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Abstract 

 
As Java is emerging as one of the major program-

ming languages in software development, studying 
how Java applications behave on recent SMT proces-
sors is of great interest. This paper characterizes the 
performance of Java applications on an Intel Pentium 
4 Hyper-Threading processor. Using the performance 
counters provided by Pentium 4, we quantitatively 
evaluate micro-architecture metrics while running 
various types of Java applications. The experimental 
results reveal that: (1) Hyper-Threading can indeed 
improve the performance of multithreaded Java pro-
grams; (2) The resource contentions within Pentium 4 
are the major reason of pipeline inefficiency, which 
prevents better performance promised by SMT; (3) The 
static partition design of Hyper-Threading causes con-
siderable performance loss for many single-thread 
Java programs; (4) Most multiprogrammed Java 
benchmarks can achieve decent combined speedups on 
Hyper-Threading processors. 
 
1. Introduction 
 

In recent years, simultaneous multithreading (SMT) 
has become popular in modern processor designs [28]. 
The motivation of SMT is based on the observation of 
low processor resource utilization in traditional super-
scalar processors. By allowing multiple threads to is-
sue instructions simultaneously to keep pipeline busy, 
SMT can hide the memory hierarchy latency, reduce 
branch mis-predication penalty, and better utilize proc-
essor resources. Compared with conventional super-
scalar designs, this technology is expected to deliver 
higher performance at the cost of a small amount of 
extra transistors. Because of these benefits, SMT has 
been adopted in the current generation of microproces-
sors, including Intel’s Pentium 4 and IBM’s Power5. 

Java is emerging as one of the major programming 
languages for software development. Designed with 
many advanced features, such as automatic memory 
management, cross-platform portability and enforced 
security check, Java has become a popular program-
ming language used on various platforms. While many 
studies show that SMT can substantially increase the 
performance of various types of applications, how Java 
applications perform on SMT platform has not been 
well investigated. This topic is of interest for three 
reasons. First, Java provides built-in multithreading 
support for programming, which means programmers 
can develop multithreaded applications at language 
level. SMT is especially suitable for Java applications 
that are inherently multithreaded. Secondly, in addition 
to normal Java application threads, many helper 
threads exist inside the Java Virtual Machine (JVM). 
For instance, the JVM has a garbage collection (GC) 
thread responsible for recycling the un-referenced heap 
space. That means the whole JVM usually is a multi-
threaded application even when the Java applications 
on the top of it are single-threaded. Thirdly, because 
many components of the JVM are involved in execut-
ing Java bytecodes, Java programs can behave differ-
ently from traditional C/C++ applications. Such com-
plexity of execution requires further understanding of 
how Java programs behave on different architectures, 
including SMT. 

In this paper, we examine the characterization of 
Java applications running on SMT-capable processors. 
By turning on and off the Hyper-Threading (HT) sup-
port, we study the processor behaviors using the hard-
ware performance counters provided by Intel Pentium 
4 processors. We mainly focus on multithreaded and 
multi-programmed Java programs. Additionally, the 
impact of resource contention within SMT processors 
on single-threaded Java programs is also investigated. 
The observations presented in this paper can be util-
ized while designing new VM, OS, or processor archi-



tecture. For instance, we find that most single-threaded 
Java programs perform worse when Hyper-Threading 
is turned on. This fact indicates that virtual machine 
should be further optimized for such types of applica-
tions. Similarly, the poor L1 cache performance while 
running multithreaded Java programs suggests that 
incorporating larger L1 cache may be effective to alle-
viate memory latency. 

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews related research work. Section 3 
describes the experimental methodology and bench-
marks used in this study. The experimental results are 
presented in Section 4. Finally, Section 5 summarizes 
key observations and concludes this paper. 

 
2. Related work 
 

The behaviors of Java applications have been well 
evaluated since Java was first introduced in late 1995 
[14][21][19][8]. Those studies focused on singled 
threaded Java programs, especially the SPECjvm98 
benchmarks [25]. In recent years, because of the popu-
larity of Java-based server applications, the perform-
ance of multithreaded Java programs are becoming of 
great interest. 

