
Chapter 11: Recursion 221 

Chapter 11: Recursion 
Lab Exercises 
 
Topics   Lab Exercises  
Basic Recursion   Computing Powers 

Counting and Summing Digits 
Base Conversion 
Efficient Computation of Fibonacci Numbers 

 
Recursion on Strings  Palindromes 

Printing a String Backwards  
 
Recursion on Arrays  Recursive Linear Search 

Recursive Binary Search 
A List of Employees 

 
Fractals    Sierpinski Triangles 

Modifying the Koch Snowflake 
 



222 Chapter 11: Recursion 

Computing Powers 
 
Computing a positive integer power of a number is easily seen as a recursive process. Consider an:  
 
� If n = 0, an is 1 (by definition)  
� If n > 0, an is a * an–1  
 
File Power.java contains a main program that reads in integers base and exp and calls method power to compute baseexp. Fill 
in the code for power to make it a recursive method to do the power computation. The comments provide guidance.  
 
 
// **************************************************************** 
//   Power.java 
// 
//   Reads in two integers and uses a recursive power method 
//   to compute the first raised to the second power. 
// **************************************************************** 
 
import java.util.Scanner; 
 
public class Power 
{ 
    public static void main(String[] args) 
    { 
 int base, exp; 
 int answer; 
 
 Scanner scan = new Scanner(System.in); 
 
 System.out.print("Welcome to the power program! "); 
 System.out.println("Please use integers only."); 
  
 //get base 
 System.out.print("Enter the base you would like raised to a power: "); 
 base = scan.nextInt(); 
 
 //get exponent 
 System.out.print("Enter the power you would like it raised to: "); 
 exp = scan.nextInt(); 
 
 answer = power(base,exp); 
 System.out.println(base + " raised to the " + exp + " is " + answer); 
    } 
 
    // ------------------------------------------------- 
    //   Computes and returns base^exp 
    // ------------------------------------------------- 
    public static int power(int base, int exp) 
    { 
 int pow; 
 
 //if the exponent is 0, set pow to 1  
 
 //otherwise set pow to base*base^(exp-1) 
 
 //return pow  
 
    } 
} 



Chapter 11: Recursion 223 

Counting and Summing Digits 
 
The problem of counting the digits in a positive integer or summing those digits can be solved recursively. For example, to 
count the number of digits think as follows:  
 
� If the integer is less than 10 there is only one digit (the base case).  
� Otherwise, the number of digits is 1 (for the units digit) plus the number of digits in the rest of the integer (what's left 

after the units digit is taken off). For example, the number of digits in 3278 is 1 + the number of digits in 327.  
 
The following is the recursive algorithm implemented in Java.  
 
     public int numDigits (int num) 
     { 
         if (num < 10) 
           return (1);   // a number < 10  has only one digit 
         else 
           return (1 + numDigits (num / 10)); 
     } 
 
Note that in the recursive step, the value returned is 1 (counts the units digit) + the result of the call to determine the number 
of digits in num / 10. Recall that num/10 is the quotient when num is divided by 10 so it would be all the digits except the 
units digit.  
 
The file DigitPlay.java contains the recursive method numDigits (note that the method is static—it must be since it is called 
by the static method main). Copy this file to your directory, compile it, and run it several times to see how it works. Modify 
the program as follows:  
 
1. Add a static method named sumDigits that finds the sum of the digits in a positive integer. Also add code to main to test 

your method. The algorithm for sumDigits is very similar to numDigits; you only have to change two lines!  
 
2. Most identification numbers, such as the ISBN number on books or the Universal Product Code (UPC) on grocery 

products or the identification number on a traveller's check, have at least one digit in the number that is a check digit. 
The check digit is used to detect errors in the number. The simplest check digit scheme is to add one digit to the 
identification number so that the sum of all the digits, including the check digit, is evenly divisible by some particular 
integer. For example, American Express Traveller's checks add a check digit so that the sum of the digits in the id 
number is evenly divisible by 9. United Parcel Service adds a check digit to its pick up numbers so that a weighted sum 
of the digits (some of the digits in the number are multiplied by numbers other than 1) is divisible by 7. Modify the main 
method that tests your sumDigits method to do the following: input an identification number (a positive integer), then 
determine if the sum of the digits in the identification number is divisible by 7 (use your sumDigits method but don't 
change it—the only changes should be in main). If the sum is not divisible by 7 print a message indicating the id number 
is in error; otherwise print an ok message. (FYI: If the sum is divisible by 7, the identification number could still be 
incorrect. For example, two digits could be transposed.) Test your program on the following input:  
� 3429072 --- error  
� 1800237 --- ok  
� 88231256 --- ok  
� 3180012 --- error  



224 Chapter 11: Recursion 

// ******************************************************************* 
//   DigitPlay.java 
//  
//   Finds the number of digits in a positive integer. 
// ******************************************************************* 
 
import java.util.Scanner; 
 
public class DigitPlay 
{ 
 
    public static void main (String[] args) 
    { 
 int num;    //a number 
 
 Scanner scan = new Scanner(System.in); 
 
 System.out.println (); 
 System.out.print ("Please enter a positive integer: "); 
 num = scan.nextInt (); 
   
 if (num <= 0) 
     System.out.println ( num + " isn't positive -- start over!!"); 
 else  
     { 
  // Call numDigits to find the number of digits in the number 
  // Print the number returned from numDigits 
  System.out.println ("\nThe number " + num + " contains " + 
        + numDigits(num) + " digits."); 
  System.out.println (); 
     } 
    } 
 
    // ----------------------------------------------------------- 
    //  Recursively counts the digits in a positive integer  
    // ----------------------------------------------------------- 
    public static int numDigits(int num) 
    { 
 if (num < 10) 
     return (1); 
 else 
     return (1 + numDigits(num/10)); 
    } 
} 



Chapter 11: Recursion 225 

Base Conversion 
 
One algorithm for converting a base 10 number to base b involves repeated division by the base b. Initially one divides the 
number by b. The remainder from this division is the units digit (the rightmost digit) in the base b representation of the 
number (it is the part of the number that contains no powers of b). The quotient is then divided by b on the next iteration. The 
remainder from this division gives the next base b digit from the right. The quotient from this division is used in the next 
iteration. The algorithm stops when the quotient is 0. Note that at each iteration the remainder from the division is the next 
base b digit from the right—that is, this algorithm finds the digits for the base b number in reverse order.  
 
