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Sensitivities 
 

1.0 Introduction 

 

Operation of the Eastern Interconnection relies on using the so-

called Interchange Distribution Calculator (IDC) [1]. This is an 

internet-accessed system that interfaces with OASIS and allows 

market participants and network operators to efficiently, but 

approximately, determine the change in MW flow on a flowgate 

given a set of changes in MW bus injections.  

 

A flowgate is a circuit or set of circuits that interconnect different 

regions of a network that can be limiting under some condition. 

 

The IDC does not represent buses but rather represents control 

areas, and there are about 100 of them in the eastern 

interconnection. Therefore the flowgates mostly represent 

interconnections between these control areas; however, a flowgate 

may also be internal to a single control area as well. 

 

For purposes of the IDC, a control area is a bus, and the flowgates 

are interconnections between the buses.  

 

One of the most important uses of the IDC is in the coordination of 

Transmission Loading Relief (TLR) actions. TLR procedures are 

in place to guide operators in mitigating flows that exceed 

operational security limits. TLR levels, summarized in Table 1 [2] 

have been defined that correspond to different types of actions that 

may be taken for which curtailments must be made. When a TLR 

level 5 is declared, all ongoing transactions including those with 

firm transmission service are subject to curtailment.  

 

What we desire to obtain, then, is an expression for computing the 

change in flow on a branch in a network for a given change in MW 

bus injection. 
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Table 1: Summary of TLR Levels [1] 

TLR 
Level 

RELIABILITY COORDINATOR Action Comments  

1 Notify RELIABILITY COORDINATORS of potential 
OPERATING SECURITY LIMIT violations 
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2 Hold INTERCHANGE TRANSACTIONS at current levels to 
prevent OPERATING SECURITY LIMIT violations 

Of those transactions at or above the 
CURTAILMENT THRESHOLD, only those under 
existing Transmission Service reservations will 
be allowed to continue, and only to the level 
existing at the time of the hold. Transactions 
using Firm Point-to-Point Transmission Service 
are not held. See Section B.1. 

3a Reallocation Transactions using Non-firm Point-to-
Point Transmission Service are curtailed to allow 
Transactions using higher priority Point-to-Point 
Transmission Service 

Curtailment follows Transmission Service 
priorities. Higher priority transactions are 
enabled to start by the REALLOCATION process. 
See Section B.3. 

3b Curtail Transactions using Non-firm Point-to-Point 
Transmission Service to mitigate Operating Security 
Limit Violation 

Curtailment follows Transmission Service 
priorities. There are special considerations for 
handling Transactions using Firm Point-to-Point 
Transmission Service. See Section B.4. 
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4 Reconfigure transmission system to allow 
Transactions using Firm Point-to-Point Transmission 
Service to continue 

There may or may not be an OPERATING 

SECURITY LIMIT violation. There are special 
considerations for handling Transactions using 
Firm Point-to-Point Transmission Service. See 
Section B.5. 

 

5a Reallocation Transactions using Firm Point-to-Point 
Transmission Service are curtailed (pro rata) to allow 
new Transactions using Firm Point-to-Point 
Transmission Service to begin (pro rata). 

Attempts to accommodate all Transactions using 
Firm Point-to-Point Transmission Service, 
though at a reduced (“pro rata”) level. Pro forma 
tariff also requires curtailment / REALLOCATION on 
pro rata basis with Network Integration 
Transmission Service and Native Load. See 
Section B.6. 
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5b Curtail Transactions using Firm Point-to-Point 
Transmission Service to mitigate Operating Security 
Limit Violation 

Pro forma tariff requires curtailment on pro rata 
basis with Network Integration Transmission 
Service and Native Load. See Section B.7. 
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 6 Emergency Action Could include demand-side management, re-

dispatch, voltage reductions, interruptible and 
firm load shedding. See Section B.8. 

0 TLR Concluded Restore transactions. See Section B.9. 
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TLR 
Lev 

“Risk” Criteria Transaction criteria RELIABILITY 

COORD    
Action 

Comments 

IMMINENCE State 

1 Forsee possible condition 
resulting in violation 

Secure 

 Notify  

2 Expected to approach, is 
approaching, SOL 

 Hold Not > 30 minutes before going 
to higher levels so xactions may 
be made based on priority. 

3a Expected to approach is 
approaching, SOL 

Some non-firm ptp at or 
above curtailment thres -
holds, higher priority ptp 
reservation approved 

Reallocate Curtailments made at top of 
hour. 

