
Performance Characterization of Java Applications on SMT Processors

Wei Huang, Jiang Lin, Zhao Zhang, and J. Morris Chang
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa 50011

{huangwei, linj, zzhang, morris}@iastate.edu

Abstract

As Java is emerging as one of the major program-

ming languages in software development, studying
how Java applications behave on recent SMT proces-
sors is of great interest. This paper characterizes the
performance of Java applications on an Intel Pentium
4 Hyper-Threading processor. Using the performance
counters provided by Pentium 4, we quantitatively
evaluate micro-architecture metrics while running
various types of Java applications. The experimental
results reveal that: (1) Hyper-Threading can indeed
improve the performance of multithreaded Java pro-
grams; (2) The resource contentions within Pentium 4
are the major reason of pipeline inefficiency, which
prevents better performance promised by SMT; (3) The
static partition design of Hyper-Threading causes con-
siderable performance loss for many single-thread
Java programs; (4) Most multiprogrammed Java
benchmarks can achieve decent combined speedups on
Hyper-Threading processors.

1. Introduction

In recent years, simultaneous multithreading (SMT)
has become popular in modern processor designs [28].
The motivation of SMT is based on the observation of
low processor resource utilization in traditional super-
scalar processors. By allowing multiple threads to is-
sue instructions simultaneously to keep pipeline busy,
SMT can hide the memory hierarchy latency, reduce
branch mis-predication penalty, and better utilize proc-
essor resources. Compared with conventional super-
scalar designs, this technology is expected to deliver
higher performance at the cost of a small amount of
extra transistors. Because of these benefits, SMT has
been adopted in the current generation of microproces-
sors, including Intel’s Pentium 4 and IBM’s Power5.

Java is emerging as one of the major programming
languages for software development. Designed with
many advanced features, such as automatic memory
management, cross-platform portability and enforced
security check, Java has become a popular program-
ming language used on various platforms. While many
studies show that SMT can substantially increase the
performance of various types of applications, how Java
applications perform on SMT platform has not been
well investigated. This topic is of interest for three
reasons. First, Java provides built-in multithreading
support for programming, which means programmers
can develop multithreaded applications at language
level. SMT is especially suitable for Java applications
that are inherently multithreaded. Secondly, in addition
to normal Java application threads, many helper
threads exist inside the Java Virtual Machine (JVM).
For instance, the JVM has a garbage collection (GC)
thread responsible for recycling the un-referenced heap
space. That means the whole JVM usually is a multi-
threaded application even when the Java applications
on the top of it are single-threaded. Thirdly, because
many components of the JVM are involved in execut-
ing Java bytecodes, Java programs can behave differ-
ently from traditional C/C++ applications. Such com-
plexity of execution requires further understanding of
how Java programs behave on different architectures,
including SMT.

In this paper, we examine the characterization of
Java applications running on SMT-capable processors.
By turning on and off the Hyper-Threading (HT) sup-
port, we study the processor behaviors using the hard-
ware performance counters provided by Intel Pentium
4 processors. We mainly focus on multithreaded and
multi-programmed Java programs. Additionally, the
impact of resource contention within SMT processors
on single-threaded Java programs is also investigated.
The observations presented in this paper can be util-
ized while designing new VM, OS, or processor archi-

tecture. For instance, we find that most single-threaded
Java programs perform worse when Hyper-Threading
is turned on. This fact indicates that virtual machine
should be further optimized for such types of applica-
tions. Similarly, the poor L1 cache performance while
running multithreaded Java programs suggests that
incorporating larger L1 cache may be effective to alle-
viate memory latency.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews related research work. Section 3
describes the experimental methodology and bench-
marks used in this study. The experimental results are
presented in Section 4. Finally, Section 5 summarizes
key observations and concludes this paper.

2. Related work

The behaviors of Java applications have been well
evaluated since Java was first introduced in late 1995
[14][21][19][8]. Those studies focused on singled
threaded Java programs, especially the SPECjvm98
benchmarks [25]. In recent years, because of the popu-
larity of Java-based server applications, the perform-
ance of multithreaded Java programs are becoming of
great interest.

Using the performance counters provided by the
processor, Luo et al. studied the characterization of
Java server applications on the Pentium III [16]. They
found that such programs have worse instruction
streams (including I-Cache miss rate and ITLB miss
rate, etc.) than SPECint2000. By increasing the num-
ber of threads, they also studied the impact of Java
threads on the micro-architecture. The experimental
results showed that increasing the number of threads
will introduce more resource contentions even though
the instruction stream performance can be improved
due to the increased access locality.

