Chapter 12: Collections
L ab Exercises

Recursive Processing of Linked List

An Array Queue |mplementation
A Linked Queue |mplementation

An Array Stack Implementation
A Linked Stack Implementation

Topic Lab Exercises
Linked Lists Linked List of Integers
Linked List of Objects
Doubly Linked Lists
Queues
Queue Manipulation
Stacks
Stack Manipulation
Matching Parentheses
250

Chapter 12: Collections

A Linked List of Integers

File IntList.java contains definitions for alinked list of integers. The class contains an inner class IntNode that holds
information for asingle nodein the list (a node has a value and a reference to the next node) and the following IntList
methods:

public IntList()—constructor; creates an empty list of integers

public void addToFront(int val)—takes an integer and puts it on the front of the list
public void addToEnd(int val)—takes an integer and putsit on the end of the list
public void removeFirst()—removes the first value from the list

public void print()—prints the elementsin the list from first to last

OooOood

File IntListTest.java contains a driver that allows you to experiment with these methods. Save both of these files to your
directory, compile and run IntListTest, and play around with it to see how it works. Then add the following methods to the
IntList class. For each, add an option to the driver to test it.

public int length()—returns the number of elementsin thelist

public String toString()—returns a String containing the print value of thelist.

public void removel ast()—removes the last element of thelist. If the list is empty, does nothing.

public void replace(int oldVal, int newV al)—replaces al occurrences of oldVal in the list with newVal. Note that you
can till use the old nodes; just replace the values stored in those nodes.

NSNS

// PR SRS E S S EESESEESEEEEEEEEEEEEEEEEEEEEEEEEEREREREEEEEEEEEEEE RS S SRS S
// FILE: IntList.java

// Purpose: Defines a class that represents a list of integers

// khkkkhkkkhkhkkhkhhkhkhhkhkhkhhhhhhhhhkhkhhkhkhhkhkhhhkhhhkhhhhhhkhkhhhkhkkhhkkkhdkkkhkkk,kk **x*

public class IntList

{

private IntNode front; //first node in list
J /== m e
// Constructor. Initially list is empty.
J] =D
public IntList ()
{

front = null;
}
ffmm e
// Adds given integer to front of list.
[/ ==
public void addToFront (int wval)
{

front = new IntNode(val, front) ;
}
J /= mm e
// Adds given integer to end of list.
[/ =mmm oo
public void addToEnd (int wval)
{

IntNode newnode = new IntNode (val,null) ;

//if list is empty, this will be the only node in it
if (front == null)
front = newnode;

Chapter 12: Collections 251

else

//make temp point to last thing in list
IntNode temp = front;
while (temp.next != null)
temp = temp.next;
//1link new node into list
temp.next = newnode;

// Removes the first node from the list.
// If the list is empty, does nothing.

public void removeFirst ()

{

if (front != null)
front = front.next;

public void print ()

{

System.out.println("--------------------- "y,
System.out.print ("List elements: ");

IntNode temp = front;

while (temp != null)

{

System.out.print (temp.val + " ");
temp = temp.next;

}

System.out.println("\n--------------------- \n") ;

}

//***

// An inner class that represents a node in the integer list.

// The public variables are accessed by the IntList class.
//***

private class IntNode

{

public int wval; //value stored in node
public IntNode next; //1link to next node in list

// Constructor; sets up the node given a value and IntNode reference
public IntNode (int wval, IntNode next)

{

this.val = val;
this.next = next;

252 Chapter 12: Collections

// PR R SRS E RS RS EE S
// IntListTest.java

// Driver to test IntList methods.
// khkkkhkhkhkhkkhkhkhkhhhdhkhkhkhhkhhhdhdhkhkhkhhkhhhdhdhkhkhhkhkhhdhdhdhkhkhhkhhhdhd,d,k,khhd***,*,*,**%

import java.util.Scanner;

public class IntListTest
private static Scanner scan;
private static IntList list = new IntList();

// Creates a list, then repeatedly prints the menu and does what
// the user asks until they quit.

public static void main(String[] args)
{
scan = new Scanner (System.in) ;
printMenu() ;
int choice = scan.nextInt () ;
while (choice != 0)

{

dispatch (choice) ;

printMenu() ;
choice = scan.nextInt () ;
}
}
J /= e
// Does what the menu item calls for.
T

public static void dispatch(int choice)

