

More HTML

Lists We often want to add a list to a document. HTML provides two kinds of lists, ordered (e.g., 1, 2, 3) and unordered
(e.g., bulleted). A list is introduced with the or tag, depending on whether it is ordered or unordered. Each list
item is introduced with a tag and ended with the tag. The entire list is then ended with or , as
appropriate. For example, the code below creates the list shown; replacing the and tags with and
would produce the same list with bullets instead of numbers.

Things I like:

chocolate
rabbits
chocolate rabbits

Things I like:

1. chocolate
2. rabbits
3. chocolate rabbits

--
Exercise #2: Add a list, either ordered or unordered, of at least three elements to your document.
--

Links Links connect one document to another. Links are created in HTML with the <A> (anchor) tag. When creating a link
you have to specify two things:

� The URL of the document to go to when the link is clicked. This is given as the HREF attribute of the A element.
� How the link should be displayed (that is, what text or image to click on to go to the linked document). This appears

between the <A> and tags.
For example, the code below creates the link shown, which goes to a page about the history of computing:

Learn more about the history of
computing.

Learn more about the history of computing.

--
Exercise #3: Add at least one link that ties in to the material on your page.
--

26 Chapter 2: Data and Expressions

Drawing Shapes

The following is a simple applet that draws a blue rectangle on a yellow background.

// **
// Shapes.java
//
// The program will draw two filled rectangles and a
// filled oval.
// **

import javax.swing.JApplet;
import java.awt.*;

public class Shapes extends JApplet
{
 public void paint (Graphics page)
 {
 // Declare size constants
 final int MAX_SIZE = 300;
 final int PAGE_WIDTH = 600;
 final int PAGE_HEIGHT = 400;

 // Declare variables
 int x, y; // x and y coordinates of upper left-corner of each shape
 int width, height; // width and height of each shape

 // Set the background color
 setBackground (Color.yellow);

 // Set the color for the next shape to be drawn
 page.setColor (Color.blue);

 // Assign the corner point and width and height
 x = 200;
 y = 150;
 width = 100;
 height = 70;

 // Draw the rectangle
 page.fillRect(x, y, width, height);
 }
}

Study the code, noting the following:

� The program imports javax.swing.JApplet because this is an applet, and it imports java.awt.* because it uses graphics.
� There is no main method—instead there is a paint method. The paint method is automatically invoked when an applet is

displayed, just as the main method is automatically invoked when an application is executed.
� Most of the methods that draw shapes (see the list in Figure 2.12) require parameters that specify the upper left-hand

corner of the shape (using the coordinate system described in Section 2.9) and the width and height of the shape. You
can see this in the calls to fillRect, which draws a rectangle filled with the current foreground color.

� This applet will be drawn assuming the window for drawing (the Graphics object - named page here) is 600 pixels wide
and 400 pixels high. These numbers are defined in constants at the beginning of the program. (They currently have no
use but you will use them later). The width and height of the applet are actually specified in the HTML file that instructs
the Web browser to run the applet (remember applets are executed by Web browsers and Web browsers get their
instructions from HTML documents—note that the code executed by the browser is the bytecode for the program, the
Shapes.class file). The code in the HTML document is as follows:

Chapter 2: Data and Expressions 27

<html>
<applet code="Shapes.class" width=600 height=400>
</applet>
</html>

Save the files Shapes.java and Shapes.html to your directory. Now do the following:

1. Compile Shapes.java, but don't run it—this is an applet, so it is run through a browser or a special program called the

Applet Viewer.

2. Run the program through your browser. You should see a blue rectangle on a yellow background.

3. Now run the program through the Applet Viewer by typing the command

 appletviewer Shapes.html

You should see a new window open displaying the rectangle.

4. Now open the program in your text editor and change the x and y variables both to 0. Save and recompile the program,

then view it in the Applet Viewer (this is generally less trouble when making lots of changes than using the browser).
What happened to the rectangle?