Using the performance counters provided by the 
processor, Luo et al. studied the characterization of 
Java server applications on the Pentium III [16]. They 
found that such programs have worse instruction 
streams (including I-Cache miss rate and ITLB miss 
rate, etc.) than SPECint2000. By increasing the num-
ber of threads, they also studied the impact of Java 
threads on the micro-architecture. The experimental 
results showed that increasing the number of threads 
will introduce more resource contentions even though 
the instruction stream performance can be improved 
due to the increased access locality. 

A similar work by Karlsson et al. studied the mem-
ory system behaviors of two Java middleware 
(SPECjbb2000 and ECperf) running on SMP systems 
[13]. They observed poor scalabilities for both bench-
marks when the number of processors is greater than 
12. The experimental results showed that resource con-
tention and memory stall time are two major factors 
affecting system scalability. Additionally, they found 
that cache to cache transfer rate is pretty high for Java 
application servers. 

The workload characterization of non-Java applica-
tions on SMT processors have been evaluated by many 
researchers [15][20][6]. Those studies mainly focused 
on the interactions between software and SMT proces-
sors, as well as the potential performance bottlenecks. 
Redstone et al. identified that OS constitutes a large 

portion of server applications execution time [20]. Due 
to the very large instruction and data memory footprint, 
the OS has worse cache and TLB performance than 
SPECInt workload. However, they also found that la-
tency tolerance, which is caused by cooperative shar-
ing in SMT processors, has positive impacts on per-
formance. Overall, Apache server has over 4-fold 
throughput improvement on an 8-way issue, 8-context 
SMT processor. 

Jack Lo et al. studied the database performance for 
OLTP and DSS workloads [15]. Similar to [20], they 
found that an SMT processor can increase the IPCs of 
OLTP and DSS by 3-fold and 1.5-fold, respectively. 
However, SMT introduces severe cache conflicts using 
conventional virtual memory management. They pro-
posed a new page placement policy which can reduce 
the cache misses significantly.  

Tuck et al. recently examined the performance of 
Intel Pentium 4 processors using SPEC2000 [27]. They 
used various mixes of workloads (multiprogrammed, 
multithreaded and parallel) to validate and evaluate the 
effectiveness of Hyper-Threading design. Their results 
showed that if the issue width and the number of 
hardware contexts are taken into consideration, the 
measured performance on Pentium 4 matches the 
simulation-based expectations. While a static partition 
is important to minimize conflicts and control through-
put losses, they believed that a dynamic partition might 
be required for an 8-context configuration. A closely 
related study can be found in [3]. 

To our knowledge, no previous work has evaluated 
the characterization of Java applications running on 
SMT processors. Our objective is to understand the 
behaviors of Pentium 4 when it is executing Java pro-
grams. Other issues, including the impacts of software 
configurations and job pairing, are also conducted in 
this study. 
 
3. Experimental environment 
 
3.1. Java benchmarks 
 

We use ten Java benchmarks in our experiments. 
Table 1 gives the descriptions of these benchmarks, 
including their input parameters. According to their 
properties, these benchmarks can be divided into two 
groups: single-threaded and multithreaded. Six pro-
grams of SPECjvm98 are incorporated as single-
threaded benchmarks. These programs are representa-
tive for measuring the performance of JVM client plat-
forms. 
 



Benchmark Description Input 
compress Java port of the SPEC95 compress program using modified LZW method -s100 -m1 -M1 
jess A Java expert shell system based on NASA's CLIPS expert system -s100 -m1 -M1 
db Performs a series of functions on a small database -s100 -m1 -M1 
javac The Java compiler from the JDK 1.0.2 -s100 -m1 -M1 
mpegaudio An ISO MPEG Layer-3 audio decoder -s100 -m1 -M1 
jack A Java parser generator that is based on earlier version of JavaCC -s100 -m1 -M1 Si
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MolDyn An N-body program modeling particles interacting under a Lennard-Jones potential N = 2,048 
MonteCarlo A product price deriving program based on Monte Carlo techniques N = 10,000 
RayTracer A 3D raytracer, which renders 64 spheres with configurable resolutions N = 150 
PseudoJBB A variant of SPECjbb2000 with fixed size of working set 100,000 trans. 

