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The Power Flow Equations 

 

1.0  The Admittance Matrix 
Current injections at a bus are analogous to power injections. The 

student may have already been introduced to them in the form of 

current sources at a node. Current injections may be either positive 

(into the bus) or negative (out of the bus). Unlike current flowing 

through a branch (and thus is a branch quantity), a current injection 

is a nodal quantity. The admittance matrix, a fundamental network 

analysis tool that we shall use heavily, relates current injections at 

a bus to the bus voltages. Thus, the admittance matrix relates nodal 

quantities. We motivate these ideas by introducing a simple 

example. We assume that all electrical variables in this document 

are given in the per-unit system. 

 

Fig. 1 shows a network represented in a hybrid fashion using one-

line diagram representation for the nodes (buses 1-4) and circuit 

representation for the branches connecting the nodes and the 

branches to ground. The branches connecting the nodes represent 

lines. The branches to ground represent any shunt elements at the 

buses, including the charging capacitance at either end of the line. 

All branches are denoted with their admittance values yij for a 

branch connecting bus i to bus j and yi for a shunt element at bus i. 

The current injections at each bus i are denoted by Ii. 
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Fig. 1: Network for Motivating Admittance Matrix 
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Kirchoff’s Current Law (KCL) requires that each of the current 

injections be equal to the sum of the currents flowing out of the 

bus and into the lines connecting the bus to other buses, or to the 

ground. Therefore, recalling Ohm’s Law, I=V/z=Vy, the current 

injected into bus 1 may be written as: 

 

I1=(V1-V2)y12 + (V1-V3)y13 + V1y1   (1) 

 

To be complete, we may also consider that bus 1 is “connected” to 

bus 4 through an infinite impedance, which implies that the 

corresponding admittance y14 is zero. The advantage to doing this 

is that it allows us to consider that bus 1 could be connected to any 

bus in the network. Then, we have: 

 

I1=(V1-V2)y12 + (V1-V3)y13 + (V1-V4)y14 + V1y1  (2) 

 

Note that the current contribution of the term containing y14 is zero 

since y14 is zero. Rearranging eq. 2, we have: 

 

I1= V1( y1 + y12 + y13 + y14) + V2(-y12)+ V3(-y13) + V4(-y14)    (3) 

 

Similarly, we may develop the current injections at buses 2, 3, and 

4 as: 

 

I2= V1(-y21) + V2( y2 + y21 + y23 + y24) + V3(-y23) + V4(-y24)  (4) 

I3= V1(-y31)+ V2(-y32) + V3( y3 + y31 + y32 + y34) + V4(-y34)  

I4= V1(-y41)+ V2(-y42) + V3(-y34)+ V4( y4 + y41 + y42 + y43)  

 

where we recognize that the admittance of the circuit from bus k to 

bus i is the same as the admittance from bus i to bus k, i.e., yki=yik 

From eqs. (3) and (4), we see that the current injections are linear 

functions of the nodal voltages. Therefore, we may write these 

equations in a more compact form using matrices according to: 
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The matrix containing the network admittances in eq. (5) is the 

admittance matrix, also known as the Y-bus, and denoted as: 
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Denoting the element in row i, column j, as Yij, we rewrite eq. (6) 

as:  
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where the terms Yij are not admittances but rather elements of the 

admittance matrix. Therefore, eq. (5) becomes: 
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By using eq. (7) and (8), and defining the vectors V and I, we may 

write eq. (8) in compact form according to: 
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We make several observations about the admittance matrix given 

in eqs. (6) and (7). These observations hold true for any linear 

network of any size. 

1. The matrix is symmetric, i.e., Yij=Yji. 

2. A diagonal element Yii is obtained as the sum of admittances for 

all branches connected to bus i, including the shunt branch, i.e., 





N

ikk

ikiii yyY
,1

, where we emphasize once again that yik is 

non-zero only when there exists a physical connection between 

buses i and k. 

3. The off-diagonal elements are the negative of the admittances 

connecting buses i and j, i.e., Yij=-yji. 