{

int newVal;
switch (choice)

{

case O0:
System.out.println ("Bye!") ;
break;
case 1: //add to front
System.out.println ("Enter integer to add to front");
newVal = scan.nextInt () ;
list.addToFront (newVval) ;
break;
case 2: //add to end
System.out.println ("Enter integer to add to end");
newVal = scan.nextInt () ;
list.addToEnd (newVal) ;
break;
case 3: /J/remove first element
list.removeFirst () ;
break;
case 4: //print

Chapter 12: Collections 253

list.print () ;

break;
default:
System.out.println ("Sorry, invalid choice");
}
}
J /=
// Prints the user's choices
J] -
public static void printMenu ()
{

System.out.println("\n Menu ") ;
System.out.println (" ====");
System.out.println("0: Quit");

System.out.println("1l: Add an integer to the front of the list");
System.out.println("2: Add an integer to the end of the list");
System.out.println("3: Remove an integer from the front of the list");
System.out.println("4: Print the list");

System.out.print ("\nEnter your choice: ");

Chapter 12: Collections

Recursive Processing of Linked Lists

File IntList.java contains definitions for alinked list of integers (see previous exercise). The class contains an inner class
IntNode, which holds information for asingle node in the list (a node has a value and a reference to the next node) and the
following IntList methods:

OooOood

public IntList()—constructor; creates an empty list of integers

public void addToFront(int val)—takes an integer and puts it on the front of the list
public void addToEnd(int val)—takes an integer and putsit on the end of the list
public void removeFirst()—removes the first value from the list

public void print()—prints the elementsin the list from first to last

File IntListTest.java contains a driver that allows you to experiment with these methods. Save both of these files to your
directory. If you have not already worked with these filesin a previous exercise, compile and run IntListTest and play around
with it to see how it works. Then add the following methods to the IntList class. For each, add an option in the driver to test
the method.

1.

public void printRec()—prints the list from first to last using recursion. Hint: The basic ideais that you print the first
itemin thelist then do arecursive call to print the rest of the list. This means you need to keep track of what hasn't been
printed yet (the "rest" of thelist). In particular, your recursive method needs to know where the first item is. Note that
printRec() has no parameter so you need to use a helper method that does most of the work. It should have a parameter
that lets it know where the part of thelist to be printed starts.

public void printRecBackwards()—prints the list from last to first using recursion. Hint: Printing backward recursively
isjust like printing forward recursively except you print the rest of the list before printing this element. Simple!

Chapter 12: Collections 255

A Linked List of Objects

Listing 12.2 in the text is an example of alinked list of objects of type Magazine; the file IntList.java contains an example of
alinked list of integers (see previous exercise). A list of objectsisalot like alist of integers or a particular type of object
such as a Magazine, except the value stored is an Object, not an int or Magazine. Write a class ObjList that contains arbitrary
objects and that has the following methods:

public void addToFront (Object obj)—puts the object on the front of the list
public void addToEnd (Object obj)—puts the abject on the end of the list
public void removeFirst()—removes the first value from the list

public void removel ast()—removes the last value from the list

public void print()—prints the elements of the list from first to last

I A A |

These methods are similar to those in IntList. Note that you won't have to write all of these again; you can just make very
minor modifications to the IntList methods.

Also write an ObjListTest class that creates an ObjList and puts various different kinds of objectsin it (String, array, etc) and
then printsit.

256 Chapter 12: Collections

Doubly Linked Lists

Sometimesit is convenient to maintain references to both the next node and the previous node in alinked list. Thisiscalled a
doubly linked list and isillustrated in Figure 12.4 of the text. File DoubleLinked.java contains definitions for a doubly linked
list of integers. This class contains an inner class IntNode that holds information for asingle node in the list (its value and
references to the next and previous nodes). The DoubleLinked class also contains the following methods:

[0 public DoubleLinked()—constructor; creates an empty list of integers
[0 public void addToFront(int val)—takes an integer and putsit on the front of the list
[0 public void print()—prints the elements in the list from first to last

File DoubleLinkedTest.java contains a driver that allows you to experiment with these methods. Save both of these filesto
your directory, compile and run DoubleLinkedTest, and play around with it to see how it works. Then add the following
methods to the DoubleLinked class. For each, add an option to the driver to test it.

public void addToEnd(int val)—takes an integer and putsit on the end of the list

public void removeFirst()—removes the first value from the list. If the list is empty, does nothing.
public void removel ast()—removes the last element of thelist. If the list is empty, does nothing.
public void remove(int oldVal)—removes the first occurrence of oldVal inthelist.