3b Existing or imminent SOL 
violation or will occur on 
element removal 

Insecure 
or about 
to be 

Some non-firm ptp at or 
above their curtailment 
thresholds. 

Hold and 
Curtail 

Hold on nonfirm; Curtailments 
made immediately. 

4 Existing or imminent SOL 
violation 

Insecure
or about 
to be 

 Hold and 
Reconfigur
e 

Hold on nonfirm. 

5a At SOL, no further 
reconfig possible 

Secure 

All non-firm ptp at or 
above curtailment 
thresholds curtailed; 
xaction request for  
previously arranged firm 
xmission service. 

Reallocate Curtailments made at top of 
upcoming hour. 

5b Existing or imminent SOL 
violation or one will occur 
on element removal, no 
further reconfig possible 

Insecure
or about 
to be 

All non-firm ptp at or 
above curtailment 
thresholds curtailed. 

Curtail Curtailments made 
immediately. 

6 Existing SOL violation or 
one will occur upon 
element removal 

Insecure 
or about 
to be 

 Emergency 
Action 

Could include redispatch, 
reconfiguration, voltage 
reductions, interruptible and 
firm load shedding. 
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2.0 Calculation of Generation Shift Factors 

 

The desired quantity for computing the change in flow on a branch 

for a given change in generation is referred to as the generation 

shift factor and will be denoted by tb,k. It gives the fraction of a 

change in injection at bus k that appears on branch b. The Power 

Transfer Distribution Factor (PTDF) is a generalization of the 

generation shift factor. This quantity is not only useful for the IDC, 

it is also useful in obtaining fast (but approximate) answers for 

many other different kinds of planning and operating problems. 

 

This calculation of generation shift factors is relatively 

straightforward based on what we have done using the DC power 

flow model. 

Recall the DC power flow equations and the corresponding matrix 

relation for flows across branches. 

'BP        (1) 

 )( ADPB     (2) 

 Inverting eq (1) yields: 

  PB
1

'


      (3) 

Substitution of (3) into (2) yields:  

  PBADPB

1
')(


     (4) 

As we have defined in the notes on DC PowerFlow: 

 PB is the vector of branch flows. It has dimension of M x 1, 

where M is the number of branches. Branches are ordered 

arbitrarily, but whatever order is chosen must also be used in D 

and A. 

 D is an M x M matrix having non-diagonal elements of zeros; 

the diagonal element in position row k, column k contains the 

negative of the susceptance of the k
th

 branch. 

 A is the M x (N-1) node-arc incidence matrix. 
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 B’ is the DC power flow matrix of dimension (N-1)x(N-1), 

where N is the number of buses in the network, obtained from 

the Y-bus as follows: 

1. Replace diagonal element B’kk with the sum of the non-

diagonal elements in row k. Alternatively, subtract bk (the 

shunt term) from Bkk, and multiply by -1. 

2. Multiply all off-diagonals by -1. 

3. Remove row 1 and column 1. 

 P is the vector of nodal injections for buses 2, …, N 

 

The calculation of eq. (4) provides the flows on all circuits given 

the injections at all buses.  

Bus this is not what we want. What we want is the change in flow 

on all circuits given a change in injection at one bus. 

 

Here is a “change in injection vector,” ∆P: 
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The change in circuit flows can then be expressed as 

   

   
  PBAD       

PPBAD       

PBADPBAD        

PPP BBB















1

01

011

0

')(

')(

')(')(

 (6) 
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Now let the ∆P vector be all zeros except for the element 

corresponding to the k
th

 bus, and assign this bus an injection 

change of 1. 
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Then 
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 (8) 

Question: Does the above equation imply that the injection is 

changed at only one bus? Explain. 

 

Definition: The generation shift factor tb,k is defined as 

Policy
onReallocati

,
k

Bb
kb

P

P
t






 

This is denoted as ali in W&W text (see eq. 11.1). 

Example 1: 

We consider an example used in the “DCPowerFlowEquations” 

notes, illustrated below. Compute the generation shift factors for 

all branches corresponding to an increase in bus 2 injection and a 

decrease in bus 3 injection. 
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y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
Fig. 2: Four-bus network used in example 
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Note that the above generation shift factors are for a “double shift.”  
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You can think of it like this. A generation shift factor for branch b, 

bus k would be tb,k and another generation shift factor for branch b, 

bus j would be tb,j. If we have an injection increase at bus k of ∆Pk 

and an injection increase at bus j of ∆Pj (negative), then  

jjbkkbb PtPtP  ,,    (9) 

 
Therefore, if ∆Pk=-∆Pj, then 

  kjbkbb PttP  ,,    (10) 

Note that once ∆Pb is obtained, then it must be added to the 

original flow on branch b to get the resulting total flow following 

the generation shift, i.e., 

bbb PPP  0ˆ
 

The last equation is the same as eq. (11.2) in W&W text. 