5. Now change the width to 200 and the height to 300. Save, recompile and run to see how this affects the rectangle.

6. Change x to 400, y to 40, width to 50 and height to 200. Test the program to see the effect.

7. Modify the program so that it draws four rectangles in all, as follows:

� One rectangle should be entirely contained in another rectangle.
� One rectangle should overlap one of the first two but not be entirely inside of it.
� The fourth rectangle should not overlap any of the others.

8. One last touch to the program ... Change the colors for at least three of the shapes so the background and each of the

three shapes are different colors (a list of colors is in Figure 2.10 of the text). Also change two of the fillRect methods to
fillOval so the final program draws two rectangles and two ovals. Be sure that the overlap rules are still met.

28 Chapter 2: Data and Expressions

The Java Coordinate System

The Java coordinate system is discussed in Section 2.7 & 2.9 of the text. Under this system, the upper left-hand corner of the
window is the point (0,0). The X axis goes across the window, and the Y axis goes down the window. So the bigger the X
value, the farther a point is to the right. The bigger the Y value, the farther it is down. There are no negative X or Y values in
the Java coordinate system. Actually, you can use negative values, but since they're off the screen they won't show up!

1. Save files Coords.java and Coords.html to your directory. File Coords.java contains an applet that draws a rectangle

whose upper lefthand corner is at 0,0. Use the applet viewer to run this applet. Remember that you have to do it
through the html file: appletviewer Coords.html.

2. Modify the applet so that instead of 0,0 for the upper lefthand corner, you use the coordinates of the middle of the

applet window. This applet is set up to be 600 pixels wide and 400 pixels high, so you can figure out where the middle
is. Save, compile, and view your applet. Does the rectangle appear to be in the middle of the screen? Modify the
coordinates so that it does appear to be in the middle.

3. Now add four more rectangles to the applet, one in each corner. Each rectangle should just touch one corner of the

center rectangle and should go exactly to the edges of the window.

4. Make each rectangle be a different color. To do this, use the setColor method of the Graphics class to change the color

(this is already done once). Do not change the background color once it has been set! Doing so causes the screen to
flicker between colors.

// **
// Coords.java
//
// Draw rectangles to illustrate the Java coordinate system
//
// **

import javax.swing.JApplet;
import java.awt.*;

public class Coords extends JApplet
{
 public void paint (Graphics page)
 {
 // Declare size constants
 final int MAX_SIZE = 300;
 final int PAGE_WIDTH = 600;
 final int PAGE_HEIGHT = 400;

 // Declare variables
 int x, y; // x and y coordinates of upper left-corner of each shape
 int width, height; // width and height of each shape

 // Set the background color
 setBackground (Color.yellow);

 // Set the color for the next shape to be drawn
 page.setColor (Color.blue);

 // Assign the corner point and width and height
 x = 0;
 y = 0;

Chapter 2: Data and Expressions 29

 width = 150;
 height = 100;

 page.fillRect(x, y, width, height);

 }
}

Coords.html

<html>
<applet code="Coords.class" width=600 height=400>
</applet>
</html>

30 Chapter 2: Data and Expressions

Drawing a Face

Write an applet that draws a smiling face. Give the face eyes with pupils, ears, a nose, and a mouth. Use at least three
different colors, and fill in some of the features. Name this file Face.java, and create a corresponding .html file. View your
applet using the applet viewer.

Now add your face to a web page you created (you may have created one in an earlier lab exercise). You will do this using
the <APPLET> tag that is in the .html file you are using with the applet viewer—you can just copy it out of that file and paste
it into your other file. The applet will appear wherever you insert the applet tag.

Chapter 2: Data and Expressions 31

Creating a Pie Chart

Write an applet that draws a pie chart showing the percentage of household income spent on various expenses. Use the
percentages below:

Rent and Utilities 35%
Transportation 15%
Food 15%
Educational 25%
Miscellaneous 10%

Each section of the pie should be in a different color, of course. Label each section of the pie with the category it represents—
the labels should appear outside the pie itself.

Embed your applet in an HTML document about managing expenses. It should contain a heading, some text, a relevant list,
and at least one link to a relevant page. Your name should also appear somewhere on the page. Embed the applet so that it fits
in nicely.

