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Summary 

If the effects of fluid rotation are neglected, one-dimensional theory for a single 
actuator disc gives a maximum power coefficient of 16/27. This is the usual Betz limit for 
the power of horizontal-axis wind turbines. 

Tandem discs are a more appropriate representation for a vertical-axis, Darrieum, wind 
turbine and give more accurate predictions of turbine performance when used in con- 
junction with blade element theory. The maximum power coefficient for two discs in 
tandem is 16/25. 

In the present paper the case of n actuator discs is considered. It is shown that the 
maximum power coefficient is [8n(n+l)]/[3(2n+l)2]. The corresponding axial inflow 
factor for the rth disc is (2r-1)/(2r+1),  and the outflow factor for the outer annulus of 
that disc is 2r / (2r+l  ). For a very large number of discs the maximum power coefficient 
is thus 2/3, which is 13% larger than the maximum for a single disc. 

Some flow visualization experiments on  flow through tandem screens are presented 
which indicate that the minimum spacing below which the theory begins to become 
inaccurate is about one half of a disc diameter. 

Notation 

a 

Amr 

b 
Cp 

Cp~ 

K 

n 

P 

P 
q 

Q~ 

Axial inflow factor 
Area of  the particular annular streamtube as it crosses disc m to 
eventually become the outer streamtube for disc r 
Axial outf low factor 
Total power coefficient (sometimes called the efficiency of  a 
wind turbine) 
Power coefficient for the rth disc 

p - q  
Local pressure drop coefficient across a disc 

*hp V2(1 - a) 2 

Total number of  discs 
Pressure just upwind of  a disc 
Ambient pressure 
Pressure just downwind of  a disc 
Volume flux in the outer annular streamtube of  disc r 
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R e  
S~ , Sin, S .  
V 

P 

Reynolds number  based on velocity normal to a screen 
Series identified in the appendix 
Wind speed 
Air density 

Suff ices  
m 
r 

rl 

mth disc 
rth disc 
total number  of  discs 

1. Introduct ion 

The purpose of  this paper is to extend the classical theory of  Betz [ 1] for 
the maximum power output  of  a wind turbine. In this theory  the turbine, 
usually of  the horizontal-axis or  propeller type, is replaced by a single 
actuator  disc through which the flow is assumed to be one dimensional: the 
maximum power coefficient is 0.59 (Glauert [2] ). For vertical-axis wind 
turbines of  the Darrieus type (Templin [3] ) tandem discs are a more appro- 
priate representation (Lapin [4] ;  Robert  [5] ;  Paraschivoiu and Delclaux 
[6] ) and for two discs the maximum power coefficiant is 0.64 (Newman 
[7] ). The extension in the present  paper (Newman [8] ) is to n actuator  
discs and has already been considered in a simpler way by Loth and McCoy 
[9]. The analysis in this paper is also compared with some flow visualization 
experiments in a smoke tunnel.  

2. Theory  

Consider a wind turbine which is represented by n actuator  discs. The 
spacing between the discs is sufficient that  the flow through each disc may 
be taken as one dimensional. In Fig. 1 the velocity on either side of the rth 
disc is constant  and equal to V(1-ar) .  The outer  s t reammbe for this disc 
which just bypasses the ( r+ l ) th  disc has an  outflow factor br and hence an 
annular wake velocity of  V(1-br).  The pressures upstream and downstream 
of the rth disc are denoted by p~ and qr, respectively. 

The areas of  the various streamtubes as they cross each disc are identified 

Poo V 

Disc 2 r-1 • r.1 n 

- ~ (  I -b r -1  I 
, V f S - b r i  

P..  

Fig. 1. The streamlines through n actuator discs. 
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as Am~ where m identifies the disc, and r the  particular streamtube which 
eventually becomes the outer  one for the r th disc, as shown in Fig. 1. 