A similar work by Karlsson et al. studied the mem-
ory system behaviors of two Java middleware
(SPECjbb2000 and ECperf) running on SMP systems
[13]. They observed poor scalabilities for both bench-
marks when the number of processors is greater than
12. The experimental results showed that resource con-
tention and memory stall time are two major factors
affecting system scalability. Additionally, they found
that cache to cache transfer rate is pretty high for Java
application servers.

The workload characterization of non-Java applica-
tions on SMT processors have been evaluated by many
researchers [15][20][6]. Those studies mainly focused
on the interactions between software and SMT proces-
sors, as well as the potential performance bottlenecks.
Redstone et al. identified that OS constitutes a large

portion of server applications execution time [20]. Due
to the very large instruction and data memory footprint,
the OS has worse cache and TLB performance than
SPECInt workload. However, they also found that la-
tency tolerance, which is caused by cooperative shar-
ing in SMT processors, has positive impacts on per-
formance. Overall, Apache server has over 4-fold
throughput improvement on an 8-way issue, 8-context
SMT processor.

Jack Lo et al. studied the database performance for
OLTP and DSS workloads [15]. Similar to [20], they
found that an SMT processor can increase the IPCs of
OLTP and DSS by 3-fold and 1.5-fold, respectively.
However, SMT introduces severe cache conflicts using
conventional virtual memory management. They pro-
posed a new page placement policy which can reduce
the cache misses significantly.

Tuck et al. recently examined the performance of
Intel Pentium 4 processors using SPEC2000 [27]. They
used various mixes of workloads (multiprogrammed,
multithreaded and parallel) to validate and evaluate the
effectiveness of Hyper-Threading design. Their results
showed that if the issue width and the number of
hardware contexts are taken into consideration, the
measured performance on Pentium 4 matches the
simulation-based expectations. While a static partition
is important to minimize conflicts and control through-
put losses, they believed that a dynamic partition might
be required for an 8-context configuration. A closely
related study can be found in [3].

To our knowledge, no previous work has evaluated
the characterization of Java applications running on
SMT processors. Our objective is to understand the
behaviors of Pentium 4 when it is executing Java pro-
grams. Other issues, including the impacts of software
configurations and job pairing, are also conducted in
this study.

3. Experimental environment

3.1. Java benchmarks

We use ten Java benchmarks in our experiments.
Table 1 gives the descriptions of these benchmarks,
including their input parameters. According to their
properties, these benchmarks can be divided into two
groups: single-threaded and multithreaded. Six pro-
grams of SPECjvm98 are incorporated as single-
threaded benchmarks. These programs are representa-
tive for measuring the performance of JVM client plat-
forms.

Benchmark Description Input
compress Java port of the SPEC95 compress program using modified LZW method -s100 -m1 -M1
jess A Java expert shell system based on NASA's CLIPS expert system -s100 -m1 -M1
db Performs a series of functions on a small database -s100 -m1 -M1
javac The Java compiler from the JDK 1.0.2 -s100 -m1 -M1
mpegaudio An ISO MPEG Layer-3 audio decoder -s100 -m1 -M1
jack A Java parser generator that is based on earlier version of JavaCC -s100 -m1 -M1 Si

ng
le

-t
hr

ea
de

d

MolDyn An N-body program modeling particles interacting under a Lennard-Jones potential N = 2,048
MonteCarlo A product price deriving program based on Monte Carlo techniques N = 10,000
RayTracer A 3D raytracer, which renders 64 spheres with configurable resolutions N = 150
PseudoJBB A variant of SPECjbb2000 with fixed size of working set 100,000 trans.

M
ul

ti-

Of the four multithreaded benchmarks we use, three

(MolDyn, MonteCarlo, and RayTracer) come from
multithreaded Java Grande Forum (JGF) Benchmark
Suite [10]. We also use PseudoJBB, a variant of
SPECjbb2000 [24], as a multithreaded benchmark.
Different from SPECjbb2000, PseudoJBB can run a
fixed number of transactions in multiple warehouses.
Therefore, the execution time of PseudoJBB can be
used for comparison purposes. This approach has been
adopted by other researchers in recently published pa-
pers ([2][26][7]). We explicitly exclude the data ini-
tialization part of PseudoJBB benchmark to study the
real performance of long-running server applications.
Notice that these multithreaded applications allow us-
ers to specify the number of threads as a parameter.
That means they can be used as single-threaded
benchmarks when the number of threads is 1. We will
use them in this way in later experiments.