These observations enable us to formulate the admittance matrix 

very quickly from the network based on visual inspection. The 

following example will clarify. 
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Example 1 
 

Consider the network given in Fig. 2, where the numbers indicate 

admittances.  
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Fig. 2: Circuit for Example 1 

 

The admittance matrix is given by inspection as: 
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2.0 The power flow equations 

 

Define the net complex power injection into a bus as Sk=Sgk-Sdk. In 

this section, we desire to derive an expression for this quantity in 

terms of network voltages and admittances. We begin by 

reminding the reader that all quantities are assumed to be in per 

unit, so we may utilize single-phase power relations. Drawing on 

the familiar relation for complex power, we may express Sk as: 
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Sk=VkIk
*
      (10)  

 

From eq. (8), we see that the current injection into any bus k may 

be expressed as 
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where, again, we emphasize that the Ykj terms are admittance 

matrix elements and not admittances. Substitution of eq. (11) into 

eq. (10) yields: 

 

*

1

*

*

1

j

N

j

kjkj

N

j

kjkk VYVVYVS 















    (12)  

 

Recall that Vk is a phasor, having magnitude and angle, so that 

Vk=|Vk|k. Also, Ykj, being a function of admittances, is therefore 

generally complex, and we define Gkj and Bkj as the real and 

imaginary parts of the admittance matrix element Ykj, respectively, 

so that Ykj=Gkj+jBkj. Then we may rewrite eq. (12) as 
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Recall, from the Euler relation, that a phasor may be expressed as 

complex function of sinusoids, i.e., V=|V|=|V|{cos+jsin}. 

With this, we may rewrite eq. (13) as 

 

 

 











N

j

kjkjjkjkjk

N

j

kjkjjkjkk

jBGjVV

jBGVVS

1

1

)()sin()cos(     

)()(





  (14)  

If we now perform the algebraic multiplication of the two terms 

inside the parentheses of eq. (14), and then collect real and 

imaginary parts, and recall that Sk=Pk+jQk, we can express eq. (14) 

as two equations, one for the real part, Pk, and one for the 

imaginary part, Qk, according to: 
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The two equations of (15) are called the power flow equations, and 

they form the fundamental building block from which we attack 

the power flow problem.  

 

3.0 Solving the power flow problem 
 

The standard power flow problem is as follows:  

 

Given that for each bus (node) in the network, we know 2 out of 

the following 4 variables: Pk, Qk, |Vk|, θk, so that for each bus, there 

are two equations available – those of eq. (15) above, and there are 

two unknown variables. Thus the power flow problem is to solve 
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the power flow equations of (15) for the remaining two variables 

per bus. 

 

This problem is one where we are required to solve simultaneous 

nonlinear equations. Because most power systems are very large 

interconnections, with many buses, the number of power flow 

equations (and thus the number of unknowns) is very large. For 

example, a model of the eastern interconnection in the US can have 

50,000 buses. 

 

The approach to solving the power flow problem is to use an 

iterative algorithm. The Newton-Raphson algorithm is the most 

commonly used algorithm in commercial power flow programs. 

Starting with a reasonable guess at the solution (where the 

“solution” is a numerical value of all of the unknown variables), 

this algorithm checks to see how close the solution is, and then if it 

is not close enough, updates the solution in a direction that is sure 

to improve it, and then repeats the check. This process continues 

until the check is satisfied. Usually, this process requires 5-20 

iterations to converge to a satisfactory solution. For large 

networks, it is computationally intensive. 

 

In this class, we are very interested in optimization methods for 

finding maximum surplus solutions to the problem of how to 

dispatch the generation. So far, we have dealt with problems where 

all generation and load was considered to be at the same bus (node) 

and were thus able to ignore the network. But in reality, generation 

and load are located at various buses, and the transportation 

mechanism for moving electrical energy from supply to 

consumption is the transmission network. If there are losses or 

constraints in the transmission network (which there are), these 

will influence how supply can be allocated, and the most 

economically desirable solutions may not be feasible. 
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To account for the network in the economic optimization problems 

we have posed, we must account for the equations that correspond 

to the network. These are the power flow equations. This can be 

done, and problem that results is referred to as the optimal power 

flow (OPF). However, because the power flow equations are 

nonlinear, the OPF requires a nonlinear optimization method for its 

solution.  Nonlinear optimization (usually called nonlinear 

programming instead of linear programming) is a rich, interesting, 

and highly applicable area. You can take entire courses on this 

subject (see, for example, IE 631).  