 

3.0 Generation Shift Factors with Distributed Slack 

Equation (8) shows how to compute the generation shift factors for 

the case when a single specified slack bus corresponds to bus 1.  

 

Example 1 above shows how to compute the generation shift 

factors for the case when a single specified slack bus corresponds 

to some other bus in the network (not the bus corresponding to the 

reference by way of omission from its corresponding row and 

column in the B’ matrix).  

 

What we are interested in here is computation of generation shift 

factors for the case when we would like to distribute the slack, or 

the compensation, throughout the network. The key criterion to 

guide this is that the elements in the nodal injection vector should 

correspond to the percentage of desired compensation for each bus. 

Increase Pk,  

Decrease P1 

Decrease Pj,  

Increase P1 
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This criterion is illustrated below: 
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is the allocation desired for the reference bus.  

 

One way to distribute the slack is to distribute equally to all buses. 

In this case, 
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where we use N-1 in the denominator because one bus, bus k, is the 

bus for which the computation is being made (and therefore ck=1). 

If we use (13), then we can substitute into (12) to obtain: 
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Example 2: 

Using the system from Example 1 above, compute generation shift 

factors for all branches corresponding to an increase in bus 2 

injection, when the slack is equally distributed to all buses. 
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It is of interest to compare the answer from the example where the 

slack was distributed entirely to bus 3 and the example where the 

slack was distributed to all buses. 
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










































0002.0

1666.0

4999.0

5001.0

1664.0

2,5

2,4

2,3

2,2

2,1

all

all

all

all

all

t

t

t

t

t

 

Clearly the assumption on slack distribution is important! 

There are other ways to distribute the slack. For example, we may 

distribute the slack equally to all generation buses. Or we may 

distribute the slack equally to all load buses. Or we may distribute 

the slack to all generation buses in proportion to the MVA rating of 

the generation that is located there (this approach conforms best to 

reality, as we will see when we study AGC). 

 

4.0 Generation Shift Factor Matrix 

 

Given a specified slack distribution, we may compute a matrix of 

generation shift factors according to 

 

  












NM

NMkMMM

Nbkbbb

Nk

Nk

tttt

tttt

tttt

tttt

T































,,2,1,

,,2,1,

,2,22,21,2

,1,12,11,1
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   

  












NN

NNNNNN

NNNNNNNN

NN

NN

NN

NNNMMM

ccccc

cccccc

ccccc

ccccc

ccccc

BAD















































)1(

1,4,3,2,1,

,11,14,13,12,11,1

,41,43,42,41,4

,31,34,22,31,3

,21,24,23,21,2

)1()1(

1

)1(

1

1

1

1

')(

 

The last matrix on the right is called the reallocation matrix and is 

the matrix for all considered {injection changes with 

corresponding reallocation policies}, where an element ci,k is the 

percent allocation to bus i when an injection of 1.0 is made at bus 

k. For example,  

 first column ci,1, i=2,…,N provides the reallocation policy at 

all buses i=2,…,N when an injection of 1.0 is made at bus 1.  

 second column ci,2, i=2,…,N provides the reallocation policy at 

all buses i=2,…,N when an injection of 1.0 is made at bus 2.  

 … 

 last column ci,N provides the reallocation policy at all buses 

i=2,…N, when an injection of 1.0 is made at bus N. 

The number of columns in the reallocation matrix is equal to the 

number of considered {injection changes with corresponding 

reallocation policies}. 

 

In the reallocation matrix, the sum of all elements in a column k 

(corresponding to the injection of 1.0 being made at bus k) is the 

negative of the allocation made to bus 1 (a generalization of eq. 

(12)), as follows: 

Nkcc
N

i

kik ,...,1
2

,,1  

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The formulation above assumes that we desire generation shift 

factors for every branch (a row of T) and every bus (a column of 

T). The first column of T is for a shift at bus 1, which is the bus for 

which a column and a row are deleted from the B’ matrix. 