3.2. Experimental platform

The operating system we use is RedHat Linux 9
running on a single 2.8GHz Intel Pentium 4 Hyper-
Threading processor. Instead of using a traditional
cache design, the Pentium 4 adopts trace cache as the
level 1 instruction cache. The CPU has a 64-byte L1
and L2 cache line size, 8KB 4-way set associative L1
data cache, 12K micro-operations (µops) L1 instruc-
tion trace cache, and a 1MB 8-way set associative uni-
fied L2 on-chip cache. The machine has 1GB of dual
channel 400MHz DDR RAM and 800MHz front side
bus. To reduce the impacts from other processes in OS,
the machine is booted in single user mode and discon-
nected from network during experiments. The JVM we
use is Sun Java Runtime Environment (JRE) 1.4.2_05
and the heap size is configured to be 512MB for all
benchmarks.

3.3. Tool for performance measurement

Performance counters are becoming an indispensa-

ble component in modern processor designs. Equipped

with 18 performance counters, which is much larger
than 2 counters of its predecessor, the Pentium III, the
Pentium 4 can monitor 48 events at the architecture
level [22]. In addition, many new features are intro-
duced in the design of performance monitoring, such
as precise event-based sampling and µop tagging
mechanism. These features can help programmers to
further understand the characterization of programs.
Brink and Abyss is a tool developed by Sprunt [23] to
facilitate users’ employment of the performance moni-
toring mechanisms of the Pentium 4. With this tool,
users can monitor various aspects of Pentium 4 proces-
sors, especially the Hyper-Threading feature. Com-
pared to the Intel VTune performance analyzer [9],
Brink and Abyss provides necessary functionalities
while incurring much less overhead. In the rest of this
paper, unless otherwise stated, all data is obtained us-
ing this tool.

4. Experimental Results

This section examines the performance of various
types of Java applications running on Intel Hyper-
Threading processors. We first study the micro-
architecture behaviors of multithreaded Java programs.
SMT technology is double-sided: it reduces IPC losses
because of improved resource utilization efficiency,
but increases pressure on those resources. For instance,
SMT can reduce processor stall cycles per cache miss,
but may increase the number of cache misses caused
by the cache contention. In the performance metrics we
examine, both sides are observed while running multi-
threaded Java programs. We then analyze the com-
bined speedups while running multiple independent
Java programs on Hyper-Threading processors. Three
benchmarks are identified as bad partners to the appli-
cations they pair with. Other issues, such as the impact
of static resource partition and the number of threads,
are also examined in this section.

4.1. Detailed characterization of multithreaded
Java applications

We run multithreaded benchmarks with 2 and 8
threads to measure the SMT performance. Notice that
the processor has two contexts, thus 8 threads are mul-
tiplexed onto the two contexts. Table 2 shows key
characteristics of each benchmark running on Pentium
4 CPU with HT-enabled. The fourth column indicates
the percentage of cycles each program spent in OS
mode. For three benchmarks (MolDyn, MonteCarlo,
and PseudoJBB), OS time constitutes less than 3% of
the total execution time. RayTracer, however, has
more OS activities because each of its thread maintains
a copy of scene data as the temporary storage for paral-
lelization. Another observation is that OS cycle per-
centage increases with the number of threads. Appar-
ently, this is caused by more frequent thread schedul-
ing, which is the responsibility of OS.

Table 2. Characterization of multithreaded bench-
marks on Hyper-Threading processor

Benchmark App.
Thread # CPI OS

cycle %
CPU DT
mode %

MolDyn02 2 1.13 2.01% 94.85%
MolDyn08 8 1.39 2.50% 93.47%
MonteCarlo02 2 2.96 2.74% 90.56%
MonteCarlo08 8 2.09 2.92% 92.52%
RayTracer02 2 2.19 11.61% 72.92%
RayTracer08 8 2.19 11.88% 72.55%
PseudoJBB02 2 2.69 2.66% 90.29%
PseudoJBB08 8 2.77 2.98% 90.55%

The fifth column in Table 2 (CPU DT mode percent)
quantifies the percentage of cycles the CPU is running
under dual-thread mode, which means both logical
processors are executing instructions. For instance,
while running MolDyn02, both logical processors are
active around 95% of the total execution time. This
parameter indicates how well the program has been
parallelized, as well as the performance improvement
potentials it can gain on an SMT processor. The DT
mode percents of all benchmarks, except RayTracer,
are greater than 90%. RayTracer has poorer parallel-
ism because it spends a larger percentage of execution
time on collaboration and synchronization.