Here is an example for converting 30 to base 4:  
 
                   quotient       remainder 
                   --------       --------- 
       30/4 =          7              2 
  7/4  =          1              3 
  1/4  =          0              1 
 
The answer is read bottom to top in the remainder column, so 30 (base 10) = 132 (base 4).  
 
Think about how this is recursive in nature: If you want to convert x (30 in our example) to base b (4 in our example), the 
rightmost digit is the remainder x % b. To get the rest of the digits, you perform the same process on what is left; that is, you 
convert the quotient x / b to base b. If x / b is 0, there is no rest; x is a single base b digit and that digit is x % b (which also is 
just x).  
 
The file BaseConversion.java contains the shell of a method convert to do the base conversion and a main method to test the 
conversion. The convert method returns a string representing the base b number, hence for example in the base case when the 
remainder is what is to be returned it must be converted to a String object. This is done by concatenating the remainder with a 
null string. The outline of the convert method is as follows:  
 
      public static String convert (int num, int b) 
      { 
         int quotient;  // the quotient when num is divided by base b 
         int remainder; // the remainder when num is divided by base b 
 
         quotient = ____________________________; 
 
         remainder = ___________________________; 
 
         if ( _____________________________________ )  //fill in base case 
         { 
              return ("" + _______________________________ );     
         } 
         else 
         { 
      // Recursive step: the number is the base b representation of 
             // the quotient concatenated with the remainder  
 
   return ( __________________________________________________ ); 
 
         } 

} 
 
Fill in the blanks above (for now don't worry about bases greater than 10), then in BaseConversion.java complete the method 
and main. Main currently asks the user for the number and the base and reads these in. Add a statement to print the string 
returned by convert (appropriately labeled).  
 
Test your function on the following input:  
 
� Number: 89 Base: 2 ---> should print 1011001  



226 Chapter 11: Recursion 

� Number: 347 Base: 5 ---> should print 2342  
� Number: 3289 Base: 8 ---> should print 6331  
 
 
Improving the program: Currently the program doesn't print the correct digits for bases greater than 10. Add code to your 
convert method so the digits are correct for bases up to and including 16. 
 
 
 
 
// ****************************************************************** 
//   BaseConversion.java 
// 
//   Recursively converts an integer from base 10 to another base 
// ****************************************************************** 
 
import java.util.Scanner; 
 
public class BaseConversion 
{ 
    public static void main (String[] args) 
    { 
 int base10Num; 
 int base; 
 
 Scanner scan = new Scanner(System.in); 
 
 System.out.println (); 
 System.out.println ("Base Conversion Program"); 
 System.out.print ("Enter an integer: "); 
 base10Num = scan.nextInt(); 
 System.out.print ("Enter the base: "); 
 base = scan.nextInt(); 
 
 // Call convert and print the answer 
  
    } 
    // -------------------------------------------------- 
    //   Converts a base 10 number to another base. 
    // --------------------------------------------------  
    public static String convert (int num, int b) 
    { 
 int quotient;  // the quotient when num is divided by base b 
 int remainder; // the remainder when num is divided by base b 
    } 
 
} 



Chapter 11: Recursion 227 

Efficient Computation of Fibonacci Numbers 
 
The Fibonacci sequence is a well-known mathematical sequence in which each term is the sum of the two previous terms. 
More specifically, if fib(n) is the nth term of the sequence, then the sequence can be defined as follows:  
 
    fib(0) = 0 
    fib(1) = 1 
    fib(n) = fib(n-1) + fib(n-2)  n>1 
 
1. Because the Fibonacci sequence is defined recursively, it is natural to write a recursive method to determine the nth 

number in the sequence. File Fib.java contains the skeleton for a class containing a method to compute Fibonacci 
numbers. Save this file to your directory. Following the specification above, fill in the code for method fib1 so that it 
recursively computes and returns the nth number in the sequence.  

 
2. File TestFib.java contains a simple driver that asks the user for an integer and uses the fib1 method to compute that 

element in the Fibonacci sequence. Save this file to your directory and use it to test your fib1 method. First try small 
integers, then larger ones. You'll notice that the number doesn't have to get very big before the calculation takes a very 
long time. The problem is that the fib1 method is making lots and lots of recursive calls. To see this, add a print 
statement at the beginning of your fib1 method that indicates what call is being computed, e.g., "In fib1(3)" if the 
parameter is 3. Now run TestFib again and enter 5—you should get a number of messages from your print statement. 
Examine these messages and figure out the sequence of calls that generated them. (This is easiest if you first draw the 
call tree on paper.) . Since fib(5) is fib(4) + fib(3),you should not be surprised to find calls to fib(4) and fib(3) in the 
printout. But why are there two calls to fib(3)? Because both fib(4) and fib(5) need fib(3), so they both compute it—very 
inefficient. Run the program again with a slightly larger number and again note the repetition in the calls.  

 
3. The fundamental source of the inefficiency is not the fact that recursive calls are being made, but that values are being 

recomputed. One way around this is to compute the values from the beginning of the sequence instead of from the end, 
saving them in an array as you go. Although this could be done recursively, it is more natural to do it iteratively. Proceed 
as follows:  
a. Add a method fib2 to your Fib class. Like fib1, fib2 should be static and should take an integer and return an integer.  
b. Inside fib2, create an array of integers the size of the value passed in.  
c. Initialize the first two elements of the array to 0 and 1, corresponding to the first two elements of the Fibonacci 

sequence. Then loop through the integers up to the value passed in, computing each element of the array as the sum 
of the two previous elements. When the array is full, its last element is the element requested. Return this value.  

d. Modify your TestFib class so that it calls fib2 (first) and prints the result, then calls fib1 and prints that result. You 
should get the same answers, but very different computation times.  