 

But we do not have time in this class to learn nonlinear 

programming methods. And fortunately, since we have learned 

linear programming, we do not need to do so if we can convert our 

nonlinear problem into a linear one.  

 

In our problem, where we desire to maximize social surplus, the 

objective function may be nonlinear. It is possible to convert a 

nonlinear objective function into a linear objective function using 

piecewise linear approximations. This method is very effective in 

approximating an objective function that is a separable function 

(can be separated into components), since each component is a 

function of only one variable. In other words, we are able to apply 

piecewise linear approximation to each individual utility or cost 

function because each one is a function of only one variable. Fig. 3 

illustrates a piecewise linear approximation of a cost function. 
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The power flow equations are functions of many variables, and it is 

very complex to see how to apply piecewise linear approximations, 

since a piecewise linear approximation for any one variable will 

depend on the value of the other variables. 

 

Thus, we seek another method of converting our nonlinear power 

flow equations into linear equations. 

 

4.0 Approximations to the power flow equations 
 

Let’s reconsider the power flow equations: 
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We will make use of three practical observations regarding high 

voltage electric transmission systems. 

 

Observation 1: The resistance of transmission circuits is 

significantly less than the reactance. Usually, it is the case that the 

x/r ratio is between 2 and 10. So any given transmission circuit 

with impedance of z=r-jx will have an admittance of 
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From eq. (16), we see that 
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If r is very small compared to x, then we observe that g will be 

very small compared to b, and it is reasonable to approximate eqs. 

(17) as  
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0g   and 
x

b
1
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Now, if g=0, then the real part of all of the Y-bus elements will 

also be zero, that is, g=0G=0. 

 

Applying this conclusion to the power flow equations of eq. (15):  
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Observation 2: For most typical operating conditions, the 

difference in angles of the voltage phasors at two buses k and j 

connected by a circuit, which is θk-θj for buses k and j, is less than 

10-15 degrees. It is extremely rare to ever see such angular 

separation exceed 30 degrees. Thus, we say that the angular 

separation across any transmission circuit is “small.” 

 

Consider that, in eqs. (19), the angular separation across a 

transmission circuit, θk-θj, appears as the argument of the 

trigonometric functions sine and cosine. What do these functions 

look like for small angles? We can answer this question by 

recalling that the sine and cosine functions represent the vertical 

and horizontal components of a unit (length=1) vector making an 

angle δ=θk-θj with the positive x-axis, as illustrated in Fig. 3. 
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Fig. 3: Trig functions of a small angle 

 

In Fig. 3, it is clear that as the angle δ=θk-θj gets smaller and 

smaller, the cosine function approaches 1.0.  

 

One might be tempted to accept the approximation that the sine 

function goes to zero. This it does, as the angle goes to zero. But 

an even better approximation is that the sine of a small angle is the 

angle itself (when the angle is given in radians). This can be 

observed in Fig. 3 from the fact that the vertical line, representing 

the sine, is almost the same length as the indicated radial distance 

along the circle, which is the angle (when measured in radians).  

 

Applying these conclusions from observation 2 to eqs. (19):  
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Note that we have made significant progress at this point, in 

relation to obtaining linear power flow equations, since we have 
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eliminated the trigonometric terms. However, we still have product 

terms in the voltage variables, and so we are not done yet. Our next 

and last observation will take care of these product terms.  

 

Before we do that, however, let’s investigate the expressions of eq. 

(20) a little.  

 

Recall that the quantity Bkj is not actually a susceptance but rather 

an element in the Y-bus matrix.  