Figure 1 shows the instructions per cycle (IPC) of
multithreaded benchmarks running on a Pentium 4
processor with HT-disabled and HT-enabled, respec-
tively. The results indicate that, for multithreaded Java
applications, Hyper-Threading technology does im-
prove their performance. However, compared with the
performance enhancement reported by other research-

ers, this improvement is relatively small. This implies
that the performance characterization of Java server
applications on Hyper-Threading processors require
closer examinations.

Figure 1. IPCs of multithreaded benchmarks on
Pentium 4 processors

Figure 2. Instruction retirement profile

To further gain performance insight, we use Brink

and Abyss to collect the retirement profile of Java
benchmarks (shown in Figure 2). The Pentium 4 can
retire up to 3 µops per clock cycle. The retirement pro-
file is helpful for understanding the performance of
processor at the last stage. According to Figure 2, the
instruction level parallelism of multithreaded Java pro-
grams is limited on the Pentium 4 processor. With HT
disabled, CPU does not commit any µop for around
60% of the total execution time. This explains why
multithreaded Java benchmarks have such low IPCs.
This problem is alleviated when CPU is running under
Hyper-Threading mode. On average, the portions of
retiring 1 and 2 µops are improved by 47.53% and
50.1%, respectively. Note the portion of retiring 3 µops
drops by 7.52%, which indicates SMT makes the exe-
cution smoother and thus more instructions retire in 1
or 2 µops groups. Thus enabling Hyper-Threading
leads to an overall improvement in performance.

Figure 3. Trace cache misses per 1,000 instructions

In SMT processors, cache behaviors become com-

plicated due to cache sharing. On one hand, the cache
miss rate would increase because of the contentions
from multiple hardware contexts. In [15], it was re-
ported that SMT introduces severe cache conflicts for
conventional virtual memory management for on-line
transaction processing (OLTP) workload. On the other
hand, sharing might result in constructive cache inter-
ferences, which will improve cache behaviors. For
instance, if multiple threads are executing the same set
of instructions, they might prefetch the instruction
blocks for each other and help tolerate long memory
latency. Interestingly, both patterns are observed on L1
and L2 caches of the Intel Pentium 4 processor while
running multithreaded Java applications.

Figure 4. L1 data cache misses per 1,000 instruc-
tions

Figure 3 and Figure 4 examine the miss rates of
trace cache and L1 data cache, respectively. With HT-
disabled, the L1 data cache exhibits miss rates of 7–29
misses per 1,000 instructions. L1 instruction misses are
even smaller, falling well below 2 trace cache misses
per 1,000 instructions. The data also reveals that both
trace cache and L1 data cache perform consistently
worse while processor is running under SMT mode.
For some cases, such as trace cache misses for Ray-
Tracer02, the number of misses is even doubled.
Since the application code is identical, the causes of

this problem are cache contention among threads and
more OS activities.

Figure 5. L2 cache misses per 1,000 instructions

The L2 cache miss rates are shown in Figure 5. We

observe mixed behaviors for L2 cache while running
multi-threaded Java applications. For three bench-
marks (MolDyn, MonteCarlo and RayTracer), the L2
cache of the Pentium 4 performs better with Hyper-
Threading turned on. This observation of is opposite to
what we have seen in L1 caches. Combining the data
of L1 and L2 caches, we believe that cache behaviors
of Pentium 4 are related to Java memory footprint and
cache sizes. Since the Pentium 4 has a very small L1
caches (12K µops trace cache and 8KB data cache), the
resource sharing will stress the L1 caches and cause
severe conflicts. On the other hand, the size of L2
cache (1MB) is large enough to hold all data for most
benchmarks even with two threads running simultane-
ously. Under this circumstance, the constructive cache
interference will become dominant and thus improve
L2 cache performance. The only exception, Pseu-
doJBB, is caused by the extremely large memory
footprint, which does not fit in the L2 cache. Its L2
misses increase with Hyper-Threading enabled because
of contention.

Figure 6. Instruction TLB (ITLB) misses per 1,000
instructions

Figure 6 presents the Instruction TLB (ITLB)
misses we collected for multithreaded Java programs.