 
 
// ****************************************************************** 
//   Fib.java 
// 
//   A utility class that provide methods to compute elements of the 
//   Fibonacci sequence. 
// ****************************************************************** 
public class Fib 
{ 
 
    //-------------------------------------------------------------- 
    // Recursively computes fib(n) 
    //-------------------------------------------------------------- 
    public static int fib1(int n) 
    { 
 //Fill in code -- this should look very much like the 
 //mathematical specification 
    } 
 
} 



228 Chapter 11: Recursion 

// ****************************************************************** 
//   TestFib.java 
// 
//   A simple driver that uses the Fib class to compute the 
//   nth element of the Fibonacci sequence. 
// ****************************************************************** 
 
import java.util.Scanner; 
 
public class TestFib 
{ 
    public static void main(String[] args) 
    { 
 int n, fib; 
 
 Scanner scan = new Scanner(System.in); 
 
 System.out.print("Enter an integer: "); 
 n = scan.nextInt(); 
 
 fib = Fib.fib1(n); 
 System.out.println("Fib(" + n + ") is " + fib); 
    } 
}  



Chapter 11: Recursion 229 

Palindromes 
 
A palindrome is a string that is the same forward and backward. In Chapter 5 you saw a program that uses a loop to 
determine whether a string is a palindrome. However, it is also easy to define a palindrome recursively as follows:  
 
� A string containing fewer than 2 letters is always a palindrome.  
� A string containing 2 or more letters is a palindrome if  

� its first and last letters are the same, and  
� the rest of the string (without the first and last letters) is also a palindrome.  

 
Write a program that prompts for and reads in a string, then prints a message saying whether it is a palindrome. Your main 
method should read the string and call a recursive (static) method palindrome that takes a string and returns true if the string 
is a palindrome, false otherwise. Recall that for a string s in Java,  
 
� s.length() returns the number of charaters in s  
� s.charAt(i) returns the ith character of s, 0-based  
� s.substring(i,j) returns the substring that starts with the ith character of s and ends with the j–1st character of s (not the jth), 

both 0-based.  
 
So if s="happy", s.length=5, s.charAt(1)=a, and s.substring(2,4) = "pp".  



230 Chapter 11: Recursion 

Printing a String Backwards 
 
Printing a string backwards can be done iteratively or recursively. To do it recursively, think of the following specification:  
 
If s contains any characters (i.e., is not the empty string)  
 
� print the last character in s  
� print s' backwards, where s' is s without its last character  
 
File Backwards.java contains a program that prompts the user for a string, then calls method printBackwards to print the 
string backwards. Save this file to your directory and fill in the code for printBackwards using the recursive strategy outlined 
above. 
 
 
// ****************************************************************** 
//   Backwards.java 
// 
//   Uses a recursive method to print a string backwards. 
// ****************************************************************** 
import java.util.Scanner; 
 
public class Backwards 
{ 
 
    //-------------------------------------------------------------- 
    // Reads a string from the user and prints it backwards. 
    //-------------------------------------------------------------- 
    public static void main(String[] args) 
    { 
 String msg; 
 Scanner scan = new Scanner(System.in); 
 
 System.out.print("Enter a string: "); 
 msg = scan.nextLine(); 
 
 System.out.print("\nThe string backwards: "); 
 printBackwards(msg); 
 System.out.println(); 
    } 
  
    //-------------------------------------------------------------- 
    // Takes a string and recursively prints it backwards. 
    //-------------------------------------------------------------- 
    public static void printBackwards(String s) 
    { 
 
 // Fill in code 
 
    } 
} 



Chapter 11: Recursion 231 

Recursive Linear Search 
 
File IntegerListS.java contains a class IntegerListS that represents a list of integers (you may have used a version of this in an 
earlier lab); IntegerListSTest.java contains a simple menu-driven test program that lets the user create, sort, and print a list 
and search for an element using a linear search.  
 
Many list processing tasks, including searching, can be done recursively. The base case typically involves doing something 
with a limited number of elements in the list (say the first element), then the recursive step involves doing the task on the rest 
of the list. Think about how linear search can be viewed recursively; if you are looking for an item in a list starting at index i:  
 
� If i exceeds the last index in the list, the item is not found (return -1).  
� If the item is at list[i], return i.  
� If the is not at list[i], do a linear search starting at index i+1.  
 
Fill in the body of the method linearSearchR in the IntegerList class. The method should do a recursive linear search of a list 
starting with a given index (parameter lo). Note that the IntegerList class contains another method linearSearchRec that does 
nothing but call your method (linearSearchR). This is done because the recursive method (linearSearchR) needs more 
information (the index to start at) than you want to pass to the top-level search routine (linearSearchRec), which just needs 
the thing to look for.  
 
Now change IntegerListTest.java so that it calls linearSearchRec instead of linearSearch when the user asks for a linear 
search. Thoroughly test the program.  
 
 
// **************************************************************** 
//   IntegerListS.java 
// 
//   Defines an IntegerListS class with methods to create, fill, 
//   sort, and search in a list of integers. (Version S -  
//   for use in the linear search exercise.) 
//           
// **************************************************************** 
 
 
public class IntegerListS 
{ 
    int[] list; //values in the list 
 
    // ------------------------------------ 
    //   Creates a list of the given size 
    // ------------------------------------ 
    public IntegerListS (int size) 
    { 
 list = new int[size]; 
    } 
 
    // -------------------------------------------------------------- 
    //   Fills the array with integers between 1 and 100, inclusive 
    // -------------------------------------------------------------- 
    public void randomize() 
    { 
 for (int i=0; i< list.length; i++) 
     list[i] = (int)(Math.random() * 100) + 1; 
    } 
 
    // ---------------------------------------- 
    //   Prints array elements with indices 
    // ---------------------------------------- 
    public void print() 



232 Chapter 11: Recursion 

    { 
 for (int i=0; i<list.length; i++) 
     System.out.println(i + ":\t" + list[i]); 
    } 
 