 

However, we need not include every branch. There may be some 

branches that we know from experience will never overload, or 

there may be policy that requires a particular application to only 

monitor certain branches. The latter is the case for NERC’s IDC 

described at the beginning of this document. 

 

Example 3: Let’s compute the T-matrix for Example 2. We assume 

a distributed slack bus, where, ci,k =-1/3. Therefore 





























































































1333.0333.0333.0

333.01333.0333.0

333.0333.01333.0

20100

103010

01020

 

01-0

11-0

01-1

001-

1-00

100000

010000

001000

000100

000010
1

T



































03333.003333.0

5.03333.01667.00

1667.03333.05.00

1667.005.03333.0

5.001667.03333.0

T

Remember: each column is the set of shift factors for a unit 

increase in injection (generation) at a certain bus. Column 1 is 

when the injection at bus 1 is increased (there is no “1” in that 

column because that is the one corresponding to the bus that was 

deleted in the B’ matrix). Column 2 is when the injection at bus 2 

is increased, and so on.  
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The one-line diagram is shown below to facilitate understanding of 

the relation between increased injection at bus k (which identifies a 

particular column) and how branch flows are affected (the 

elements in that particular column).  

 

5 
1 

4 

 3 

2 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
For example, the first column indicates that if we increase bus 1 

injection by 1 pu, we get 0.3333 flowing over branches 1, 2, 5, 

with 0 pu on branches 3, 4
1
.  

One caution: It is possible to obtain a complete power flow 

calculation using the shift factors. That is 





N

k

kbkBb tPP
2

,      * 

where ∆Pk is the total injection at bus k. In this case, however, the 

shift factors tb,k, defined according to 

                                                 
1
 It is interesting that we get 0 pu flowing over branches 3 and 4. The reason is due to network symmetry 

(all branch impedances have Z=j0.1 pu). This symmetry is most clearly understood by using superposition. 

Begin by applying 0.3333 pu injection at bus 1, -0.3333 pu injection at bus 2, and compute the flows. Then 

apply 0.3333 pu injection at bus 1, -0.3333 injection at bus 3, and compute the flows. Then apply 0.3333 pu 

at bus 1, -0.3333 pu injection at bus 4, and compute the flows. Then add the 3 sets of flows for each branch, 

and one will observe the exact cancelation of the three flows in branch 3, and the three flows on branch 4. 
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Policy
onReallocati

,
k

Bb
kb

P

P
t






 

must be computed according to a consistent reallocation policy. 

Thus, we should not compute (*) above using the T-matrix values 

based on the distributed slack. If we did, for our 4 bus system: 

  
For column 1, "bus k" = bus 1. It means that a 1 unit change at 

bus 1 gets compensated by a -1/3 unit change at buses 2, 3, 4. 

  

For column 2, "bus k" = bus 2. It means that a 1 unit change at 

bus 2 gets compensated by a -1/3 unit change at buses 1, 3, 4. 

  

And so on. 

  

This will result in a balanced dispatch (power balance will be 

satisfied), but it will be a different dispatch than what was 

intended. As a simple example, try a three bus system having 

injections -6, 4, 2, at buses 1, 2, and 3, respectively. With "c"=0.5, 

then we will get the following distribution: 

  

Bus 1           Bus 2              Bus 3 

-6                  +3                    +3 Each row here shows injected 

-2                  +4                    -2 bus in bold and the allocation 

-1                  -1                     +2 to other buses based on c=0.5. 

------------------------------------------------- 

-9                   +6                  +3     This last row shows total  

      injection at each bus from the 3 

   calculations, i.e., the resulting 

bus distribution from applying  

the "dist slack" aij's, which does 

not match with  the intended 

distribution of -6, 4, 2. Thus, you 

will get a different set of flows. 
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So, for this example, in computing the "T" matrix, the "c" matrix 

(that post multiplies DAB
-1

) for our 4 bus system should appear as 

0  1  0 0  

0  0  1 0  

0  0  0 1 

which means using bus # 1 as the slack in each case, that is, 























































































1000

0100

0010

20100

103010

01020

 

01-0

11-0

01-1

001-

1-00

100000

010000

001000

000100

000010
1

T  

 

5.0 Efficient computation of GSFs 

 

In the previous discussion, it was assumed that we would be able 

to compute (B’)
-1

, i.e., that the number of nodes would not be too 

large, which can be the case under some approximations such as 

those made by the IDC [1]. However, it is also common that this is 

not the case, i.e., that we may want to obtain GSFs for a system 

where the number of nodes is very large. 