ITLB is responsible for translating instruction ad-
dresses into physical addresses to access the L2 cache
when the machine misses the trace cache. The data of
Figure 6 shows that ITLB performs slightly worse with
Hyper-Thread turned on. For PseudoJBB, the miss
rates increases significantly. Such degradation is
caused by the ITLB design adopted by Intel. In the
Pentium 4, the ITLB is partitioned among hardware
contexts to support Hyper-Threading. Each logical
processor has its own ITLB and its own set of instruc-
tion pointers to track the progress of instruction fetch.
Therefore, the ITLB will perform worse than with HT-
enabled because of partitioning.

Figure 7 shows the ratio of branches that miss in the
Branch Target Buffer (BTB). The data clearly indi-
cates that branch prediction of the Pentium 4 performs
worse while running under Hyper-Threading mode.
This is due to the fact that two logical processors share
the same BTB. In SMT processors, conventional
branch target prediction still drives instruction fetch,
except being augmented by extra thread ID bits in the
BTB. The Pentium 4 adopts this design and treats the
BTB as a shared structure with entries that are tagged
with a logical processor ID. This sharing will cause
destructive interferences and thus increase BTB miss
ratios.

Figure 7. BTB miss ratios

4.2. Speedups of multiprogrammed Java appli-
cations

This section examines the performance of multipro-

grammed Java benchmarks on the Pentium 4 processor.
Multiprogrammed means running two independent
applications simultaneously. Like [27], we use a vari-
able, called combined throughput, to measure the per-
formance of multiprogrammed Java applications.
Combined speedup is defined as HSHS

AB BBAAC // += ,
where AS and BS are the execution times of program A
and B running on a Hyper-Threading disabled proces-
sor, respectively. Likewise, AH and BH are the execu-

tion times of A and B running simultaneously on a Hy-
per-Threading processor. Measuring AH and BH is
tricky due to staggered execution times. For instance,
suppose the execution times of A and B are 3 seconds
and 8 seconds, respectively. While running together, A
probably finishes before B. If no precaution is taken
during measurement, the execution time of B we meas-
ure will include the portion when B is running alone.
For this purpose, we create a utility program to make A
and B execute repeatedly [27]. The main process of
utility program will re-launch the benchmark whenever
either of them finishes. Each benchmark is repeated at
least 12 times1, and we drop the first run to exclude
cold-start phase. The last run is also dropped to avoid
uncompleted executions. The completion times of the
remaining runs are then averaged as the execution time
of each benchmark.

On a perfect time sharing machine without Hyper-
Threading, the execution time of each benchmark will
become half of the original value (i.e. AH = 0.5*AS and
BH = 0.5*BS). Therefore, CAB is 1. On the other hand, a
perfect SMP machine with two processors will allow
program A and B to finish with the original execution
time, which means CAB = 2. Since SMT is a hybrid
design, an SMT machine should provide a combined
speedup between 1 and 2. Whenever CAB is below 1, it
implies a performance degradation for SMT machines.

Figure 8. Distribution of combined speedup for
multiprogrammed Java benchmarks

Figure 8 shows the combined speedups of cross-

product of nine single threaded Java applications on
Pentium 4 processor. In other words, each application
is run with every other application and the speedup is
measured. Due to the large volume of data, we use box
chart to plot our data. The chart displays a summary of
data distribution in quarterly percentiles. The middle
line and the square in the box represent median and
average speedups while a benchmark is running with
other Java programs. The other two lines (edges of the

1 The benchmark with smaller execution time probably has
more than 12 runs to match up with the other benchmark.

box) in each direction show the 25th and 75th percentile,
respectively. Two whiskers, which are lines that ex-
tend from the edges of the box to the observed mini-
mum and maximum, are also shown in Figure 8.

The box chart clearly presents the properties of each
benchmark while running with other programs. For
instance, Figure 8 shows that MolDyn is one of the
benchmarks that generally does not detriment the per-
formance of other benchmarks. On average, it achieves
a speedup of 1.26 while running with other Java pro-
grams. The best speedup, 1.32, is achieved while run-
ning RayTracer with MolDyn. On the other hand,
many programs suffer greatly while running with jack.
The average combined speedup of jack is below 1,
which is an indication of performance slowdown on
SMT processors. Compared with Figure 1, we see bet-
ter improvement while running multiprogrammed ap-
plications. Such improvement is attributed to the be-
haviors of multiprogrammed benchmarks, whose per-
formance is unaffected by many issues such as thread
synchronization.