    // ------------------------------------------------------------------ 
    //   Returns the index of the first occurrence of target in the list. 
    //   Returns -1 if target does not appear in the list. 
    // ------------------------------------------------------------------ 
    public int linearSearch(int target) 
    { 
 int location = -1; 
 for (int i=0; i<list.length && location == -1; i++) 
     if (list[i] == target) 
  location = i; 
 return location; 
    } 
 
    // ----------------------------------------------------------------- 
    //   Returns the index of an occurrence of target in the list, -1 
    //   if target does not appear in the list. 
    // ----------------------------------------------------------------- 
    public int linearSearchRec(int target) 
    { 
 return linearSearchR (target, 0); 
    } 
 
    // ----------------------------------------------------------------- 
    //   Recursive implementation of the linear search - searches 
    //   for target starting at index lo. 
    // -----------------------------------------------------------------   
    private int linearSearchR (int target, int lo) 
    { 
 return -1; 
    } 
 
    // ------------------------------------------------------------------------ 
    //  Sorts the list into ascending order using the selection sort algorithm. 
    // ------------------------------------------------------------------------ 
    public void selectionSort() 
    { 
 int minIndex; 
 for (int i=0; i < list.length-1; i++) 
     { 
  //find smallest element in list starting at location i 
  minIndex = i; 
  for (int j = i+1; j < list.length; j++) 
      if (list[j] < list[minIndex]) 
       minIndex = j; 
 
  //swap list[i] with smallest element 
  int temp = list[i]; 
  list[i] = list[minIndex]; 
  list[minIndex] = temp; 
     } 
    } 
}



Chapter 11: Recursion 233 

// **************************************************************** 
//    IntegerListSTest.java 
// 
//    Provide a menu-driven tester for the IntegerList class. 
//    (Version S - for use in the linear search lab exercise). 
//           
// **************************************************************** 
import java.util.Scanner; 
 
public class IntegerListSTest 
{ 
    static IntegerListS list = new IntegerListS (10); 
    static Scanner scan = new Scanner(System.in); 
 
    // ------------------------------------------------------------------ 
    //   Creates a list, then repeatedly print the menu and do what the 
    //   user asks until they quit. 
    // ------------------------------------------------------------------ 
    public static void main(String[] args) 
    { 
 printMenu(); 
 int choice = scan.nextInt(); 
 while (choice != 0) 
     { 
  dispatch(choice); 
  printMenu(); 
  choice = scan.nextInt(); 
     } 
    } 
 
    // ------------------------------------- 
    //  Does what the menu item calls for. 
    // ------------------------------------- 
    public static void dispatch(int choice) 
    { 
 int loc; 
 switch(choice) 
     { 
     case 0:  
  System.out.println("Bye!"); 
  break; 
     case 1: 
  System.out.println("How big should the list be?"); 
  int size = scan.nextInt(); 
  list = new IntegerListS(size); 
  list.randomize(); 
  break; 
     case 2: 
  list.selectionSort(); 
  break; 
     case 3: 
  System.out.print("Enter the value to look for: "); 
  loc = list.linearSearch(scan.nextInt()); 
  if (loc != -1) 
      System.out.println("Found at location " + loc); 
  else 
      System.out.println("Not in list"); 
  break; 
     case 4: 
  list.print(); 



234 Chapter 11: Recursion 

  break; 
     default: 
  System.out.println("Sorry, invalid choice"); 
     } 
    } 
 
    // ------------------------------------- 
    //   Prints the menu of user's choices. 
    // ------------------------------------- 
    public static void printMenu() 
    { 
 System.out.println("\n   Menu   "); 
 System.out.println("   ===="); 
 System.out.println("0: Quit"); 
 System.out.println("1: Create new list elements (** do this first!! **)"); 
 System.out.println("2: Sort the list using selection sort"); 
 System.out.println("3: Find an element in the list using linear search"); 
 System.out.println("4: Print the list"); 
 System.out.print("\nEnter your choice: "); 
    } 
 
} 
 



Chapter 11: Recursion 235 

Recursive Binary Search 
 
The binary search algorithm from Chapter 9 is a very efficient algorithm for searching an ordered list.  The algorithm (in 
pseudocode) is as follows:  
 
   highIndex - the maximum index of the part of the list being searched 
   lowIndex - the minimum index of the part of the list being searched 
   target -- the item being searched for 
 
   //look in the middle 
   middleIndex = (highIndex + lowIndex) / 2 
   if the list element at the middleIndex is the target 
      return the middleIndex 
   else 
      if the list element in the middle is greater than the target 
         search the first half of the list 
      else 
         search the second half of the list 
 
Notice the recursive nature of the algorithm.  It is easily implemented recursively. Note that three parameters are needed—the 
target and the indices of the first and last elements in the part of the list to be searched. To "search the first half of the list" the 
algorithm must be called with the high and low index parameters representing the first half of the list. Similarly, to search the 
second half the algorithm must be called with the high and low index parameters representing the second half of the list. The 
file IntegerListB.java contains a class representing a list of integers (the same class that has been used in a few other labs); 
the file IntegerListBTest.java contains a simple menu-driven test program that lets the user create, sort, and print a list and 
search for an item in the list using a linear search or a binary search. Your job is to complete the binary search algorithm 
(method binarySearchR). The basic algorithm is given above but it leaves out one thing: what happens if the target is not in 
the list? What condition will let the program know that the target has not been found? If the low and high indices are changed 
each time so that the middle item is NOT examined again (see the diagram of indices below) then the list is guaranteed to 
shrink each time and the indices "cross"—that is, the high index becomes less than the low index. That is the condition that 
indicates the target was not found.  
 
       lo                 middle                     high 
 
       lo         middle-1     middle+1              high 
 
       ^             ^            ^                    ^ 
       |             |            |                    | 
        -------------              -------------------- 
 
         first half                      last half 
 
Fill in the blanks below, then type your code in. Remember when you test the search to first sort the list.  
 
    private int binarySearchR (int target, int lo, int hi) 
    { 
 int index; 
 if (  ____________________________  ) // fill in the "not found" condition     
     index = -1; 
 else 
     { 
  int mid = (lo + hi)/2; 
  if ( ______________________________ ) // found it! 
      index = mid; 
  else if (target < list[mid]) 
                    // fill in the recursive call to search the first half  
                    // of the list  
      index = _______________________________________________; 
  else 



236 Chapter 11: Recursion 

                    // search the last half of the list 
      index = _______________________________________________; 
     } 
 return index; 
    } 
 
Optional: The binary search algorithm "works" (as in does something) even on a list that is not in order. Use the algorithm 
on an unsorted list and show that it may not find an item that is in the list. Hand trace the algorithm to understand why. 
 