M
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Of the four multithreaded benchmarks we use, three 

(MolDyn, MonteCarlo, and RayTracer) come from 
multithreaded Java Grande Forum (JGF) Benchmark 
Suite [10]. We also use PseudoJBB, a variant of 
SPECjbb2000 [24], as a multithreaded benchmark. 
Different from SPECjbb2000, PseudoJBB can run a 
fixed number of transactions in multiple warehouses. 
Therefore, the execution time of PseudoJBB can be 
used for comparison purposes. This approach has been 
adopted by other researchers in recently published pa-
pers ([2][26][7]). We explicitly exclude the data ini-
tialization part of PseudoJBB benchmark to study the 
real performance of long-running server applications. 
Notice that these multithreaded applications allow us-
ers to specify the number of threads as a parameter. 
That means they can be used as single-threaded 
benchmarks when the number of threads is 1. We will 
use them in this way in later experiments. 

 
3.2. Experimental platform 
 

The operating system we use is RedHat Linux 9 
running on a single 2.8GHz Intel Pentium 4 Hyper-
Threading processor. Instead of using a traditional 
cache design, the Pentium 4 adopts trace cache as the 
level 1 instruction cache. The CPU has a 64-byte L1 
and L2 cache line size, 8KB 4-way set associative L1 
data cache, 12K micro-operations (µops) L1 instruc-
tion trace cache, and a 1MB 8-way set associative uni-
fied L2 on-chip cache. The machine has 1GB of dual 
channel 400MHz DDR RAM and 800MHz front side 
bus. To reduce the impacts from other processes in OS, 
the machine is booted in single user mode and discon-
nected from network during experiments. The JVM we 
use is Sun Java Runtime Environment (JRE) 1.4.2_05 
and the heap size is configured to be 512MB for all 
benchmarks. 

 
3.3. Tool for performance measurement 

 
Performance counters are becoming an indispensa-

ble component in modern processor designs. Equipped 

with 18 performance counters, which is much larger 
than 2 counters of its predecessor, the Pentium III, the 
Pentium 4 can monitor 48 events at the architecture 
level [22]. In addition, many new features are intro-
duced in the design of performance monitoring, such 
as precise event-based sampling and µop tagging 
mechanism. These features can help programmers to 
further understand the characterization of programs. 
Brink and Abyss is a tool developed by Sprunt [23] to 
facilitate users’ employment of the performance moni-
toring mechanisms of the Pentium 4. With this tool, 
users can monitor various aspects of Pentium 4 proces-
sors, especially the Hyper-Threading feature. Com-
pared to the Intel VTune performance analyzer [9], 
Brink and Abyss provides necessary functionalities 
while incurring much less overhead. In the rest of this 
paper, unless otherwise stated, all data is obtained us-
ing this tool. 

 
4. Experimental Results 
 

This section examines the performance of various 
types of Java applications running on Intel Hyper-
Threading processors. We first study the micro-
architecture behaviors of multithreaded Java programs. 
SMT technology is double-sided: it reduces IPC losses 
because of improved resource utilization efficiency, 
but increases pressure on those resources. For instance, 
SMT can reduce processor stall cycles per cache miss, 
but may increase the number of cache misses caused 
by the cache contention. In the performance metrics we 
examine, both sides are observed while running multi-
threaded Java programs. We then analyze the com-
bined speedups while running multiple independent 
Java programs on Hyper-Threading processors. Three 
benchmarks are identified as bad partners to the appli-
cations they pair with. Other issues, such as the impact 
of static resource partition and the number of threads, 
are also examined in this section. 

 



4.1. Detailed characterization of multithreaded 
Java applications 
 

We run multithreaded benchmarks with 2 and 8 
threads to measure the SMT performance. Notice that 
the processor has two contexts, thus 8 threads are mul-
tiplexed onto the two contexts. Table 2 shows key 
characteristics of each benchmark running on Pentium 
4 CPU with HT-enabled. The fourth column indicates 
the percentage of cycles each program spent in OS 
mode. For three benchmarks (MolDyn, MonteCarlo, 
and PseudoJBB), OS time constitutes less than 3% of 
the total execution time. RayTracer, however, has 
more OS activities because each of its thread maintains 
a copy of scene data as the temporary storage for paral-
lelization. Another observation is that OS cycle per-
centage increases with the number of threads. Appar-
ently, this is caused by more frequent thread schedul-
ing, which is the responsibility of OS. 
 