Figure 9 shows the individual performance of each
benchmark in a multiprogrammed pair. The figure is
organized using a color map with a black-white scale.
Each square describes the combined speedup of the
row benchmark when sharing the processor with the
column benchmark [3]. The first impression of this
figure is the symmetry. We observe a pretty good re-
flective symmetry in this figure, which means combin-
ing two programs A and B will have a speedup close to
combing B with A. While intuitive, [3] reported that
reflective symmetry is not very good while combining
SPEC2000 programs on a Pentium 4 processor. Such a
difference is caused by the scheduling policy of the OS
which causes unfair sharing of execution time while
running SPEC2000 programs.

Although most speedups are greater than 1, we do
see some occurrences of slowdown in Figure 9. Out of
81 combinations, nine combinations are observed to
have performance slowdowns (CAB<1). As indicated in
the figure (dash rectangle), these slowdowns are the
combinations of three SPECjvm98 benchmarks (jack,
javac, and jess). Likewise, other programs tend to
perform worse while they pair with these three bench-
marks. What really makes these bad partners for other
programs? Analysis using performance counters re-
veals that the programs are experiencing greater cache
misses (in trace cache and/or L1 data cache) while
running with these three programs. The detailed statis-
tical analysis revealed that trace cache is the major
factor determining the pairing performance of Java
applications. The complete results can be found in [11].

Due to the large number of combinations, we do not
show the detailed micro-architecture behaviors of mul-

tiprogrammed Java benchmarks in this section. Our
off-line data shows that the behaviors are similar to
what we observed for multithreaded programs in sec-
tion 4.1. Namely, SMT improves the performance of
L2 cache and ITLB, while trace cache, L1 data cache
and BTB perform worse.

Figure 9. Combined speedup color map

4.3. Impacts of static resource partition on sin-
gle-threaded application

Intel Hyper-Threading is an atypical SMT [28] de-
sign in that it statically partitions some hardware com-
ponents, such as issue queue, ROB entries and
load/store buffers, into two parts. Each part is assigned
to one thread and can not be shared by the other thread.
Under this design single-threaded programs might ex-
perience performance drops. To demonstrate this prob-
lem, we compare the performance of single-threaded
Java applications running on a Pentium 4 processor
with Hyper-Threading enabled and disabled (Figure
10).

Figure 10 shows that 7 out of 9 benchmarks are ob-
served to have increased execution times, ranging from
0.15% to 62%, when Hyper-Threading is turned on.
The results indicate that non-multithreaded Java appli-
cations do not benefit from the Hyper-Threading tech-
nology. In fact, they may incur a performance penalty
because of static resource partitioning. For comparison,
Figure 11 examines the speedups of Multi-
programmed benchmarks running on a Hyper-
Threading processor. We run two identical copies of
single threaded application simultaneously and meas-
ure the speedup. The results indicate that SMT can
dramatically improve the performance of multipro-
grammed benchmarks. The exception includes three
benchmarks, whose behaviors have been discussed in
Section 4.2.

Figure 10. Impact of Hyper-Threading technology
on single-threaded Java programs

Figure 11. Impact of Hyper-Threading technology
on multi-programmed programs

Since many Java programs are still single-threaded

(i.e. one application thread), how to solve this per-
formance slowdown is of great significance. Possible
solutions exist on both hardware and software levels.
The hardware solution is to allow the resources to be
shared dynamically instead of partitioning them stati-
cally. When there is only one thread available for exe-
cution, this design will dedicate all hardware resources
to this running thread and thus reach the optimal per-
formance. Another solution, which does not require
changing the architecture design, is to increase the
thread-level parallelism (TLP) opportunity of single
threaded Java programs on the software level. For ex-
ample, the virtual machine might be able to use specu-
lative pre-execution [1][5][4], a recently-proposed la-
tency tolerance technology for the SMT architecture,
to eliminate the performance degrading events of the
main thread, such as cache miss and branch miss pre-
diction. Because these events are the major perform-
ance bottlenecks of modern superscalar processors,
this technique can improve the performance of Java
programs.

4.4. Impacts of multithreading on Hyper-
Threading processor

While previous research results indicate that eight
hardware contexts are the optimal number for SMT
processor design, the current Intel Pentium 4 only
adopts 2 contexts. In Java multithreaded applications it
is easy to have more than two threads running at the
same time, especially for server applications. There-
fore, understanding how the Java applications behave
when the number of threads is greater than 2 is helpful
for both software and hardware developers.