// **************************************************************** 
//   IntegerListB.java 
// 
//   Defines an IntegerList class with methods to create, fill, 
//   sort, and search in a list of integers. (Version B - for use 
//   in the binary search lab exercise) 
//           
// **************************************************************** 
 
public class IntegerListB 
{ 
    int[] list; //values in the list 
 
    // ------------------------------------ 
    //   Creates a list of the given size 
    // ------------------------------------ 
    public IntegerListB (int size) 
    { 
 list = new int[size]; 
    } 
 
    // -------------------------------------------------------------- 
    //   Fills the array with integers between 1 and 100, inclusive 
    // -------------------------------------------------------------- 
    public void randomize() 
    { 
 for (int i=0; i<list.length; i++) 
     list[i] = (int)(Math.random() * 100) + 1; 
    } 
 
    // ---------------------------------------- 
    //   Prints array elements with indices 
    // ---------------------------------------- 
    public void print() 
    { 
 for (int i=0; i<list.length; i++) 
     System.out.println(i + ":\t" + list[i]); 
    } 
 
    // ------------------------------------------------------------------ 
    //   Returns the index of the first occurrence of target in the list. 
    //   Returns -1 if target does not appear in the list. 
    // ------------------------------------------------------------------ 
    public int linearSearch(int target) 
    { 
 int location = -1; 
 for (int i=0; i<list.length && location == -1; i++) 
     if (list[i] == target) 
  location = i; 
 return location; 
    } 



Chapter 11: Recursion 237 

 
    // ----------------------------------------------------------------- 
    //   Returns the index of an occurrence of target in the list, -1 
    //   if target does not appear in the list. 
    // ----------------------------------------------------------------- 
    public int binarySearchRec(int target) 
    { 
 return binarySearchR (target, 0, list.length-1); 
    } 
 
    // ----------------------------------------------------------------- 
    //   Recursive implementation of the binary search algorithm. 
    //   If the list is sorted the index of an occurrence of the  
    //   target is returned (or -1 if the target is not in the list). 
    // -----------------------------------------------------------------   
    private int binarySearchR (int target, int lo, int hi) 
    { 
 int index; 
 
 // fill in code for the search 
 
 return index; 
    } 
 
    // ------------------------------------------------------------------------ 
    //  Sorts the list into ascending order using the selection sort algorithm. 
    // ------------------------------------------------------------------------ 
    public void selectionSort() 
    { 
 int minIndex; 
 for (int i=0; i < list.length-1; i++) 
     { 
  //find smallest element in list starting at location i 
  minIndex = i; 
  for (int j = i+1; j < list.length; j++) 
      if (list[j] < list[minIndex]) 
       minIndex = j; 
 
  //swap list[i] with smallest element 
  int temp = list[i]; 
  list[i] = list[minIndex]; 
  list[minIndex] = temp; 
     } 
    } 
     
} 
 



238 Chapter 11: Recursion 

// **************************************************************** 
//   IntegerListBTest.java 
// 
//   Provides a menu-driven tester for the IntegerList class. 
//   (Version B - for use with the binary search lab exerice) 
//           
// **************************************************************** 
import java.util.Scanner; 
 
public class IntegerListBTest 
{ 
    static IntegerListB list = new IntegerListB (10); 
    static Scanner scan = new Scanner(System.in); 
 
    // --------------------------------------------------------------- 
    //  Create a list, then repeatedly print the menu and do what the 
    //  user asks until they quit. 
    // --------------------------------------------------------------- 
    public static void main(String[] args) 
    { 
 printMenu(); 
 int choice = scan.nextInt(); 
 while (choice != 0) 
     { 
  dispatch(choice); 
  printMenu(); 
  choice = scan.nextInt(); 
     } 
    } 
 
    // ---------------------------------------------------- 
    //  Does what the menu item calls for. 
    // ---------------------------------------------------- 
    public static void dispatch(int choice) 
    { 
 int loc; 
 switch(choice) 
     { 
     case 0:  
  System.out.println("Bye!"); 
  break; 
     case 1: 
  System.out.println("How big should the list be?"); 
  int size = scan.nextInt(); 
  list = new IntegerListB(size); 
  list.randomize(); 
  break; 
     case 2: 
  list.selectionSort(); 
  break; 
     case 3: 
  System.out.print("Enter the value to look for: "); 
  loc = list.linearSearch(scan.nextInt()); 
  if (loc != -1) 
      System.out.println("Found at location " + loc); 
  else 
      System.out.println("Not in list"); 
  break; 
     case 4: 
  System.out.print("Enter the value to look for: "); 



Chapter 11: Recursion 239 

  loc = list.binarySearchRec(scan.nextInt()); 
  if (loc != -1) 
      System.out.println("Found at location " + loc); 
  else 
      System.out.println("Not in list"); 
  break; 
     case 5: 
  list.print(); 
  break; 
     default: 
  System.out.println("Sorry, invalid choice"); 
     } 
    } 
 
    // ---------------------------- 
    //  Prints the user's choices. 
    // ---------------------------- 
    public static void printMenu() 
    { 
 System.out.println("\n   Menu   "); 
 System.out.println("   ===="); 
 System.out.println("0: Quit"); 
 System.out.println("1: Create new list elements (** do this first!! **)"); 
 System.out.println("2: Sort the list using selection sort"); 
 System.out.println("3: Find an element in the list using linear search"); 
 System.out.println("4: Find an element in the list using binary search"); 
 System.out.println("5: Print the list"); 
 System.out.print("\nEnter your choice: "); 
    } 
 
} 



240 Chapter 11: Recursion 

A List of Employees 
 
The files Employee.java and Payroll.java contain a definition of a simple list of hourly wage employees. An employee has a 
name, number of hours worked, and an hourly pay rate. The Payroll class is the list of employees. Currently there is a method 
in the class, public void readPayrollInfo(String file), that reads in the employee information from a file and sets up the 
employee list. Your job is to add a recursive method that determines the number of employees who worked overtime (more 
than 40 hours). The method numOvertime is already defined. It is the public method that would be used by a program. It calls 
your method int overtime (int start) which will do all the work.  
 