Consider the complete annular s treamtube which is the outer  streamtube 
of  the rth disc and choose it as a control volume for m o m e n t u m  in the axial 
direction. As in the previous paper [7] the longitudinal force due to the 
pressures acting on the curved boundaries of  each annular control  volume is 
neglected. This can be justified for t he  outer  edge of  the slipstream for a 
single disc (Milne-Thomson [10] ) but  is difficult to justify generally. How- 
ever the assumption is customarily adopted for both single actuator  disc 
theory with rotat ion (Betz [1] ) and blade element theory with small inflow 
[10,11] .  

~, - q t )  A te  + ( P 2 - q 2 )  A2e + + ( P r - q r )  Are = pQ,  Vbe 

where Qe = volume flow in the streamtube 
= V ( l - a , ) A , e  = V ( l - a 2 ) A 2 e  = . . .  = V ( l - a e ) A ,  r 

Thus  P t - q '  + P 2 - q 2  + . . ,  + Pr--qr V2 . . . .  p b~ 
l -a ,  1 -a2  1-ar  

It follows that  --Pe-qe _ P V2 ( br - be-, ) (1) 
1 - a ~  

Bernoulli's equation is now applied upstream and downstream of the discs. 

downstream of disc r: P -  + ~P V = ( 1 - b e )  2 = qr + ~P V 2 ( 1 - a r )  2 

downstream of disc ( r - l ) :  P -  + ~ P V 2 ( 1 - b r - , )  2 = q e - t  + {PV2(1 - a t - x )  2 

between discs ( r - l )  and r: qr-, + -~p V 2 (1-at_,)2 = Pe + ~P V 2 (1 -a t )  2 

= t 2 [( l_br_,)2 Thus P r - q e  ~ p V  - ( 1 - b r )  2] 
I 2 = ~pV [b~-b,_,] [2-b~_,-b~] (2) 

Comparing eqns. ( I )  and (2), be + be_, = 2at for all discs (3) 
(Note that  if r = n  = 1, bt = 2a,,  the usual result.) 

By successively applying the recursion equation (3) 

be = 2(a~-ae_ ,  +ae_, + ..... + ( - 1 ) t - ' a 2  + (-1)  e-' at) (4) 

The power coefficient for the complete  system of  discs 
e = n  Cp = ~ (p~-q~)  A V ( 1 - a e )  

r f f i l  I pA VS 

where A is the  total area of  each disc. 

r = n  

4 ~ (a,-2a,_, +2a,_2 
r = l  

in which it is unders tood am 

+ . . .  + (.1) T M  2a,) ( l - a , )  2 

= 0 w h e n m < l .  

(5) 
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1 aCp 
- - -  = 0 for  all integer values o f  r be tween 1 and n. If  Cp is a m a x i m u m ,  
4 ~ a r  

Thus 

(1 -a t )  2 - 2(1-a~)(a~-2a~-i  + 2a~_2 + .. .  + ( -1)  r-' 2a,)  

+ 2 ( - ( 1 - a r . ~ )  ~ + ( 1 - a t ÷ 2 )  2 + . . .  + ( - 1 )  "-~ ( 1 - a . )  2) = 0 ( 6 )  

for  all values of  r be tween 1 and n. 
The solut ion for  1 and 2 discs is known.  The solut ion for  3 discs is also 

fairly easy to  work  out .  These values o f  ar are shown in Table 1. 

T A B L E  1 

O p t i m u m  values  o f  a r 

n r 

1 2 3 

1 i / 3  - -  - -  
2 1/5 3 /5  - -  

3 1/7 3/7 5/7 

The sequence o f  numbers  suggests t rying 

2 r - 1  
ar - ( 7 )  

2 n + 1  

as the  general solut ion for eqn. (6). The left  hand  side is 

(2n+1)  ( n - r + 1 )  2 - ( n - r + 1 )  2 r - 1 )  - 2 ( 2 r - 3 )  + 2(2r-5).}. . .  2 ( - 1 y - '  

+ 2 - ( n - r ) e  + ( n - r - 1 ) 2 - ( n - r - 2 )  2 + . . . +  (--1)"-r} } 

= ( n - r + l )  ( n - r + l  - 2 r -  ( 2 r - 1 ) )  - 2 2 

by quot ing  the series Sr and Sm which are given in the appendix  the  above 
expression equals zero which checkS. 