Using the same set of multithreaded benchmarks,
we vary the thread number of each benchmark from 1
to 16 to observe the throughput changes (Figure 12).
As might be expected, all benchmarks have dramati-
cally increased throughputs when the number of
threads increases from 1 to 2. This is attributed to bet-
ter CPU resource utilization when there are two soft-
ware threads running simultaneously. For most
benchmarks, the IPC is not affected by the number of
threads when there are more than 2. This suggests that
two threads might be the optimal number for multi-
threaded Java programs running on current Hyper-
Threading processors. The only exception is MolDyn,
whose IPC drops significantly when the number of
threads becomes 4. As shown in Figure 4, this is
caused by substantially increased L1 data cache misses.

Figure 12. IPC vs. the number of threads

5. Conclusions

This study uses a mixture of multithreaded, multi-

programmed and single-threaded workloads to evalu-
ate the performance of Java applications on Intel Hy-
per-Threading processors. A few key observations
emerge. First, compared with other workloads, the
performance improvement introduced by SMT for
multithreaded Java programs is relatively small. The
resource contention is the main reason for pipeline
inefficiency. Secondly, due to the static partitioning
design of Pentium 4 processors, most single threaded
Java applications perform considerably worse when
Hyper-Threading is turned on. These results indicate
that programmers would better utilize the multithread-

ing capability provided by Java programming language
whenever possible. The JVM can also be improved to
handle this problem by controlling Hyper-Threading
execution more actively. Thirdly, multithreaded proc-
essors can effectively boost the performance of Java
applications running together simultaneously. Most
combinations we examined have good combined
speedups. However, some Java programs show influ-
ence on the applications they paired with and slow
down the overall execution time. Our offline analysis
reveals that trace cache miss rate can be used to effec-
tively predict the potential pairing performance.

Acknowledgements

Partial support for this work was provided by the
National Science Foundation through grants CCR-
0098235, CCR-0296131 and CCR-0219870 (to J. M.
C.).

References

[1] Murali M. Annavaram, Jignesh M. Patel, and Edward S.
Davidson. Data prefetching by dependence graph precoum-
putation. In Proceedings of the 28th International Symposium
on Computer Architecture (ISCA), Göteborg, Sweden, June
2001.

[2] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz,
Kathryn S. McKinley, and J. Eliot B. Moss. Pretenuring for
Java. In Proceedings of the 2001 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 342–352, Tampa Bay, FL,
October 2001.

[3] James R. Bulpin and Ian A. Pratt. Multiprogramming
performance of the Pentium 4 with Hyper-Threading. In
Proceedings of the 3rd Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD), Munich, Germany,
June 2004.

[4] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and
John P. Shen. Dynamic speculative precomputation. In Pro-
ceedings of the 34th International Symposium on Microarchi-
tecture (Micro), pages 306–317, Istanbul, Turkey, November
2001.

[5] Jamison D. Collins, Hong Wang, Dean M. Tullsen,
Hughes J. Christopher, Yong-Fong Lee, Dan Lavery, and
John P. Shen. Speculative precomputation: Long-range pre-
fetching of delinquent prefetching by dependence graph pre-
computation. In Proceedings of the 28th International Sym-
posium on Computer Architecture (ISCA), Göteborg, Sweden,
June 2001.

[6] Manu Gulati and Nader Bagherzadeh. Performance study
of a multithreaded superscalar microprocessor. In Proceed-
ings of the 2nd International Symposium on High-
Performance Computer Architecture (HPCA), San Jose, CA,
February 1996.

[7] Samuel Z. Guyer and Kathryn S. McKinley. Finding
your cronies: static analysis for dynamic object colocation.
In Proceedings of the 2004 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA),Vancouver, Canada, October 2004.

[8] Cheng-Hsueh A. Hsieh, Marie T. Conte, Teresa L. John-
son, John C. Gyllenhaal, and Wen-Mei W. Hwu. A study of
the cache and branch performance issues with running Java
on current hardware platforms. In Proceedings of the 42nd
IEEE International Computer Conference (CompCon), San
Jose, CA, February 1997.

[9] Intel Corp. VTune performance analyzer. Available at
http://www.intel.com/software/products/vt
une/.

[10] Java Grande Forum. The Java Grande Forum Multi-
threaded Benchmarks. Available at
http://www.epcc.ed.ac.uk/javagrande/threa
ds.html.