1. Complete the overtime method. The parameter start is the index of the first element in the part of the array being 

processed. Recall that to recursively process the elements in an array in sequential order the strategy is to "process" the 
first element (in this case count it if the number of hours worked is greater than 40), then call the method recursively to 
process the rest of the array.   Don’t forget the base case. 

 
2. Complete the test program Overtime.java to test your method. The program currently has code to read in the name of the 

file that contains employee data. You need to add code to instantiate a Payroll object, read the data in, then call the 
numOvertime method to determine how many employees worked overtime.  

 
3. Run the program at least twice using the files payroll.dat and payroll2.dat as input.  
 
 
// ************************************************************ 
//   Employee.java 
// 
//   Represents an hourly wage worker. 
// ************************************************************ 
 
public class Employee 
{ 
    String name; 
    int hours;        // hours worked 
    double rate;      // hourly pay rate 
 
    // -------------------------------------------------- 
    //  Sets up the Employee object with the given data. 
    // -------------------------------------------------- 
    public Employee (String name, int hours, double rate) 
    { 
 this.name = name; 
 this.hours = hours; 
 this.rate = rate; 
    } 
 
    // -------------------------------------------------- 
    //  Returns the number of hours worked. 
    // -------------------------------------------------- 
    public int getHours () 
    { 
 return hours; 
    } 
} 
 



Chapter 11: Recursion 241 

// **************************************************************** 
//   Payroll.java 
// 
//   Represents a list of employees. 
// **************************************************************** 
 
import java.util.Scanner; 
import java.util.*; 
import java.io.*; 
 
public class Payroll 
{ 
    final int MAX = 30; 
    Employee[] payroll = new Employee[MAX]; 
    int numEmployees = 0; 
 
    // --------------------------------------------------------- 
    //  Reads the list of employee wage data from the given 
    //  file. 
    // --------------------------------------------------------- 
    public void readPayrollInfo(String file) 
    { 
 String line;       // a line in the file 
 String name;       // name of an employee 
 int hours;         // hours worked 
 double rate;       // hourly pay rate 
 
 Scanner fileScan, lineScan;  
 
 try 
     { 
  fileScan = new Scanner (new File(file)); 
 
   while (fileScan.hasNext()) 
      { 

line = fileScan.nextLine(); 
 
   lineScan = new Scanner(line); 
   name = lineScan.next (); 
 
   try 
       { 
    hours = lineScan.nextInt(); 
    rate = lineScan.nextDouble(); 
    payroll[numEmployees] = new Employee (name, hours, rate); 
    numEmployees++; 
       } 
   catch (InputMismatchException exception) 
       { 
    System.out.println ("Error in input. Line ignored."); 
    System.out.println (line); 
       } 
   catch {ArrayIndexOutOfBoundsException exception) 
       { 
    System.out.println ("Too many employees!"); 
       }  
      } 
  fileScan.close(); 
   
     } 



242 Chapter 11: Recursion 

 catch (FileNotFoundException exception) 
     { 
  System.out.println ("The file " + file + " was not found."); 
     } 
 catch (IOException exception) 
     { 
  System.out.println (exception); 
     } 
    } 
 
 
    // ------------------------------------------ 
    //   Returns the number of employees who 
    //   worked over 40 hours; the helper method 
    //   overtime is called to do all the work. 
    // ------------------------------------------ 
    public int numOvertime () 
    { 
 return overtime (0); 
    } 
 
    // ------------------------------------------------ 
    //   Returns the number of employees in the part 
    //   of the list from index start to the end who 
    //   worked more than 40 hours. 
    // ------------------------------------------------ 
    private int overtime (int start) 
    { 
 
    } 
} 
 
 
// **************************************************************** 
//   Overtime.java 
// 
//   Reads a file of employee payroll information and determines 
//   how many employees worked more than 40 hours. 
// **************************************************************** 
 
import java.util.Scanner; 
 
public class Overtime 
{ 
    public static void main (String[] args) 
    { 
 String fileName;    // Name of the file containing employee data 
 Scanner scan = new Scanner(System.in); 
 
 System.out.println ("\nPayroll Program"); 
 System.out.print ("Enter the name of the file containing payroll data: "); 
 fileName = scan.nextLine(); 
 
 // Instantiate a Payroll object and read in the data from the file 
 
 
 // Print the number of workers who worked overtime. 
 
    } 
} 



Chapter 11: Recursion 243 

payroll.dat 
 
Smith 45 13.50 
Jones 39 23.75 
Doe 40 17.80 
Moe 30 21.90 
Walker 41 14.60 
Walton 57 8.95 
Taylor 40 16.75 
Lewis 40 35.50 
Abbott 43 12.70 
Who 39 33.95 
Herrod 21 19.90 
James 49 13.50 
Summers 40 20.00 
Winter 40 18.75 
Farthington 38 24.50 
Walsh 42 45.70 
 
 
payroll2.dat 
 
Jones 40 9.75 
Ricardo 35 13.69 
Smith 40 20.00 
Smythe 40 17.80 
 



244 Chapter 11: Recursion 

Sierpinski Triangles 
 
A Sierpinski triangle is a geometric figure that may be constructed as follows:  
 
1. Draw a triangle.  
2. Draw a new triangle by connecting the midpoints of the three sides of your original triangle. This should split your 

triangle into four smaller triangles, one in the center and three around the outside.  
3. Repeat (2) for each of the outside triangles (not the center one). Each of them will split into four yet smaller triangles. 