32 Chapter 2: Data and Expressions

Colors in Java

The basic scheme for representing a picture in a computer is to break the picture down into small elements called pixels and
then represent the color of each pixel by a numeric code (this idea is discussed in section 1.6 of the text). In most computer
languages, including Java, the color is specified by three numbers—one representing the amount of red in the color, another
the amount of green, and the third the amount of blue. These numbers are referred to as the RGB value of the color. In Java,
each of the three primary colors is represented by an 8-bit code. Hence, the possible base 10 values for each have a range of
0-255. Zero means none of that color while 255 means the maximum amount of the color. Pure red is represented by 255 for
red, 0 for green, and 0 for blue, while magenta is a mix of red and blue (255 for red, 0 for green, and 255 for blue). In Java
you can create your own colors. So far in the graphics programs we have written we have used the pre-defined colors, such as
Color.red, from the Color class. However, we may also create our own Color object and use it in a graphics program. One
way to create a Color object is to declare a variable of type Color and instantiate it using the constructor that requires three
integer parameters—the first representing the amount of red, the second the amount of green, and the third the amount of blue
in the color. For example, the following declares the Color object myColor and instantiates it to a color with code 255 for red,
0 for green, and 255 for blue.

 Color myColor = new Color(255, 0, 255);

The statement page.setColor(myColor) then will set the foreground color for the page to be the color defined by the myColor
object. The file Colors.java contains an applet that defines myColor to be a Color object with color code (200, 100, 255) - a
shade of purple. Save the program and its associated HTML file Colors.html to your directory, compile and run it using the
appletviewer. Now make the following modifications:

1. Change the constructor so the color code is (0,0,0) --- absence of color. What color should this be? Run the program to

check.
2. Try a few other combinations of color codes to see what you get. The description of the Color class in Appendix M

contains documentation that gives the codes for the pre-defined colors.
3. Notice in the Color class in Appendix M there is a constructor that takes a single integer as an argument. The first 8 bits

of this integer are ignored while the last 24 bits define the color—8 bits for red, 8 for green, and the last 8 bits for blue.
Hence, the bit pattern

 00000000000000001111111100000000

should represent pure green. Its base 10 value is 65280. Change the declaration of the myColor object to

 Color myColor = new Color (65280);

Compile and run the program. Do you see green?

4. The Color class has methods that return the individual color codes (for red, green, and blue) for a Color object. For

example,

 redCode = myColor.getRed();

returns the code for the red component of the myColor object (redCode should be a variable of type int). The methods
that return the green and blue components are getGreen and getBlue, respectively. Add statements to the program,
similar to the above, to get the three color codes for myColor (you need to declare some variables). Then add statements
such as

 page.drawString("Red: " + redCode, ____ , ____);

to label the rectangle with the three color codes (fill in the blanks with appropriate coordinates so each string is drawn
inside the rectangle—you also need to set the drawing color to something such as black so the strings will show up).
Compile and run the program; for the pure green color above, you should get 0 for red and blue and 255 for green. Now
change the integer you use to create the color from 65280 to 115 and see what you get (can you predict?), then try it
again with 2486921 (harder to predict!).

Chapter 2: Data and Expressions 33

// **
// Colors.java
//
// Draw rectangles to illustrate colors and their codes in Java
// **

import javax.swing.JApplet;
import java.awt.*;

public class Colors extends JApplet
{
 public void paint (Graphics page)
 {
 // Declare size constants
 final int PAGE_WIDTH = 600;
 final int PAGE_HEIGHT = 400;

 // Declare variables
 int x, y; // x and y coordinates of upper left-corner of each shape
 int width, height; // width and height of each shape

 Color myColor = new Color (200, 100, 255);

 // Set the background color and paint the screen with a white rectangle
 setBackground (Color.white);
 page.setColor(Color.white);
 page.fillRect(0, 0, PAGE_WIDTH, PAGE_HEIGHT);

 // Set the color for the rectangle
 page.setColor (myColor);

 // Assign the corner point and width and height then draw
 x = 200;
 y = 125;
 width = 200;
 height = 150;

 page.fillRect(x, y, width, height);

 }
}

Colors.html

<html>
<applet code="Colors.class" width=600 height=400>
</applet>
</html>