Table 2. Characterization of multithreaded bench-
marks on Hyper-Threading processor 

Benchmark App. 
Thread # CPI OS 

cycle % 
CPU DT
mode %

MolDyn02 2 1.13 2.01% 94.85%
MolDyn08 8 1.39 2.50% 93.47%
MonteCarlo02 2 2.96 2.74% 90.56%
MonteCarlo08 8 2.09 2.92% 92.52%
RayTracer02 2 2.19 11.61% 72.92%
RayTracer08 8 2.19 11.88% 72.55%
PseudoJBB02 2 2.69 2.66% 90.29%
PseudoJBB08 8 2.77 2.98% 90.55%
 

The fifth column in Table 2 (CPU DT mode percent) 
quantifies the percentage of cycles the CPU is running 
under dual-thread mode, which means both logical 
processors are executing instructions. For instance, 
while running MolDyn02, both logical processors are 
active around 95% of the total execution time. This 
parameter indicates how well the program has been 
parallelized, as well as the performance improvement 
potentials it can gain on an SMT processor. The DT 
mode percents of all benchmarks, except RayTracer, 
are greater than 90%. RayTracer has poorer parallel-
ism because it spends a larger percentage of execution 
time on collaboration and synchronization. 

Figure 1 shows the instructions per cycle (IPC) of 
multithreaded benchmarks running on a Pentium 4 
processor with HT-disabled and HT-enabled, respec-
tively. The results indicate that, for multithreaded Java 
applications, Hyper-Threading technology does im-
prove their performance. However, compared with the 
performance enhancement reported by other research-

ers, this improvement is relatively small. This implies 
that the performance characterization of Java server 
applications on Hyper-Threading processors require 
closer examinations. 

 

 
Figure 1. IPCs of multithreaded benchmarks on 
Pentium 4 processors 
 

 
Figure 2. Instruction retirement profile 

 
To further gain performance insight, we use Brink 

and Abyss to collect the retirement profile of Java 
benchmarks (shown in Figure 2). The Pentium 4 can 
retire up to 3 µops per clock cycle. The retirement pro-
file is helpful for understanding the performance of 
processor at the last stage. According to Figure 2, the 
instruction level parallelism of multithreaded Java pro-
grams is limited on the Pentium 4 processor. With HT 
disabled, CPU does not commit any µop for around 
60% of the total execution time. This explains why 
multithreaded Java benchmarks have such low IPCs. 
This problem is alleviated when CPU is running under 
Hyper-Threading mode. On average, the portions of 
retiring 1 and 2 µops are improved by 47.53% and 
50.1%, respectively. Note the portion of retiring 3 µops 
drops by 7.52%, which indicates SMT makes the exe-
cution smoother and thus more instructions retire in 1 
or 2 µops groups. Thus enabling Hyper-Threading 
leads to an overall improvement in performance. 



 
Figure 3. Trace cache misses per 1,000 instructions 

 
In SMT processors, cache behaviors become com-

plicated due to cache sharing. On one hand, the cache 
miss rate would increase because of the contentions 
from multiple hardware contexts. In [15], it was re-
ported that SMT introduces severe cache conflicts for 
conventional virtual memory management for on-line 
transaction processing (OLTP) workload. On the other 
hand, sharing might result in constructive cache inter-
ferences, which will improve cache behaviors. For 
instance, if multiple threads are executing the same set 
of instructions, they might prefetch the instruction 
blocks for each other and help tolerate long memory 
latency. Interestingly, both patterns are observed on L1 
and L2 caches of the Intel Pentium 4 processor while 
running multithreaded Java applications.  

 

 
Figure 4. L1 data cache misses per 1,000 instruc-
tions 
 

Figure 3 and Figure 4 examine the miss rates of 
trace cache and L1 data cache, respectively. With HT-
disabled, the L1 data cache exhibits miss rates of 7–29 
misses per 1,000 instructions. L1 instruction misses are 
even smaller, falling well below 2 trace cache misses 
per 1,000 instructions. The data also reveals that both 
trace cache and L1 data cache perform consistently 
worse while processor is running under SMT mode. 
For some cases, such as trace cache misses for Ray-
Tracer02, the number of misses is even doubled. 
Since the application code is identical, the causes of 

this problem are cache contention among threads and 
more OS activities. 