 If k≠j, then Bkj=-bkj, i.e., the Y-bus element in row k column j is 

the negative of the susceptance of the circuit connecting bus k to 
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Reactive power flow: 

The reactive power flow equation of eqs. (20) may be rewritten by 

pulling out the k=j term from the summation. 
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Now bring all the terms in the two summations under a single 

summation. 
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Factor out the |Vk| and the –bkj in the summation: 
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Note because we defined the circuit admittance between buses k 

and j as ykj=gkj+jbkj, and because all circuits have series elements 

that are inductive, the numerical value of bkj is negative. Thus, we 

can rewrite eq. (21) as 
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So there are two main terms in eq. (22).  

 The first term corresponds to the reactive power supplied (if a 

capacitor) or consumed (if an inductor) by the shunt susceptance 

modeled at bus k.  

 The second term corresponds to the reactive power flowing on 

the circuits connected to bus k. Only these circuits will have 

nonzero bkj. One sees, then, that each circuit will have per-unit 

reactive flow in proportion to (a) the bus k voltage magnitude 

and (b) the difference in per-unit voltages at the circuit’s 

terminating buses. The direction of flow will be from the higher 

voltage bus to the lower voltage bus. 

 

Real power flow: Now consider the real power flow equation from 

eqs. (20), and, as with the reactive power flow equation, let’s pull 

out the j=k term. Thus, 
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Here, we see that the first term is zero, so that: 
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 
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Some comments about this expression: 

 There is no “first term” corresponding to shunt elements as 

there was for the reactive power equation. The reason for this is 

that, because we assumed that R=0 for the entire network, there 

can be no shunt resistive element in our model. This actually 

conforms to reality since we never connect a resistive shunt in 

the transmission system (this would be equivalent to a giant 

heater!). The only place where we do actually see an effect 

which should be modeled as a resistor to ground is in 

transformers the core loss is so modeled. But the value of this 

resistance tends to be extremely large, implying the 

corresponding conductance (G) is extremely small, and it is 

very reasonable to assume it is zero. 

 Therefore the term that we see in eq. (23) represents the real 

power flow on the circuits connected to bus k. One sees, then, 

that each circuit will have per-unit real power flow in 

proportion to (a) the bus k and j voltage magnitudes and (b) the 

angular difference across the circuit. Furthermore, recalling that 

Bkj=-bkj, and also that all transmission circuits have series 

elements that are inductive, the numerical value of bkj is 

negative, implying that the numerical value of Bkj is positive. 

Therefore, the direction of flow will be from the bus with the 

larger angle to the bus with the smaller angle. 

 

Observation 3: In the per-unit system, the numerical values of 

voltage magnitudes |Vk| and |Vj| are very close to 1.0. Typical 

range under most operating conditions is 0.95 to 1.05. Let’s 

consider the implications of this fact in terms of the expressions for 

reactive and real power flow eqs. (22) and (23), repeated here for 

convenience: 
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 



N

kjj

jkkjkkkk VVbVbVQ
,1

2

 

 




N

kj
j

jkkjjkk BVVP
,1

)( 
 

Given that 0.95<|Vk| and |Vj|<1.05, then we incur little error in the 

above expressions if we assume |Vk|=|Vj|=1.0 everywhere that they 

occur as a multiplying factor. We cannot make this approximation, 

however, where they occur as a difference, in the reactive power 

equation, because the difference of two numbers close to 1.0 can 

range significantly. For example, 1.05-0.95=0.1, but 1.01-

1.0=0.01, an order of magnitude difference.  

 

Making this approximation results in: 

 



N

kjj

jkkjkk VVbbQ
,1

    (24) 

 




N

kj
j

jkkjk BP
,1

)( 
      (25) 

With these equations, we can narrow our statements about power 

flow.  

 Reactive power flow across circuits is determined by the 

difference in the voltage phasor magnitudes between the 

terminating buses. 

 Real power flow across circuits is determined by the difference 

in voltage phasor angles between the terminating buses. 

 

Finally, it is interesting to note that the disparity between the 

maximum reactive power flow and the maximum real power flow 

across a circuit.  

 The reactive power flow equation is proportional to the circuit 

susceptance and the difference in voltage phasor magnitudes. 
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The maximum difference in voltage phasor magnitudes will be 

on the order of 1.05-0.95=0.1. 