AwbdpE

// khkkkhkhkhkhkkhkhkhkhhhhkhkhkhkhkhhhdhdhhkhkhkhkhhdhdhdhhkhhkhkhhdhdhdhkhkhhhkhhdhdhkhk,khhkhdkd,d,k,k,kh**x*x
// DoubleLinked.java

// A class using a doubly linked list to represent a list of integers.

//

// khkkkhkkkhkhkkhkhhkhkhhhkhkhhkhhhhhkhhhkhhhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhdkkkhkk k,kk **x*

public class DoubleLinked

{

private IntNode list;

T e
// Constructor -- initializes list

f]
public DoubleLinked()

{
}
[/ e

// Prints the list elements

J] e
public void print ()

{

list = null;

for (IntNode temp = list; temp != null; temp = temp.next)
System.out.println(temp.val) ;

R R
// Adds new element to front of list
A
public void addToFront (int wval)
{

IntNode newNode = new IntNode (val) ;

newNode.next = list;

if (list != null)

list.prev = newNode;
list = newNode;

}
Chapter 12: Collections 257

}

//***

// An inner class that represents a list element.
//***

private class IntNode
int val;
IntNode next;
IntNode prev;

public
public
public
public IntNode (int wval)
{

val;

null;
null;

val =
next =
prev

this.
this.
this.

// kkkkhkkkhkhkhkhhkhkhhkhkhhkhhkhhhkhkhhhkhhkhkhhhkhhhkhhhkhhhhhkhhkhkkhkkkhkkkhkkkhkk**x*

//
//
//

DoubleLinkedTest.java

Driver to test DoublelLinked methods.

// kkkkhkkkhkhhkkhkhhhkhhkhkhkhkhhhhhkhkkhhkhkhhkhkhhhkhhhkhhhkhhhhkhkhhkhkkhhkkkhkkkhkkk,kk**x*

import java.util.Scanner;

public class DoubleLinkedTest

{

private static Scanner scan;
private static DoubleLinked list

// Creates a list,

= new DoubleLinked() ;

then repeatedly prints the menu and does what

258

// the user asks until they quit.

public static void main(String[] args)

{
scan = new Scanner (System.in) ;
printMenu() ;
int choice = scan.nextInt () ;
while (choice 0)
{

dispatch (choice) ;

printMenu() ;

choice = scan.nextInt () ;

public static void dispatch(int choice)

{

int newVal;
switch (choice)

{

case O0:

Chapter 12: Collections

System.out.println("Bye!") ;
break;

case 1: //print
System.out.println("** List elements **");
list.print () ;

break;
case 2: //add to front
System.out.println ("Enter integer to add to front");
newVal = scan.nextInt () ;
list.addToFront (newVval) ;
break;
default:

System.out.println("Sorry, invalid choice");

public static void printMenu()
{
System.out.println("\n Menu ")
System.out.println (" ====");
System.out.println("0: Quit");
System.out.println("1l: Print list");
System.out.println("2: Add an integer to the front of the list");
System.out.print ("\nEnter your choice: ");

Chapter 12: Collections 259

An Array Queue I mplementation

File QueueADT.java contains a Java interface representing a queue ADT. In addition to enqueue(), dequeue(), and isEmpty(),
this interface contains two methods that are not described in the book —isFull () and size(). File ArrayQueue.java contains a
skeleton for an array-based implementation of thisinterface; it aso includes atoString() method that returns a string
containing the queue elements, one per line. File TestQueue.java contains a simple test program.

Complete the method definitionsin ArrayQueue.java. Some things to think about:

e A queue has activity at both ends -- elements are enqueued at one end and dequeued from the other end. In an array
implementation this means that repeated enqueues and dequeues will shift the queue elements from the beginning to
the end of the array, so the array may appear full (in that the last element isin the last lot) when there are actually
spaces available at the beginning. To address this the next element can simply be placed in the first element of the
array, so that the queue "wraps around” the array. Thisis called a circular array implementation, and is used because
it allows the enqueue and dequeue methods to be implemented efficiently in both space and time.

e You'll need to use integers to keep track of the indices of the front and back of the queue. Think carefully about
what initial values these variables (front and back) should get in the constructor and how they should be incremented
given the circular nature of the implementation.