[11] Wei Huang, Jiang Lin, Zhao Zhang, and J. Morris
Chang. Towards Pairing Java Applications on Multithreaded
Processors. Department of Electrical and Computer Engi-
neering Technical Report, Iowa State University, 2005.

[12] Kaffe.org. Kaffe virtual machine. Available at
http://www.kaffe.org.

[13] Martin Karlsson, Kevin E.Moore, Erik Hagersten, and
David A. Wood. Memory system behavior of Java-based
middleware. In Proceedings of the 9th Annual International
Symposium on High-Performance Computer Architecture
(HPCA), Anaheim, CA, February 2003.

[14] Tao Li, Lizy K. John, Vijaykrishnan Narayanan, An-
and Sivasubramaniam, Jyotsna Sabarinathan, and Anupama
Murthy. Using complete system simulation to characterize
SPECjvm98 benchmarks. In Proceedings of the International
Conference on Supercomputing (ICS), Santa Fe, NM, May
2000.

[15] Jack Lo, Luiz Barroso, Susan Eggers, Kourosh Ghara-
chorloo, Henry Levy, and Sujay Parekh. An analysis of data-
base workload performance on simultaneous multithreaded
processors. In Proceedings of the 25th International Sympo-
sium on Computer Architecture (ISCA), Barcelona, Spain,
June 1998.

[16] Yue Luo and Lizy K. John. Workload characterization
of multithreaded Java servers. In Proceedings of 2001 IEEE

International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), Tucson, Arizona, November
2001.

[17] Deborah T. Marr, Frank Binns, David L. Hill, Glenn
Hinton, David A. Koufaty, John Miller, and Michael Upton.
Hyper-threading technology architecture and microarchitec-
ture. Intel Technical Journal, pages 4–15, February 2002.

[18] Frank Mueller. A library implementation of POSIX
threads under UNIX. In Proceedings of the USENIX Winter
Technical Conference, pages 29–41, San Diego, CA, January
1993.

[19] Ramesh Radhakrishnan, Vijaykrishnan Narayanan,
Lizy K. John, and Anand Sivasubramaniam. Architectural
issues in Java runtime systems. In Proceedings of the 6th
International Symposium on High-Performance Computer
Architecture (HPCA), Toulouse, France, January 2000.

[20] Joshua Redstone, Hank Levy, and Susan Eggers. An
analysis of operating system behavior on a simultaneous
multithreaded architecture. In Proceedings of the 27th Inter-
national Symposium on Computer Architecture (ISCA), Van-
couver, Canada, May 2000.

[21] Bohuslav Rychlik and John P. Shen. Characterization
of value locality in Java programs. In Proceedings of the 3rd
Workshop on Workload Characterization (in association
with ICCD), Austin, TX, September 2000.

[22] Brinkley Sprunt. Pentium 4 performance monitoring
features. IEEE Micro, pages 72–82, July–August 2002.

[23] Brinkley Sprunt. Brink and Abyss: Pentium 4 perform-
ance counter tools for Linux. Available at http:
//www.eg.bucknell.edu/bsprunt/emon/brink_
abyss/brink abyss.shtm.

[24] Standard Performance Evaluation Corporation (SPEC).
SPECjbb2000 Benchmark. Available at http://www
.spec.org/osg/jbb2000/.

[25] Standard Performance Evaluation Corporation (SPEC).
SPECjvm98 Benchmark. http://www.spec.org/
osg/jvm2000/.

[26] Peter F. Sweeney, Matthias Hauswirth, Brendon Ca-
hoon, Perry Cheng, Amer Diwan, David Grove, and Michael
Hind. Using hardware performance monitors to understand
the behavior of Java applications. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium
(USENIX VM), San Jose, CA, May 2004.

[27] Nathan Tuck and Dean M. Tullsen. Initial observations
of the simultaneous multithreading Pentium 4 processor. In
Proceedings of the 12th International Conference on Parallel

Architectures and Compilation Techniques (PACT), New
Orleans, Louisiana, September 2003.

[28] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry
M. Levy, Jack L. Lo, and Rebecca L. Stamm. Exploiting
choice: Instruction fetch and issue on an implementable si-
multaneous multithreading processor. In Proceedings of the
23rd International Symposium on Computer Architecture
(ISCA), pages 191–202, Philadelphia, PA, May 1996.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	01: 1
	footer: 0-7803-8965-4/05/$20.00 ©2005 IEEE
	02: 103
	03: 104
	04: 105
	05: 106
	06: 107
	07: 108
	08: 109
	09: 110
	10: 111