The associated value of  br is, f rom eqn. (4) 

br 
2 

2n +1 

2r 

2n +1 

{ ( 2 r - l )  - (2 r -3 )  + (2 r -5 )  + . . .  + ( - 1 y  -' } 

(8) 



The corresponding value of Cp is, from eqn. (5) 

cp 
r =  B 

= (2n+l)  3 ~ ( - ( 2 r - l )  + 2r)  2 ( n - r + l )  2 

16 n(n+l)(2n+l) 
(2n+l )  3 6 
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from series S ,  in the appendix 

8n (n +1 ) 
- (10) 

3 (2n +1 )2 

For n = 1, Cp = 16/27 and for n = 2, Cp = 16/25. 
Both these values have been shown to be maxima [1,7] ,  so it may  be 

assumed that  eqn. (10) also gives the maximum value for n discs. 
The values of  Cpm~ x are plot ted against the number of discs in Fig. 2. The 

limiting value for n large is 2/3 and is seen to be close to this value when 
n=4. 

.7 

2/3  

.6 

n, number  of d iscs  

Fig. 2. The maximum power coefficient as a function of the number of discs. 
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The power "absorbed" separately by the rth disc, when conditions are 
optimum, is 

(Pr-q,)  A V(1-a~) 
Cpr = 

½pA V 3 

From eqn. (5) 

16(n-r+ l )  2 
Cpr = (11) 

(2n +1)3 

Table 2 shows that most of the power is absorbed by the upwind disc(s) 
and that the gain from increasing the number of discs from 2 to 4 may be 
outweighed by the increased cost of the machine. A possible vertical-axis 
wind turbine with 4 discs might consist of two, two-bladed rotors of signif- 
icantly different diameter, running on concentric shafts and perhaps rotating 
in opposite directions. 

T A B L E  2 

C o n t r i b u t i o n  to  t he  power  f r o m  each  disc 

(n=4) (n=2) (n=l) 
CP r CP r CP r 

1 0 .351  0 .512  
2 0 .198  0 .128  
3 0 .088 
4 0 .022  

0.593 

Tota l  0 .658  0 .640  0 .593  

3. The effect of disc spacing 

It has been assumed that the flow through each disc is one dimensional 
and the final results are independent of disc spacing. For very large spacing 
the static pressure between each disc will be atmospheric: indeed Loth and 
McCoy [9] obtained the present results by assuming that the flow is vented 
between each disc. As the discs are moved closer together this particular 
assumption will become incorrect and the flow pattern will resemble Fig. 1 
of this paper rather than Fig. 1 of ref. 9. Eventually even the assumptions of 
one-dimensional flow will become invalid. Taylor [12] examined this 
question for a single disc by replacing it with an array of sources which 
represented the displacement effect associated with the drag of each element 
of the disc (which in his case represented a very porous screen). In this way 
the flow ahead of the screen could be calculated and the degree of pressure 
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variation assessed in terms o f  the curvature of  the  upstream streamlines. In 
the present  case this t ype  o f  analysis could be a t t empted  numerically for  an 
array of  discs, b u t  i t  seemed simpler in the  case o f  a few discs to  set up a 
smoke tunnel  exper iment  to  visualize the  flow for  various disc spacings and 
also to  set up the  op t imum single disc for  comparison.  The  ac tuator  discs are 
approximately represented by very porous screens, the characteristics of  
which are usually expressed in terms of  a parameter  

pressure drop 
K = 

local dynamic pressure 

For  the rth disc of  an array of  n discs 

P r - q r  Kr-- 1,4p V 2 ( 1 -a t )  2 

(b,-br_,)(2-br_, -b~) 
(1-a t )  2 

2 
- - -  for  the opt imum condition.  

n - r + l  

For  n = 1, K = 2. 
For  n = 2, the upstream disc K = 1 and the downstream disc K = 2. 
The local velocities and the ideal powers for  the tandem discs n = 2 are 

shown in Fig. 3. 

The optimum condition 

~=2 

L~ 
5 

Fig. 3. The opt imum condition for two discs. 

Special precautions had to  be taken in setting up the experiment ,  which 
were based on  experience with earlier set-ups. 