e Theeasiest way to implement the size() method is to keep track of the number of elements as you go with the
numElements variable -- just increment this variable when you enqueue an element and decrement it when you
dequeue an element.

e Aneasy way totell if aqueueisfull inan array implementation isto check how many elementsit contains (stored in
numElements). If it'sequal to the size of the array, the queue isfull. Y ou can also use numElementsto check if the
gueue is empty.

e Thetest program given tries to enqueue more elements than will fit in default size of the queue. Be sure that you
check if the queue is full before enqueueing, and if it is full just do nothing. It's safest to do thisin the enqueue()
method.

Study the code in TestQueue.java so you know what it is doing, then compile and run it. Correct any problemsin your
Linked Queue class.

//***

// QueueADT.java

// The classic FIFO queue interface.
//***

public interface QueueADT

{
J /== e
// Puts item on end of queue.
R R EECREEEEEREES
public void enqueue (Object item) ;
J /== e
// Removes and returns object from front of queue.
T S
public Object degqueue () ;
J /== e
// Returns true if queue is empty.
SRR
public boolean isEmpty () ;
J /== e
// Returns true if queue is full.
T SRR

public boolean isFull() ;

260 Chapter 12: Collections

public int size();

//***

// ArrayQueue.java

// An array-based implementation of the classic FIFO queue interface.

//***

public class ArrayQueue implements QueueADT

{

private final int DEFAULT SIZE = 5;
private Object[] elements;

private int numElements;

private int front, back;

// Constructor; creates array of default size.

// Returns true if queue is full, but it never is.
T T
public boolean isFull ()

{

}

Chapter 12: Collections

261

// Returns the number of elements in the queue.

// Returns a string containing the elements of the queue
// from first to last

public String toString()

{

String result = "\n";
for (int i1 = front, count=0; count < numElements;
i=(i+1) %elements.length, count++)
result = result elements[i]l+ "\n";

return result;

//***

// TestQueue

// A driver to test the methods of the QueueADT implementations.
//**

public class TestQueue

{

public static void main(String[] args)

{

QueueADT g = new ArrayQueue () ;

System.out.println ("\nEnqueuing chocolate, cake, pie, truffles:");
g.enqueue ("chocolate") ;

g.enqueue ("cake") ;

g.enqueue ("pie") ;

g.enqueue ("truffles") ;
System.out.println("\nHere's the queue: " + q);

System.out.println ("It contains " + g.size() + " items.");

System.out.println ("\nDequeuing two...");
System.out.println(g.dequeue()) ;
System.out.println(g.dequeue()) ;

System.out.println ("\nEnqueuing cookies, profiteroles, mousse, cheesecake,
ice cream:") ;

g.enqueue ("cookies") ;

(
g.enqueue ("profiteroles") ;
g.enqueue ("mousse") ;
g.engqueue ("cheesecake") ;
g.enqueue ("ice cream") ;
System.out.println("\nHere's the queue again: " + q);
System.out.println ("Now it contains " + g.size() + " items.");

System.out.println("\nDequeuing everything in queue") ;
while (!qg.isEmpty())

262 Chapter 12: Collections

System.out.println(g.dequeue()) ;

System.out.println("\nNow it contains " + g.size() + " items.");
if (g.isEmpty())

System.out.println("Queue is empty!");
else

System.out.println("Queue is not empty -- why not??!!");

Chapter 12: Collections 263

A Linked Queue Implementation

File QueueADT.java contains a Java interface representing a queue ADT. In addition to enqueue(), dequeue(), and isEmpty(),
thisinterface contains two methods that are not described in the book —isFull () and size(). File LinkedQueue.java contains
askeleton for alinked implementation of thisinterface; it also includes atoString() method that returns a string containing
the queue elements, one per line. It depends on the Node class in Node.java. (This could also be defined as an inner class.)
File TestQueue.java contains a simple test program.

Complete the method definitionsin LinkedQueue.java. Some things to think about:
In enqueue() and dequeue() you have to maintain both the front and back pointers — thistakes alittle thought. In
particular, in enqueue be careful of the case where the queue is empty and you are putting the first itemin. This case

requires special treatment (think about why).

The easiest way to implement the size() method isto keep track of the number of elements as you go with the
numElements variable -- just increment this variable when you enqueue an element and decrement it when you

dequeue an element.
A linked queueis never full, so isFull() awaysreturns false. Easy!