Repeat for each of their outside triangles.. and for each of the new ones.. and so on, forever. Draw a few rounds of this 
on paper to see how it works. Check out the demo at http://cs.roanoke.edu/labs4e/demo.html to see how the program 
works on screen.  

 
Your job is to write an applet that draws a Sierpinski triangle. Think about the following:  
 
� A Sierpinski triangle is a recursively defined structure, since each of the three outer triangles formed by joining the 

midpoints is itself a Sierpinski triangle.  
� In practice you don't want to go on with the process "forever" as suggested above, so we'll limit how deep it goes. Define 

the depth of a Sierpinski triangle as the number of directly nested triangles at the deepest point. So a Sierpinski triangle 
consisting of a single triangle has depth 0; when a triangle is drawn inside of it, the resulting Sierpinski triangle has 
depth 1; when the three outside triangles have triangles drawn inside of them, the resulting triangle is depth 2, and so on. 
A depth of 10 or 11 gives a nice looking triangle in a reasonable amount of time. (The demo uses depth 10.) Smaller 
depths are interesting in that you can see more of the construction; higher depths generally take too long for casual 
viewing.  

� A triangle is a polygon, so you'll use the drawPolygon method. Remember that it takes an array containing the x 
coordinates, an array containing the y coordinates, and an integer indicating how many points should be drawn (3 for a 
triangle). Refer to Chapter 7 or the appendix (the Graphics class) to refresh your memory on this.  

� Your initial triangle should look like the one in the demo—one point at the top center of the applet and one point in each 
lower corner.  

� Your overall program is quite simple. The paint method will just call a recursive method sierpinski, passing it the 
Graphics object, the points of the initial triangle to be drawn, and the initial depth (0). Make the variables that hold the 
initial points instance variables and initialize them in the init method. The sierpinski method will then check to see if the 
desired depth has been exceeded (the depth can be a constant), and if not, draw the triangle, then call itself recursively to 
drawn the three Sierpinski triangles that will be embedded. Note that it will have to figure out what points to pass to each 
of these, and that each recursive call increases the depth by one.  

 
When this works (that is, when your triangle looks like the one in the demo), modify it so that when the user clicks a new, 
random Sierpinski triangle is drawn. (The demo does this too.) This just means choosing three random points and 
repainting—nothing will change in your paint or sierpinski methods (if you followed the guidelines above). For fun you can 
choose a random color each time as well, as the demo does.  



Chapter 11: Recursion 245 

Modifying the Koch Snowflake 
 
The Koch snowflake is a fractal generated by starting with 3 line sements forming an equilateral triangle (a Koch fractal of 
order 1). The algorithm for generating higher order Koch fractals involves splitting each line segment into three equal 
segments then replacing the middle segment by two line segments that protrude outward. The same algorithm is then 
recursively applied to each of the 4 new line segments. In the basic Koch snowflake the two protruding line segments meet at 
a 60 degree angle. These line segments form an equilateral triangle with the middle segment that is removed. (See the 
discussion in Chapter 11 for more details.) Files KochSnowflake.java and KochPanel.java contain slight modifications to the 
program from the text that generates Koch snowflakes (Listings 11.6 and 11.7). Copy these files to your directory, compile 
them, and run the program in the appletviewer to see how it works (you may use the file Koch.html to run the program). In 
this exercise you will generalize the pattern to allow for triangles other than equilateral ones to be built on the middle third 
segment. In the drawFractal method this involves changing the calculation of x3 and y3, the coordinates of the protrusion 
point. The following calculations are equivalent to those currently in the program:  
 
      x3 = (int) (x2 + (cosine * deltaX - sine * deltaY)/3); 
      y3 = (int) (y2 + (cosine * deltaY + sine * deltaX)/3); 
 
where cosine is the cosine of 60 degrees (which is 1/2) and sine is the sine of 60 degrees (which is the square root of 3 over 
2). These equations are generalizable to angles other than 60. In this exercise you will generalize the program to work for 
angles other than 60. The angle will be controlled by increase and decrease buttons in the same way that the order is currently 
controlled. Do the following:  
 
1. In KochPanel.java,  

� Add instance variables angle, sine, and cosine. Angle will be an integer and sine and cosine type double.  
� In the constructor, set angle to 60 (this will be the default), and set sine to Math.sin (Math.PI / 3) and cosine to 

Math.cos (Math.PI / 3).  
� In drawFractal, replace the current calculations for x3 and y3 with those given above.  
 

2. Compile and run the program. It should behave just as before.  
 
3. To add controls to allow the angle to change, do the following:  

� In KochPanel, add two public methods getAngle() that returns the angle (type int), and setAngle (int newAngle) that 
sets the angle to be the value of newAngle and sets sine and cosine of that angle. Remember that the sin and cos 
methods in the Math class must have arguments that are in radians not degrees so you need to multiply the angle 
(which is in degrees) by Math.PI divided by 180 (pi/180 is the degree to radian conversion factor).  

� In KochSnowflake.java, add a new "tools" panel for the buttons to increase and decrease the angle. This panel will 
contain two buttons and a label giving the current angle. A horizontal box layout should be used. The applet should 
be added as a listener for the buttons.  

� The new tools panel should be added to the appletPanel. To accomodate it change APPLET_HEIGHT to 480.  
� The method actionPerformed must be modified to take action if the event source was one of the new buttons. If the 

source was the button to increase the angle, increase the angle by 10 degrees (you can get the current angle using the 
method you added to KochPanel); if the source was the button to decrease the angle, decrease it by 10 degrees. The 
new angle should be between 10 and 170 (inclusive)—you should add constants (similar to MIN and MAX) for the 
minimum and maximum angles.  