 The real power flow equation is proportional to the circuit 

susceptance and the difference in voltage phasor angles. The 

maximum difference in voltage phasor angles will be, in 

radians, about 0.52 (which corresponds to 30 degrees).  

We see from these last two bullets that real power flow across 

circuits tends to be significantly larger than reactive power flow, 

i.e., usually, we will see that  

kjkj QP   

This conclusion is consistent with operational experience, which is 

characterized by an old operator’s saying: “Vars don’t travel.” 

 

5.0 Real vs. Reactive Power Flow 

 

Recall that our original intent was to represent the network in our 

optimization problem because of our concern that network 

constraints may limit the ability to most economically dispatch the 

generation. There are actually several different causes of network 

constraints, but here, we will limit our interest to the type of 

constraint that is most common in most networks, and that is 

circuit overload. 

 

Circuit overload is caused by high current magnitude. When the 

current magnitude exceeds a given threshold for a particular circuit 

(called the rating), we say that overload has occurred.  

 

In the per-unit system, we recall that 

 kjkkjkjkj IVjQPS
 

where Vk is the bus k nodal voltage phasor and Ikj is the phasor of 

the current flowing from bus k to bus j. Thus, we have that: 
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










 


k

kjkj

kj
V

jQP
I

 

Taking the magnitude (since that is what determines circuit 

overload), we have: 

k

kjkj

kj
V

QP
I

22 


 

Given our conclusion on the previous page that generally, 

Pkj>>Qkj, we may approximate the above expression according to: 

 

k

kj

k

kj

kj
V

P

V

P
I 

2

 

and if |Vk|≈1.0, then we have that 

kjkj PI 
 

Thus, in assessing circuit overload, it is reasonable to look at real 

power flows only. As a result of this conclusion, we will build into 

our optimization formulation only the real power flow equations, 

i.e., eq. (25).  

 

6.0 The DC Power Flow – an example 
 

Let’s study the real power flow expression given in eq. (25).  






N

kj
j

jkkjk BP
,1

)( 
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It is worthwhile to perform a simple example to illustrate use of 

this expression. 

 

Consider the 4-bus network given in Fig. 4. All 5 lines have the 

same admittance, and this admittance has no real part indicating 

we are assuming R=0 for this network. The real power values for 

each of the three generators and each of the two loads are given. 

All numerical quantities are given in per-unit. 

 

The problem is to compute the real power flows on all circuits. 

 

y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
Fig. 4: Four-bus network used in example 

 

We first write down eq. (25) for each bus, beginning with bus 1. 

414114313113212112

4114311321121 )()()(





BBBBBB

BBBP




 

Collecting terms in the same variables results in: 

  41431321211413121  BBBBBBP    (26) 

Repeating the process for bus 2: 
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424224323223121221

4224322312212 )()()(





BBBBBB

BBBP




 

Again, collecting terms in the same variables results in: 

  42432322423211212  BBBBBBP    (27) 

Repeating eqs. (26) and (27), together with the relations for buses 

3 and 4, yields: 

  41431321211413121  BBBBBBP   

  42432322423211212  BBBBBBP   

  43433432312321313  BBBBBBP   

  44342413432421414  BBBBBBP   

We can write these equations in matrix form, according to: 

































































4

3

2

1

434241434241

343432313231

242324232121

141312141312

4

3

2

1









BBBBBB

BBBBBB

BBBBBB

BBBBBB

P

P

P

P

         (28) 

Remember, the left-hand-side vector is the injections, which is the 

generation less the demand. 

 

To get the matrix, it is helpful to first write down the Y-bus: 





















44434241

34333231

24232221

14131211

BBBB

BBBB

BBBB

BBBB

jY
 

 





























4342414434241

3434323133231

2423242321221

1413121413121

bbbbbbb

bbbbbbb

bbbbbbb

bbbbbbb

j  
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



























2010010

10301010

0102010

10101030

jY
 

So we readily observe here that, for example, B11=-30, B12=10, 

B13=10, and B14=10, and it is similar for the other three rows. 