Study the code in TestQueue.java so you know what it is doing, then compile and runit. Correct any problemsin your
Linked Queue class.

//***

// QueueADT.java

// The classic FIFO queue interface.
//***

public interface QueueADT

{

}

ffmm
// Returns true if queue is empty.

J /===
public boolean isEmpty () ;

ffmm
// Returns true if queue is full.

J /=== e
public boolean isFull () ;

ffmm e
// Returns the number of elements in the queue.
J /=== e

public int size();

//***

// LinkedQueue.java

// A linked-list implementation of the classic FIFO queue interface.
//***

public class LinkedQueue implements QueueADT

264

Chapter 12: Collections

private Node front, back;
private int numElements;

// Constructor; initializes the front and back pointers
// and the number of elements.

public Object dequeue ()

{

Object item = null;

// Returns true if queue is full, but it never is.

// Returns a string containing the elements of the queue
// from first to last

public String toString()
{
String result = "\n";
Node temp = front;
while (temp != null)
{
result += temp.getElement () + "\n";
temp = temp.getNext () ;

Chapter 12: Collections 265

}

return result;

}

//**

//
//

Node. java
A general node for a singly linked list of objects.

//**

public class Node

{

266

private Node next;
private Object element;

// Creates an empty node

T CEEEEEEEEEREES
public Node ()

{

next = null;
element = null;

// Creates a node storing a specified element

f
public Node (Object element)

{

next = null;
this.element = element;

public Node getNext ()

{

return next;

public void setNext (Node node)

{

next = node;

public Object getElement ()

{

return element;

Chapter 12: Collections

public void setElement (Object element)

{

this.element = element;

}

//***

// TestQueue
// A driver to test the methods of the QueueADT implementations.
//**

public class TestQueue

{

public static void main(String[] args)

{

QueueADT g = new LinkedQueue () ;

System.out.println("\nEnqueuing chocolate, cake, pie, truffles:");
g.enqueue ("chocolate") ;

g.engqueue ("cake") ;

g.enqueue ("pie") ;
(

g.enqueue ("truffles") ;
System.out.println("\nHere's the queue: " + q);
System.out.println ("It contains " + g.size() + " items.");

System.out.println ("\nDequeuing two...");
System.out.println (g.dequeue()) ;
System.out.println(g.dequeue()) ;

System.out.println ("\nEnqueuing cookies, profiteroles, mousse, cheesecake,
ice cream:") ;

g.enqueue ("cookies") ;

(
g.enqueue ("profiteroles") ;
g.engueue ("mousse") ;
g.engqueue ("cheesecake") ;
g.enqueue ("ice cream") ;
System.out.println("\nHere's the queue again: " + q);
System.out.println("Now it contains " + g.size() + " items.");

System.out.println("\nDequeuing everything in queue") ;
while (!g.isEmpty())
System.out.println (g.dequeue()) ;

System.out.println("\nNow it contains " + g.size() + " items.");
if (g.isEmpty())

System.out.println ("Queue is empty!");
else

System.out.println("Queue is not empty -- why not??!!");

Chapter 12: Collections

267

Queue M anipulation

The file QueueTest.java contains a printQueue method that takes an object of type QueueADT and prints its contents,
restoring the queue before it returns. It uses atemporary queue that actually holds the same information as the original queue.
If you know the number of elementsin the queue, you can write a printQueue method that prints the queue and restores it to
its original form without using an auxiliary data structure (stack, queue, etc.). Think about how, then do it! That is, modify
the printQueue method in QueueT est so that it behaves exactly as it does now but does not require an auxiliary data structure.
Note that this code uses a LinkedQueue implementation for the QueueADT (see previous exercises), but you could substitute
an ArrayQueueif you like.

// khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkkhhkhkkhhkkkhkkkk,kkk,kk*k*x*%

//
//
//
//

QueueTest.java

A simple driver to manipulate a queue.

// khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkkhkhkdkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhkkkhkkk,kkhkkk,kkk,k*x*

public class QueueTest

public static void main(String[] args)

QueueADT queue = new LinkedQueue () ;

//put some stuff in the queue: 0,2,4,..,14
for (int i=0; 1<8; i++)

queue.enqueue (1*2) ;
System.out.println("\n\n** Initial queue **");
printQueue (queue) ;

//dequeue 4 items
for (int 1=0; i<4; i++)
queue.dequeue () ;
System.out.println("\n\n** After dequeueing 4 items **");
printQueue (queue) ;

//enqueue 7 more: 1,2,..,7
for (int 1=0; i<7; i++)
queue.enqgueue (1+1) ;

System.out.println ("\n\n** After enqueueing 7 more items **");

printQueue (queue) ;

public static void printQueue (QueueADT gqueue)

{
{
}
{
268

QueueADT temp = new LinkedQueue () ;

//print everything in the queue, putting elements
//back into a temporary queue
while (!queue.isEmpty())
{
int val = queue.dequeue () ;
temp.enqueue (val) ;
System.out.print (val + " ");

Chapter 12: Collections

}

System.out.println ();

//restore the original queue
while (!temp.isEmpty())

{

int val = temp.dequeue () ;
queue.enqgueue (val) ;

}

Chapter 12: Collections 269

An Array Stack | mplementation

Java has a Stack class that holds elements of type Object. However, many languages do not provide stack types, so it is useful
to be able to define your own. File SackADT.java contains an interface representing the ADT for a stack of objects and
ArrayStack.java contains a skeleton for a class that uses an array to implement this interface. Fill in code for the following

public methods:

void push(Object val)
int pop()

boolean isEmpty()
boolean isFull()

[

In writing your methods, keep in mind the following:

[0 The bottom of an array-based stack is always the first element in the array. In the skeleton given, variable top holds the
index of the location where the next value pushed will go. So when the stack is empty, top is O; when it contains one

element (in location O of the array), top is 1, and so on.

[0 Make push check to seeif the array isfull first, and do nothing if itis. Similarly, make pop check to seeif the array is

empty first, and return null if itis.

[0 Popping an element removes it from the stack, but not from the array—only the val ue of top changes.

File SackTest.java contains a simple driver to test your stack. Save it to your directory, compile it, and make sure it works.
Note that it tries to push more things than will fit on the stack, but your push method should deal with this.

// khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhhkkkhkkk,kk,kkk,kkk,k*x*

// StackADT. java

// The classic Stack interface.
// PR RS S S S S EESEESEESEEEEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEE RS SRR

public interface StackADT

{
T
// Adds a new element to the top of the stack.
/] ==
public void push(Object val) ;
T SRR
// Removes and returns the element at the top of the stack.
/] =
public Object pop () ;
J] mm e
// Returns true if stack is empty, false otherwise.
/] ==
public boolean isEmpty () ;
T
// Returns true if stack is full, false otherwise.
/] e
public boolean isFull() ;

}

// khkkkhkkkhkhkkhkhhhkhhkhkhhkhhhhhhhhhkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhdkkkhkk k,kk **x*

// ArrayStack.java
//

// An array-based Object stack class with operations push,
// pop, and isEmpty and isFull.
//

// dkhkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkkhhkhkkhhkhkkhkkk,kk,kkk,kkk,k*x*%

270

Chapter 12: Collections

public class ArrayStack implements StackADT

{
private int stackSize = 5; // capacity of stack
private int top; // index of slot for next element
private Object[] elements;

[/ s
// Constructor -- initializes top and creates array

/] =l
public ArrayStack ()

{

}

f] ==
// Adds element to top of stack if it’s not full, else
// does nothing.

RO EEE R
public void push(Object wval)

{
}
[/ e

// Removes and returns value at top of stack. If stack
// 1is empty returns null.

[/ e
public Object pop()

{
}
/] e

// Returns true if stack is empty, false otherwise.
/] ==
public boolean isEmpty ()

{

}
R e e e PP

// Returns true if stack is full, false otherwise.
N
public boolean isFull()

{
}

Chapter 12: Collections 271

//
//
//
//
//
//
//

kkkkhkkkhkhkkhkhkkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhhhkhkhhkhkkhhkhkhkhkhkk khkk kkk**x

StackTest.java

A simple driver that exercises push, pop,

isFull and isEmpty.