In such a case, one can obtain the GSFs without matrix inversion 

but only for one shift at a time, via 

 'BP       (14) 

 )( ADPB      (15) 

Equation (14) is solved for ∆θ via LU factorization for a given ∆P, 

and then the resulting ∆θ is used in (15) to obtain the line flow 

shifts in ∆PB. 

 

Example 4: Repeat example 1, which is to obtain the GSF for all 

branches corresponding to an increase in bus 2 injection and a 

decrease in bus 3 injection.  
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






















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



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
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




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01020
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1
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4
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2

BP  

Using LU factorization: 
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Now use backwards/forwards substitution to obtain ∆θ, resulting in  
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0375.0)0250.0(*5.005.0

0250.0)0125.0(*4.002.0

0125.0

0125.0

02.0

05.0

100

4.010
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And this gives our angle changes as 



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
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
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Now we can use eq. (15) to obtain 


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
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












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

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
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


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











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












25.0

125.0

625.0

375.0

125.0

0125.0

0250.0

0375.0

01-0

11-0

01-1

001-

1-00

100000

010000

001000

000100

000010

)(  ADP B

which is in agreement with the result of example 1. 

 

6.0 Line outage distribution factors 

 

The line outage distribution factor (LODF) is derived in your text 

(Appendix 11A, pp.440-444).  

 

The LODFs are linear estimates of the ratio:  

 

change in flow on circuit ℓ due to 

outage of circuit k, denoted by Δfℓ, 

to 

pre-contingency flow on 

circuit k, denoted by fk0. 
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In other words, it provides the fraction of pre-contingency flow on 

circuit k that appears on circuit ℓ following outage of circuit k, and 

is given by  

dℓ,k = Δfℓ  / fk0     (16) 

It is then clear that the change in flow on circuit ℓ due to the outage 

of circuit k is given by  

Δfℓ = dℓ,k × fk0     (17) 

The derivation in the text is lengthy; we will not go through it here. 

To understand the result, we define a matrix X’ such that 

1)'('  BX      (18) 

This means that 

PXBP  ''     (19) 

 

Then we define another matrix X such that it is the same as X’ 

except we append another row at the top and another column to the 

left, corresponding to the reference bus (assumed bus #1) injection 

and angle, as shown below: 

 





















0

'

0

000

X
X





     (20) 

The line outage distribution factor dℓ,k = Δfℓ  / fk0 corresponding to 

the additional flow on branch k from outage of branch ℓ is then 

given by  
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 

 nmmmnnk

jmimjnin
k

,k
XXXx

XXXX
x

x

d
2



 
     (21) 

In (21),  

 xk and xℓ are the reactances of outage branch k and remaining 

branch ℓ, respectively; 

 m and n are bus numbers terminating branch k; 

 i and j are bus numbers terminating branch ℓ. 

Therefore, 

 Xin is the element of X in row i, column n.  

 Xjn is the element of X in row j, column n.  

 Xim is the element of X in row i, column m.  

 Xjm is the element of X in row j, column m.  

 Xnm is the element of X in row n, column m.  

 Xnn is the element of X in row n, column n.  

 Xmm is the element of X in row m, column m.  

 

7.0 A computationally efficient method to obtain LODFs 

 

A significant problem with W&W’s method of obtaining the 

LODFs is that it requires X=(B’)
-1

, and if the system is very large, 

then inverting the matrix can be a computationally intense 

problem. We provide another method in this section. Our treatment 

is adapted from [3]. 

 

Let’s reconsider our familiar 4-bus, 5-branch example problem. 
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Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
The B’ matrix for this system is  


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


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
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20100
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01020

'B  

What happens to B’ if we lose the circuit #3 (from bus 2 to bus 3)?  

 

We could re-develop the new B’ from the one-line diagram as we 

are accustomed to doing now. Another way is to discern how the 

circuit #3 affects the B’ matrix, in that it will affect exactly 4 

elements, as indicated with the underlines below, corresponding to 

elements in bus numbered positions (2,2), (2,3), (3,2), and (3,3). 