 

So using the Y-bus values, we can express eq. (28) as:  



































































4

3

2

1

2010010

10301010

0102010

10101030

1

4

1

2









   (29) 

(Observe that we omit the j). Then, the angles are given by: 



































































1

4

1

2

2010010

10301010

0102010

10101030
1

4

3

2

1









   (30) 

 

However, when we evaluate the above expression by taking the 

inverse of the indicated matrix, we find it is singular, i.e., it does 

not have an inverse. The problem here is that we have a 

dependency in the 4 equations, implying that one of the equations 

may be obtained from the other three. For example, if we add the 

bottom three rows and then multiply by -1, we get the top row (in 

terms of the injection vector, this is just saying that the sum of the 

generation must equal the demand). 

 

This dependency occurs because all four angles are not 

independent. What is important are the angular differences. Thus, 

we are free to choose any one of them as the reference, with a 

fixed value of 0 degrees. This angle is then no longer a variable (it 
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is 0 degrees), and, referring to eq. (29), the corresponding column 

in the matrix may be eliminated, since those are the numbers that 

get multiplied by this 0 degree angle.  

 

To fix this problem, we need to eliminate one of the equations and 

one of the variables (by setting the variable to zero).   

 

We choose to eliminate the first equation, and set the first variable, 

θ1, to zero (which means we are choosing θ1 as the reference). 

 

This results in: 

 




















































































025.0

15.0

025.0

1

4

1

20100

103010

01020
1

4

3

2







  (31) 

 

The solution on the right-hand-side gives the angles on the bus 

voltage phasors at buses, 2, 3, and 4.  

 

However, the problem statement requires us to compute the power 

flows on the lines (this is usually the information needed by 

operational and planning engineers as they study the power 

system).  

 

We can get the power flows easily by employing just one term 

from the summation in eq. (25), which gives the flow across circuit 

k-j according to: 

)( jkkjkj BP      (32) 

We utilize the Y-bus elements together with the bus angles given 

by eq. (31) to make these calculations, as follows: 

25.0)025.00(10)( 211212  BP  

5.1)15.00(10)( 311313  BP  
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25.0)025.00(10)( 411414  BP  

25.1)15.0025.0(10)( 322323  BP  

25.1)025.015.0(10)( 433434  BP  

 

These computed flows are illustrated in Fig. 5. The power flowing 

into a bus equals the power flowing out of that bus. 

 

P13=1.5 
P14 =0.25 

P43 =1.25 

P23 =1.25 

P12=0.25 
 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
Fig. 5: Computed flows for four-bus network used in example 

 

7.0 The DC Power Flow – Generalization 

 

We desire to generalize the above procedure. 

 

We assume that we are given the network with the following 

information:  

 Total number of buses is N, total number of branches is M. 

 Bus number 1 identified as the reference 

 Real power injections at all buses except bus 1 

 Network topology 

 Admittances for all branches. 
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The DC power flow equations, based on eq. (25) are given in 

matrix form as  

'BP       (33) 

where 

 P is the vector of nodal injections for buses 2, …, N 

 θ is the vector of nodal phase angles for buses 2,…N 

 B’ is the “B-prime” matrix. Generalization of its development 

requires a few comments. 

 

Development of the B’ matrix: 

Compare the matrix of eq. (28) with the Y-bus matrix, all repeated 

here for convenience: 

































































4

3

2

1

434241434241

343432313231

242324232121

141312141312

4

3

2

1









BBBBBB

BBBBBB

BBBBBB

BBBBBB

P

P

P

P





















44434241

34333231

24232221

14131211

BBBB

BBBB

BBBB

BBBB

jY
 





























4342414434241

3434323133231

2423242321221

1413121413121

bbbbbbb

bbbbbbb

bbbbbbb

bbbbbbb

j

From the above, we can develop a procedure to obtain the B’ 

matrix from the Y-bus, as follows: 

1. Remove the “j” from the Y-bus. 

2. Replace diagonal element B’kk with the sum of the non-diagonal 

elements in row k. Alternatively, subtract bk (shunt term) from 

Bkk, & multiply by -1 (if there is no bk, then just multiple by -1). 