Thanks to autoboxing, we can push integers onto a stack of Objects.

kkkkhkkkhkhkkhkhkkhkhhhkhhhkhhhkhhhkhhhhkhkhhkhhhkhhhhkkhhkhkkhkkhkhkk kkk kkk**x

public class StackTest

{

272

public static void main(String[] args)

{

StackADT stack = new ArrayStack() ;

//push some stuff on the stack
for (int 1=0; 1i<6; i++)
stack.push(i*2) ;

//pop and print
//should print 8 6 4 2 0
while (!stack.isEmpty())

System.out.print (stack.pop() + " ");

System.out.println() ;

//push a few more things
for (int i=1; i<=6; 1i++)
stack.push (i) ;

//should print 5 4 3 2 1
while (!stack.isEmpty())

System.out.print (stack.pop() + " ");

System.out.println() ;

Chapter 12: Collections

A Linked Stack |mplementation

Java has a Stack class that holds elements of type Object. However, many languages do not provide stack types, so it is useful
to be able to define your own. File SackADT.java contains an interface representing the ADT for a stack of objects and
LinkedStack.java contains a skeleton for a class that uses a linked list to implement thisinterface. It depends on the Node
classin Nodejava. (This could also be defined as an inner class.) Fill in code for the following public methods:

void push(Object val)
int pop()

boolean isEmpty()
boolean isFull()

[

In writing your methods, keep in mind that in alinked implementation of a stack, the top of stack is aways at the front of the
list. This makesit easy to add (push) and remove (pop) el ements.

File SackTest.java contains a simple driver to test your stack. Save it to your directory, compile it, and make sure it works.

// khkkkhkkkhkhkkhkhhhkhhkhkhhhkhhhhhhhhkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhkkkhkk k,kk **x*

// StackADT. java

// The classic Stack interface.
// khkhkhkkhdhkhkhkhkhkhhddhkhkhkhkhkhkdhddhkhkhkhkhkhdddhhkhkhkhhkhkdddhkhkhkhhhdddhhkhkdd,dkd,dk,hh*xx

public interface StackADT

{
A SREECEEEEEEEEES
// Adds a new element to the top of the stack.
/] =
public void push (Object wval) ;
R EEEE R R EPEEERE RS
// Removes and returns the element at the top of the stack.
i A SR
public Object popl() ;
A EREEEEEEEES
// Returns true if stack is empty, false otherwise.
/] ==
public boolean isEmpty () ;
T S
// Returns true if stack is full, false otherwise.
/] ==
public boolean isFull () ;

}

// khkhkkhkhkhkhkkhkhkhkhhhhkhkhkhkhkhhhdhdhhkhkhhkhhhdhdhkhkhhkhkhhhdhdhkhkhkhhkhhdhdhkhkhkhhkhkkkd,,k,k,kh**x*x
// LinkedStack.java

// An linked implementation of an Object stack class with operations push,
// pop, and isEmpty and isFull.

//

// khkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhhkhkkhhkkkhkkk,kk,kkk,kkk,k*x*

public class LinkedStack implements StackADT

{

private Node top; // reference to top of stack

Chapter 12: Collections 273

// Constructor -- initializes top
T EEEEEEEEEE
public LinkedStack()

{

}

J] ==
// Adds element to top of stack if it’s not full, else
// does nothing.
e EEEEEEEEEE
public void push (Object val)

{

}

J /e
// Removes and returns value at top of stack. If stack
// 1s empty returns null.

f]
public Object pop()

{

}

[/ e

// Returns true if stack is empty, false otherwise.
/] ==
public boolean isEmpty ()

{

}

R LR e R e PR PR PR

// Returns true if stack is full, false otherwise.

A R TR
public boolean isFull()

{
}

//**

// Node.java

// A general node for a singly linked list of objects.
//**

public class Node

{

274

private Node next;
private Object element;

public Node ()

{

next = null;
element = null;

// Creates a node storing a specified element

e
public Node (Object element)

Chapter 12: Collections

//
//
/7
//
//
//
//

{

next = null;
this.element = element;

public Node getNext ()

{

return next;

public void setNext (Node node)

{

next = node;

public Object getElement ()

{

return element;

public void setElement (Object element)

{
}

this.element = element;

kkkkhkkhkhkhkhkhkhhkhkhhhkhhhkhhhkhkhhkhkhhhhhhhhhhkkhhkkhkhkkhkhkkhkhkk kk***x

StackTest.java

A simple driver that exercises push, pop, isFull and isEmpty.
Thanks to autoboxing, we can push integers onto a stack of Objects.

kkkkhkkhkhkkhkhkkhkhhkhkhhkhkhhhkhhhkhkhhhhhhhhhkhhhkkhhkkhkhkkkhkk khkk kkk**x

public class StackTest

{

public static void main(String[] args)