4

3

2

20100

103010

01020

'

4     32   























B  

Recalling that all branch admittances of our network are –j10, what 

would these four elements be if branch #3 (between buses 2 and 3) 

were not there? 
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What is the difference between B’ and B’
out

? 
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Notice that the elements in ∆B’ are all multiples of B’23=-10, i.e.,  
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Notice that the above matrix can be expressed as  
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From this simple illustration, we can see a generalization, that 

whenever we remove a branch between buses i and j, with 

corresponding B’ matrix element B’ij, the B’ matrix will change as 

indicated below. 

j

i

bBBB

ji

ij
out









































0000

0110

0110

0000

'''

                    

                   

















(22) 

Inconsistency: In Section 

6.0, we used (i,j) to 

indicate terminals of the 

circuit to be loaded (l) 

and (m,n) to indicate 

terminals of the circuit to 

be outaged (k). In the 

development of this 

section, the nomenclature 

on terminal number has 

been reversed, i.e., (i,j) 

becomes the terminals of 

the circuit to be outaged 

(k) and (m,n) becomes 

the terminals of the 

circuit to be loaded (l). 
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where bij is the susceptance of branch i-j. We use bij instead of B’ij 

in order to ensure we have a defined term even when i or j are the 

swing bus. Notice that bij will always be negative. 

 

The previous relation may be expressed as 

 

       

0110

0

1

1

0

'
ji

j

i

bB ij







































 







  (23) 

If we define 

j

i

e ij





































0

1

1

0







     (24) 

then (23) becomes 

 
T
ijijij eebB  '      (25) 

 

 

 

 

 

 

 

Caution: The designated 

positions in the row and 

column vectors 

correspond to buses i and 

j, i.e., they are not the i
th

 

and j
th

 positions. 
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Special case: If the branch to be outaged is connected to the swing 

bus (in our case, it is bus #1), then,  

      if i=1,       if j=1,  

j

e j

































0

1

0

1









    

i

ei



































0

1

0

1









 

 

From (22), and using (25), we have that 
T
ijijij

out eebBBB  '''     (26) 

Therefore the post-contingency B’ matrix can be expressed as 
T
ijijij

out eebBBBB  ''''     (27) 

From (1), we recall the DC power flow relation as 

 'BP        (1) 

If, when we remove the branch connected between buses i and j, 

the angles change by ∆θ, then the new (post-contingency) angles 

will be θ+∆θ, and (1) becomes 

)('   outBP     (28) 

Substituting (27) into (28), we obtain 

  )('  
T
ijijij eebBP

  (29) 

We can solve for the new angles according to 

  PeebB
T
ijijij

1
'


 

  (30) 
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We do not seem to have made much progress, because we still 

have to take an inverse… 

 

However, there is a significant benefit to writing the new matrix in 

the way that we have written it, and that benefit becomes apparent 

if we learn a certain matrix relation. This relation is generally 

referred to as a lemma.  

 

Matrix Inversion Lemma (MIL): Assume B’ is a nonsingular 

n×n matrix, and let c and d be n×M matrices with M<n. Then: 

    111)(111
''''' 

 BdcBdIcBBdcB
TTMT

where I
(M)

 is the M×M identity matrix. 

 

We neglect the proof but mention that it is proved in [3, p. 100] by 

simply multiplying the right-hand-side of MIL by the expression 

inside the brackets of the left-hand-side, and showing that the 

product is the n×n identity matrix. 

 

We also mention that MIL is derived in [4, pp. 138-140]. 

 

It may not be very obvious at this point that MIL will help us, 

since we see 4 different inverses on the right-hand-side of MIL. 

Let’s apply MIL to the inverted term of (30) to see what happens. 

 

Observing that we can define 

T
ij

T

ijij

ed

ebc





    (31) 

we can apply MIL according to 



 26 

 

  111)(11

1

''''

'









BeebBeIebBB

eebB

T
ijijij

T
ij

M
ijij

T
ijijij

  (32) 

One of the inverses on the right-hand-side can be addressed right 

away, however, by identifying the dimensionality of the expression 

inside the right-hand-side brackets, [I
(M)

+d
T
B’

-1
c]. Observing from 

the MIL that M is the number of columns in c and d, and noting 

from (31) that in our case, c and d have only M=1 column, we see 

that what is inside the right-hand-side brackets is a scalar quantity! 