3. Multiply all off-diagonals by -1. 

4. Remove row 1 and column 1. 

If there are 

no bk, then 

steps 2-3  

simplify to 

“multiply 

Y-bus by -1 
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Comparison of the numerical values of the Y-bus with the 

numerical values of the B’ matrix for our example will confirm the 

above procedure: 





























2010010

10301010

0102010

10101030

jY
 

























20100

103010

01020

'B
 

Another way to remember the B’ matrix is to observe that, since its 

non-diagonal elements are the negative of the Y-bus matrix, the B’ 

non-diagonal elements are susceptances. However, one must be 

careful to note that the B’ matrix element in position row k, 

column j is the susceptance of the branch connecting buses k+1 

and j+1, since the B’ matrix does not have a column or row 

corresponding to bus 1. 

 

Question: Why are shunt terms excluded in the B’ matrix? That is, 

why does excluding them not affect real power calculations? 

 

Although eq. (33) provides the ability to compute the angles, it 

does not provide the line flows. A systematic method of computing 

the line flows is: 

 )( ADPB     (34) 

where: 

 PB is the vector of branch flows. It has dimension of M x 1. 

Branches are ordered arbitrarily, but whatever order is chosen 

must also be used in D and A. 

 θ is (as before) the vector of nodal phase angles for buses 2,…N 
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 D is an M x M matrix having non-diagonal elements of zeros; 

the diagonal element in position row k, column k contains the 

negative of the susceptance of the k
th

 branch. 

 A is the M x N-1 node-arc incidence matrix. It is also called the 

adjacency matrix, or the connection matrix. Its development 

requires a few comments. 

 

Development of the node-arc incidence matrix: 

 

This matrix is well known in any discipline that has reason to 

structure its problems using a network of nodes and “arcs” (or 

branches or edges). Any type of transportation engineering is 

typical of such a discipline.  

 

The node-arc incidence matrix contains a number of rows equal to 

the number of arcs and a number of columns equal to the number 

of nodes.  

 

Element (k,j) of A is 1 if the k
th

 branch begins at node j, -1 if the 

k
th

 branch terminates at node j, and 0 otherwise. 

 

A branch is said to “begin” at node j if the power flowing across 

branch k is defined positive for a direction from node j to the other 

node. 

 

A branch is said to “terminate” at node j if the power flowing 

across branch k is defined positive for a direction to node j from 

the other node. 

 

Note that matrix A is of dimension M x N-1, i.e., it has only N-1 

columns. This is because we do not form a column with the 

reference bus, in order to conform to the vector θ, which is of 

dimension (N-1) x 1. This works because the angle being excluded, 

θ1, is zero. 
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We can illustrate development of the node-arc incidence matrix for 

our example system. Consider numbering the branches as given in 

Fig. 6. Positive direction of flow is as given by the indicated 

arrows. The numbers in the circles are bus (node) numbers. The 

numbers next to each branch are branch numbers.  

 

5 
1 

4 

 3 

2 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
Fig. 6: Branches numbering for development of incidence matrix 

 

Therefore, the node-arc incidence matrix is given as 

number branch 

5

4

3

2

1

     

01-0

11-0

01-1

001-

1-00

   A    

4      3     2               

 

number node







































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The D-matrix is formed by placing the negative of the susceptance 

of each branch along the diagonal of an M x M matrix, where 

M=5. 

























100000

010000

001000

000100

000010

D
 

 

Combining A, D, and θ based on eq. (34) yields 

 )( ADPB  
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5

4

3

2

1

10

)(10

)(10

10

10

100000

010000

001000

000100

000010





















B

B

B

B

B

P

P

P

P

P

 

Plugging in the solution for θ that we obtained, which was: 
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







































025.0

15.0

025.0

4

3

2







 

We find that the above evaluates to  















































5.1

25.1

25.1

25.0

25.0

5

4

3

2

1

B

B

B

B

B

P

P

P

P

P

 

This solution, obtained systematically, in a way that can be 

efficiently programmed, agrees with the solution we obtained 

manually and is displayed in Fig. 5, repeated here for convenience. 

 

P13=1.5 
P14 =0.25 

P43 =1.25 

P23 =1.25 

P12=0.25 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 