{

StackADT stack = new LinkedStack() ;

//push some stuff on the stack
for (int 1=0; 1i<10; i++)
stack.push(i*2) ;

//pop and print
//should print 18 16 14 12 10 8 6 4 2 0
while (!stack.isEmpty())

Chapter 12: Collections 275

System.out.print (stack.pop() + " ");
System.out.println() ;

//push a few more things
for (int i=1; i<=6; i++)
stack.push (i) ;

//should print 5 4 3 2 1

while (!stack.isEmpty())
System.out.print (stack.pop() + " ");

System.out.println() ;

276 Chapter 12: Collections

Stack Manipulation

Sometimesit's useful to define operations on an ADT without changing the type definition itself. For example, you might
want to print the elements in a stack without actually adding a method to the Stack ADT (you may not even have accessto
it). To explore this, use either the Stack class provided by Java (in java.util) or one of the stack classes that you wrotein an
earlier 1ab exercise and the test program StackTest.java. Add the following static methods to the StackTest class (the
signature for these methods and the declaration in StackTest assumes you are using a stack class named Stack—modify them
to use the name of your class):

00 void printStack(Stack s)—prints the elementsin stack s from top to bottom. When printStack returns, s should be
unchanged.

[0 Stack reverseStack(Stack s)—returns a new stack whose elements are backwards from those in s. Again, sis unchanged.

[0 Stack removeElement(Stack s, int val)—returns a new stack whose elements are the same asthosein s (and in the same
order) except that all occurrences of val have been removed. Again, sis unchanged.

Modify the main method to test these methods. Be sure you print enough information to see if they're working!

// kkhkhkkkhkkhhkkhkkhkhkhkkhkhhkhkkhhhkkhdhhhhhhkhdhhhkhdhhkhdhhddhhkhdhhkhdhkhdhhkddhhdd,hkrd,hkk,*x*%x
// StackTest.java

// A simple driver to test a stack.

//

// khkkkhkkkhkhkkhkhhhkhhhkhkhhhhhhkhhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhkkhhkkkhkkkhkk k,kk **x*

import java.util.Stack;
public class StackTest

{

public static void main(String[] args)

{

// Declare and instantiate a stack
Stack stack = new Stack() ;

//push some stuff on the stack
for (int i=0; 1<10; i++)
stack.push (i) ;
stack.push (5) ;
// call printStack to print the stack
// call reverseStack to reverse the stack

// call printStack to print the stack again

// call removeElement to remove all occurrences of the value 5 - save the
// stack returned from this call

// call printStack to print the original stack and the new stack.

Chapter 12: Collections 277

M atching Par entheses

One application of stacksisto keep track of things that must match up such as parentheses in an expression or bracesin a
program. In the case of parentheses when a left parenthesisis encountered it is pushed on the stack and when aright
parenthesis is encountered its matching left parenthesis is popped from the stack. If the stack has no |eft parenthesis, that
means the parentheses don't match—there is an extraright parenthesis. If the expression ends with at least one left
parenthesis still on the stack then again the parentheses don't match—there is an extra left parenthesis.

File ParenMatch.java contains the skeleton of a program to match parentheses in an expression. It uses the Stack class
provided by Java (in java.util). Complete the program by adding aloop to process the line entered to see if it contains
matching parentheses. Just ignore characters that are neither left nor right parentheses. Y our loop should stop as soon as it
detects an error. After the loop print a message indicating what happened—the parentheses match, there are too many left
parentheses, or there are too many right parentheses. Also print the part of the string up to where the error was detected.

// khkkkhkkkhkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkkkhkkkkhkkk,kkkk,kk**k*%

// ParenMatch. java

//
// Determines whether or not a string of characters contains

// matching left and right parentheses.
// R R RS E RS EEEREEEEEEEEEEEEEEEE SRS

import java.util.*;
import java.util.Scanner;

public class ParenMatch

{

public static void main (String[] args)

{

Stack s = new Stack() ;

String line; // the string of characters to be checked
Scanner scan = new Scanner (System.in) ;

System.out.println ("\nParenthesis Matching") ;

System.out.print ("Enter a parenthesized expression: ");

line = scan.nextLine() ;

// loop to process the line one character at a time

// print the results

278 Chapter 12: Collections