So that inverse we can take, and accordingly, we can express (32) 

as: 

 
ijij

T
ij

T
ijijijT

ijijij
ebBe

BeebB
BeebB

1

11
11

'1

''
''









 (33) 

Pulling out the scalar multiplier bij from where it appears in both 

the numerator and denominator, we have 

 
ij

T
ijij

T
ijijijT

ijijij
eBeb

BeeBb
BeebB

1

11
11

'1

''
''









 (34) 

Now we can isolate bij to only one appearance in the expression by 

dividing top and bottom by it, resulting in: 

 
ij

T
ij

ij

T
ijijT

ijijij

eBe
b

BeeB
BeebB

1

11
11

'
1

''
''









 (35) 

What we have just expressed in (35) is the inverted term on the 

right-hand-side of (30), repeated below for convenience:  

  PeebB
T
ijijij

1
'


 

  (30) 

Substituting (35) into (30), we obtain: 



 27 

P

eBe
b

BeeB
B

ij
T
ij

ij

T
ijij



























1

11
1

'
1

''
'

  (36) 

Distributing the injection vector P results in 

ij
T
ij

ij

T
ijij

eBe
b

PBeeB
PB

1

11
1

'
1

''
'








 
  (37) 

But θ=B’
-1

P, and therefore we can replace the corresponding 

expressions in both right-hand-side terms to obtain: 

ij
T
ij

ij

T
ijij

eBe
b

eeB

1

1

'
1

'











  (38) 

We can simplify a little more by investigating eij
T
θ in the 

numerator. This would be: 

ji

n

j

i

ji

T
ije 









 



















































1

2

0110









 (39) 

Substituting (39) into (38) results in: 
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ij
T
ij

ij

jiij

eBe
b

eB

1

1

'
1

)('













  (40) 

 

Now we have only two inverses left. Interestingly, they both pre-

multiply eij. That is, we observe that both inverses appear in        

B’
-1

eij, an n×1 vector. 

 

Question: Besides inverting B’
-1

, how might we evaluate this term? 

 

Advice: When you don’t know how to evaluate something, just 

name it. Then, if things don’t get better right away, you can at least 

move on with a sort of indicator of where your problem lies.  

 

So let’s name this n×1 vector as g
ij
, i.e.,  

ij
ij

eBg 1'      (41) 

Not sure if that helps much but it does indicate that 

ij
ij

egB '      (42) 

Equation (42) should stimulate a very good idea within your mind. 

Since we very well know B’ and eij, we can obtain g
ij
 through LU 

factorization. Doing so will give us everything we need to evaluate 

(40), which, when we substitute g
ij
 for B’

-1
eij, becomes: 

ij

ijT
ij

ij

ji
g

ge
b






1

)( 


  (43) 

One last small change should be made to (43), and that is to 

recognize that the term in the denominator eij
T
g

ij
 can be expressed 

as 
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ij
j

ij
i

ij
n

ij
j

ij
i

ij

ji

ijT
ij gg

g

g

g

g

ge 



















































1

2

0110









 (44) 

Therefore, (43) becomes 

ij

ij
j

ij
i

ij

ji
g

gg
b

)(
1

)(









   (45) 

 

Now what is the LODF? Recall the definition of the LODF is 

dℓ,k = Δfℓ  / fk0     (16) 

where we recall that  

 k designates the outaged circuit, terminated by buses i and j;  

 ℓ designates the circuit for which we want to compute the new 

flow, terminated by buses m and n.  

 

First, let’s express the denominator of (16) fk0, which is 

 T
ijijjiijk ebbf  )(0    (46) 

Now let’s express the numerator of (16) Δfℓ, which is  

 
T
mnmnnmmn ebbf )(l   (47) 

But note that ∆θ in (47) can be expressed using the second term of 

(45), i.e.,  

Inconsistency: 

Recall the note 

on p. 22, which 

indicates an 

inconsistency 

in 

nomenclature 

with Sec 6.0. 
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ij

ij
j

ij
i

ij

ji
g

gg
b

)(
1

)(









   (48) 

Substituting (48) into (47) results in 

ij

ij
j

ij
i

ij

jiT
mnmn g

gg
b

ebf

)(
1

)(







l

  (49) 

It is helpful at this point to rearrange (49) according to 

ijT
mnij

j
ij
iij

jiij
mn ge

ggb

b
bf

)(1

)(







l

  (50) 

We recognize in (50) that 

)(0 jiijk bf       (51) 

 

and  

ij
n

ij
m

ijT
mn ggge      (52) 

Substituting (51) and (52) into (50) results in 

)(1

)(0
ij
j

ij
iij

ij
n

ij
mk

mn
ggb

ggf
bf




 l

   (53) 

So (53) can be used to obtain the change in flow on circuit ℓ 

(terminated by buses m and n) due to outage of circuit k 

(terminated by buses i and j).  