 
4. Compile and run the program. Play with the angles and order to see what fractal patterns are generated.  
 
 



246 Chapter 11: Recursion 

// ******************************************************************* 
//  KochSnowflake.java               Author:  Lewis/Loftus 
// 
//  Demonstrates the use of recursion in graphics. 
// ******************************************************************* 
 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class KochSnowflake extends JApplet implements ActionListener 
{ 
    private final int APPLET_WIDTH = 400; 
    private final int APPLET_HEIGHT = 440; 
 
    private final int MIN = 1, MAX = 9; 
 
    private JButton increase, decrease; 
    private JLabel titleLabel, orderLabel; 
    private KochPanel drawing; 
    private JPanel appletPanel, tools; 
 
    // --------------------------------------------------------- 
    //   Sets up the components for the applet. 
    // --------------------------------------------------------- 
    public void init() 
    { 
 tools = new JPanel (); 
 tools.setLayout (new BoxLayout (tools, BoxLayout.X_AXIS)); 
 tools.setPreferredSize (new Dimension (APPLET_WIDTH, 40)); 
 tools.setBackground (Color.yellow); 
 tools.setOpaque (true); 
 
 titleLabel = new JLabel ("The Koch Snowflake"); 
 titleLabel.setForeground (Color.black); 
 
 increase = new JButton ("Increase"); 
 increase.setMargin (new Insets (0, 0, 0, 0)); 
 increase.addActionListener (this); 
 
 decrease = new JButton ("Decrease"); 
 decrease.setMargin (new Insets (0, 0, 0, 0)); 
 decrease.addActionListener (this); 
 
 orderLabel = new JLabel ("Order: 1"); 
 orderLabel.setForeground (Color.black); 
 
 tools.add (titleLabel); 
 tools.add (Box.createHorizontalStrut (40)); 
 tools.add (decrease); 
 tools.add (increase); 
 tools.add (Box.createHorizontalStrut (20)); 
 tools.add (orderLabel); 
 
 drawing = new KochPanel (1); 
 
 appletPanel = new JPanel (); 
 appletPanel.add (tools); 
 appletPanel.add (drawing); 
 



Chapter 11: Recursion 247 

 getContentPane().add (appletPanel); 
 
 setSize (APPLET_WIDTH, APPLET_HEIGHT); 
    } 
 
    // ------------------------------------------------------------ 
    //  Determines which button was pushed, and sets the new order 
    //  if it is in range. 
    // ------------------------------------------------------------ 
    public void actionPerformed (ActionEvent event) 
    { 
 int order = drawing.getOrder (); 
 
 if (event.getSource() == increase) 
     order++; 
 else  
     order--; 
 
 if (order >= MIN && order <= MAX) 
     { 
  orderLabel.setText ("Order: " + order); 
  drawing.setOrder (order); 
  repaint(); 
     } 
    } 
} 
 
 



248 Chapter 11: Recursion 

// ******************************************************************* 
//  KochPanel.java         Author:  Lewis/Loftus 
// 
//  Represents a drawing surface on which to paint a Koch Snowflake. 
// ******************************************************************* 
 
import java.awt.*; 
import javax.swing.JPanel; 
 
public class KochPanel extends JPanel 
{ 
    private final int PANEL_WIDTH = 400; 
    private final int PANEL_HEIGHT = 400; 
 
    private final double SQ = Math.sqrt (3.0) / 6; 
 
    private final int TOPX = 200, TOPY = 20; 
    private final int LEFTX = 60, LEFTY = 300; 
    private final int RIGHTX = 340, RIGHTY = 300; 
 
    private int current;     // current order 
 
    // ---------------------------------------------------------------- 
    //  Sets the initial fractal order to the value specified. 
    // ---------------------------------------------------------------- 
    public KochPanel (int currentOrder) 
    { 
 current = currentOrder; 
 setBackground (Color.black); 
 setPreferredSize (new Dimension (PANEL_WIDTH, PANEL_HEIGHT)); 
    } 
 
    // ---------------------------------------------------------------- 
    //  Draws the fractal recursively.  The base case is order 1 for 
    //  which a simple straight line is drawn.  Otherwise three 
    //  intermediate points arae computed, and each line segment is 
    //  drawn as a fractal. 
    // ---------------------------------------------------------------- 
    public void drawFractal (int order, int x1, int y1, int x5, int y5, 
        Graphics page) 
    { 
 int deltaX, deltaY, x2, y2, x3, y3, x4, y4; 
 
 if (order ==1) 
     page.drawLine (x1, y1, x5, y5); 
 else 
     { 
  deltaX = x5 - x1;    // distance between end points 
  deltaY = y5 - y1; 
 
  x2 = x1 + deltaX /3; 
  y2 = y1 + deltaY / 3; 
 
  x3 = (int) ((x1 + x5)/2 + SQ * (y1 - y5)); 
  y3 = (int) ((y1 + y5)/2 + SQ * (x5 - x1)); 
      
  x4 = x1 + deltaX * 2 / 3; 
  y4 = y1 + deltaY * 2 / 3; 
 
  drawFractal (order - 1, x1, y1, x2, y2, page); 



Chapter 11: Recursion 249 

  drawFractal (order - 1, x2, y2, x3, y3, page); 
  drawFractal (order - 1, x3, y3, x4, y4, page); 
  drawFractal (order - 1, x4, y4, x5, y5, page); 
     } 
    } 
 
    // -------------------------------------------------------------- 
    //  Performs the initial calls to the drawFractal method. 
    // -------------------------------------------------------------- 
    public void paintComponent (Graphics page) 
    { 
 super.paintComponent (page); 
 
 page.setColor (Color.green); 
 
 drawFractal (current, TOPX, TOPY, LEFTX, LEFTY, page); 
 drawFractal (current, LEFTX, LEFTY, RIGHTX, RIGHTY, page); 
 drawFractal (current, RIGHTX, RIGHTY, TOPX, TOPY, page); 
    } 
 
    // -------------------------------------------------------------- 
    //  Sets the fractal order to the specified value. 
    // -------------------------------------------------------------- 
    public void setOrder (int order) 
    { 
 current = order; 
    } 
 
    // -------------------------------------------------------------- 
    //  Returns the current order. 
    // -------------------------------------------------------------- 
    public int getOrder () 
    { 
 return current; 
    } 
} 
 
 
koch.html 
 
<html> 
<title>Koch Snowflake</title> 
<applet CODE="KochSnowflake.class" HEIGHT=400 WIDTH=440> 
</applet> 
</html>  