(1) The K of  a screen is no t  constant  at the low speeds which are used in a 
smoke tunnel:  K increases with decreasing Reynolds number;  K was 
measured for  a range of  Reynolds numbers based on the screen diameter  for  
a variety of screens. It  was possible to  select two which would give the 
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Fig. 4. Smoke tunnel picture for a single disc with K = 2: flow from left to right. 

Fig. 5, Smoke tunnel picture: double disc with conditions corresponding to Fig. 3 
spacing/diameter = 1.00, 



223 

Fig. 6. Smoke  tunnel  picture:  double  disc wi th  spacing/diameter  = 0.66. 

Fig. 7. Smoke  tunnel  picture:  double  disc wi th  spacing/diameter  = 0.33. 
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T A B L E  3 

Charac ter i s t ics  of  t h e  c h o s e n  screen 

Screen  Spacing D iame te r  K a t  R e  

Fused  plast ic  f lyscreen  1.7 m m  0 .35  m m  2 24.4  
Woven plast ic  ne t t i ng  1.2 m m  0 .19  m m  1 26.3  

nom ina l  

required values of  K for a particular speed of  the smoke tunnel. Theoretical 
values were used to correlate the speeds through each screen. The chosen 
screens are listed in Table 3. 

The values of  K are probably accurate to -+ 0.02. 
(2) The screens were mounted  on rings of  diameter 25.4 mm which were 

made slightly conical (included angle 10 °) in order to minimize the wake 
produced by  the rings. The cross section of  the smoke tunnel was 88.9 mm 
× 177.8 ram. 

For  a single disc K = 2 the streamline spacing about  the centerline when 
squared gives the velocity ratios 2/3 at the disc and 1/3 far downstream. 
These are the values of  1 -a t  and 1-b~ in eqns. (7) and (8) when r = n = 1. 
For the pictures shown in Fig. 4 the spacing is in agreement at the disc but  
far downstream the value is 0.44 instead of  0.33. A simple analysis of  the 
flow surrounding the downstream wake indicates that  most  of  this discrep- 
ancy is due to  tunnel blockage. 

For the double discs with a spacing of  d and 0.67d agreement is again very 
good at bo th  discs but  is 0.3 to 0.35 instead of  0.2 far downstream. For a 
closer spacing of  0.33d there is significant disagreement at  the discs them- 
selves, indeed the upstream spacing tends towards a value similar to that  for 
a single disc. 

It is concluded that  the present t h e o r y  begins to  become inaccurate due 
to curvature of  the streamlines at the disc and lack of  flow uniformity when 
the disc spacing is less than abou t  0.5d. 

4. Conclusions 

(1) The maximum "power"  of  a wind turbine represented by  an array of  n 
8n (n +1) 

For large n (effectively n > 6) the  opt imum value is discs is 3 (2n +1)2" 

therefore 2/3 compared with the  Betz value of  16/27 for n = 1. 
(2) The corresponding of  values for the rth disc in the array are: for the 

2 r - 1  2r 
inflow factor ar 2 n + l  and for the outf low factor br = 2n+ l  

(3) The minimum spacing below which this one-dimensional theory begins 
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to  fail is approximately 0.5d. A two~lisc model  of  a Darrieus wind 
turbine is therefore usually satisfactory. 

(4) The present theory gives opt imum values of  the inflow factor at each 
disc which might be used to improve the design of  Darrieus wind tur- 
bines. Since most  o f  the power should be absorbed by the upwind disc (s) 
cambered, or alternatively canted, aerofoils might be used to advantage. 
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Appendix 

Three series are used in the present analysis 

Sr = ( 2 r - 1 )  - ( 2 r - 3 )  + ( 2 r - 5 )  + . . + ( -1 )  r-' = r 

Sm = rn ~ -  ( m - l )  2 + ( m - 2 )  ~ - ( m - 3 )  2 + . . .  + ( - 1 )  m-' = 

n (n +I) (2n +I) 
S.  = n 2 + ( n - l )  2 + ( n - 2 )  2 + . . . + 1 2  = 

6 

m (m + I )  

2 
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