 

To get the LODF, we divide (53) by fk0, resulting in 
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)(1

)(
ij
j

ij
iij

ij
n

ij
m

mn
ggb

gg
b

f

f
d








k0

l
kl,

   (54) 

The approach, then, to using (54), is to factorize B’ into the L and 

U factors once. Then, for each contingency k=1,…,NC, (per (42)), 

we use forward and backwards substation to obtain the vector g
ij
. 

The LODFs for every branch ℓ (terminated by buses m and n), are 

then computed from (54).  

 

Example 5:  

Consider our 4-bus, 5-branch example problem again. Compute g
ij

 

for a line 2-3 outage. Then use it to compute the post-contingency 

flow on circuit 3-4. 

 

Solution: 

Recall (42): 

ij
ij

egB '  

where B’ is given by: 

























20100

103010

01020

B  

and e23 is given by 

3

2

0

1

1

23




















 j

i

e  

And so our equation is:  

























































0

1

1

20100

103010

01020

23

4

23

3

23

2

g

g

g

 

Performing LU decomposition, we obtain 
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



















16100

02510

0020

L  






















100

4.010

05.01

U  

Notice that the above factors need be computed only one time; 

they may subsequently be applied to obtain the g-vector for outage 

of any circuit. In this case, we are interested in outage of the line 

from bus 2 to bus 3, therefore we write 





























































































0125.0

02.0

05.0

0

1

1

16100

02510

0020

3

2

1

3

2

1

23

w

w

w

w

w

w

ewL  

































































































0125.0

025.0

0375.0

0125.0

02.0

05.0

100

4.010

05.01

23

4

23

3

23

2

23

4

23

3

23

2

23

g

g

g

g

g

g

wgU  

Then we can compute the LODF for the circuit 3-4 after outage of 

circuit 2-3: 

333.0
375.0

0125.0
10

)025.00375.0(101

)0125.0025.0(
10

)(1

)(

)(1

)(

23

3

23

223

23

4

23

3
34
























ggb

gg
b

ggb

gg
b

f

f
d

ij

j

ij

iij

ij

n

ij

m
mn

k0

l
kl,

If circuit 2-3 has flow of 0.25, then the change in flow on circuit 3-

4, following outage of circuit 2-3 becomes 

0833.025.0*333.0  k0kl,l fdf  

If the pre-contingency flow on circuit 3-4 was 1.25, then  

Now let’s check it with the DC power flow. 
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y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 

5 
1 

4 

 3 

2 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
 

With all lines in we obtain 

  PBADPB

1
')(


  













































































































1

4

1

 

20100

103010

01020

01-0

11-0

01-1

001-

1-00

100000

010000

001000

000100

000010
1-

5

4

3

2

1

B

B

B

B

B

P

P

P

P

P















































5.1

25.1

25.1

25.0

25.0

5

4

3

2

1

B

B

B

B

B

P

P
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Observe that the flow on circuit 3-4 is 1.25 pu. 

With circuit 2-3 out, we obtain: 
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Also use W&W’s method. 

 

Example 6:  

 

For outage of branch connected to swing. 

 

Do it three ways as in Example 6: 

a. Use the above method 

b. Use DC flow with and without outage; 

c. Use W&W’s method. 

 

 

References: 
                                                 

[1] J. Medina, “Interchange Distribution Calculator (IDC) for Transmission 

Congestion Management: Implementation and Challenges,” presentation at 

the PSERC IAB Meeting, May 16, 2008, available at 

http://www.pserc.org/cgi-pserc/getbig/pserconly/iabmeeting/may14-

16am/presentati/medina_oati_idc_pserc_iab_may08.pdf.  

http://www.pserc.org/cgi-pserc/getbig/pserconly/iabmeeting/may14-16am/presentati/medina_oati_idc_pserc_iab_may08.pdf
http://www.pserc.org/cgi-pserc/getbig/pserconly/iabmeeting/may14-16am/presentati/medina_oati_idc_pserc_iab_may08.pdf


 35 

                                                                                                                                                 

[2] North American Electric Reliability Council (NERC) Operating Manual, 

Appendix 9C1, May, 2004, available at www.nerc.com.  

[3] A. Debs, “Modern Power Systems Control and Operation,” Kluwer, 

1988.  

[4] A. Monticelli, “State estimation in electric power systems, a generalized 

approach,” Kluwer, 1999.  

http://www.nerc.com/