 

 
Figure 5. L2 cache misses per 1,000 instructions 

 
The L2 cache miss rates are shown in Figure 5. We 

observe mixed behaviors for L2 cache while running 
multi-threaded Java applications. For three bench-
marks (MolDyn, MonteCarlo and RayTracer), the L2 
cache of the Pentium 4 performs better with Hyper-
Threading turned on. This observation of is opposite to 
what we have seen in L1 caches. Combining the data 
of L1 and L2 caches, we believe that cache behaviors 
of Pentium 4 are related to Java memory footprint and 
cache sizes. Since the Pentium 4 has a very small L1 
caches (12K µops trace cache and 8KB data cache), the 
resource sharing will stress the L1 caches and cause 
severe conflicts. On the other hand, the size of L2 
cache (1MB) is large enough to hold all data for most 
benchmarks even with two threads running simultane-
ously. Under this circumstance, the constructive cache 
interference will become dominant and thus improve 
L2 cache performance. The only exception, Pseu-
doJBB, is caused by the extremely large memory 
footprint, which does not fit in the L2 cache. Its L2 
misses increase with Hyper-Threading enabled because 
of contention. 

 

 
Figure 6. Instruction TLB (ITLB) misses per 1,000 
instructions 
 

Figure 6 presents the Instruction TLB (ITLB) 
misses we collected for multithreaded Java programs. 



ITLB is responsible for translating instruction ad-
dresses into physical addresses to access the L2 cache 
when the machine misses the trace cache. The data of 
Figure 6 shows that ITLB performs slightly worse with 
Hyper-Thread turned on. For PseudoJBB, the miss 
rates increases significantly. Such degradation is 
caused by the ITLB design adopted by Intel. In the 
Pentium 4, the ITLB is partitioned among hardware 
contexts to support Hyper-Threading. Each logical 
processor has its own ITLB and its own set of instruc-
tion pointers to track the progress of instruction fetch. 
Therefore, the ITLB will perform worse than with HT-
enabled because of partitioning. 

Figure 7 shows the ratio of branches that miss in the 
Branch Target Buffer (BTB). The data clearly indi-
cates that branch prediction of the Pentium 4 performs 
worse while running under Hyper-Threading mode. 
This is due to the fact that two logical processors share 
the same BTB. In SMT processors, conventional 
branch target prediction still drives instruction fetch, 
except being augmented by extra thread ID bits in the 
BTB. The Pentium 4 adopts this design and treats the 
BTB as a shared structure with entries that are tagged 
with a logical processor ID. This sharing will cause 
destructive interferences and thus increase BTB miss 
ratios.  

 

 
Figure 7. BTB miss ratios 

 
4.2. Speedups of multiprogrammed Java appli-
cations 

 
This section examines the performance of multipro-

grammed Java benchmarks on the Pentium 4 processor. 
Multiprogrammed means running two independent 
applications simultaneously. Like [27], we use a vari-
able, called combined throughput, to measure the per-
formance of multiprogrammed Java applications. 
Combined speedup is defined as HSHS

AB BBAAC // += , 
where AS and BS are the execution times of program A 
and B running on a Hyper-Threading disabled proces-
sor, respectively. Likewise, AH and BH are the execu-

tion times of A and B running simultaneously on a Hy-
per-Threading processor. Measuring AH and BH is 
tricky due to staggered execution times. For instance, 
suppose the execution times of A and B are 3 seconds 
and 8 seconds, respectively. While running together, A 
probably finishes before B. If no precaution is taken 
during measurement, the execution time of B we meas-
ure will include the portion when B is running alone. 
For this purpose, we create a utility program to make A 
and B execute repeatedly [27]. The main process of 
utility program will re-launch the benchmark whenever 
either of them finishes. Each benchmark is repeated at 
least 12 times1, and we drop the first run to exclude 
cold-start phase. The last run is also dropped to avoid 
uncompleted executions. The completion times of the 
remaining runs are then averaged as the execution time 
of each benchmark. 

On a perfect time sharing machine without Hyper-
Threading, the execution time of each benchmark will 
become half of the original value (i.e. AH = 0.5*AS and 
BH = 0.5*BS). Therefore, CAB is 1. On the other hand, a 
perfect SMP machine with two processors will allow 
program A and B to finish with the original execution 
time, which means CAB = 2. Since SMT is a hybrid 
design, an SMT machine should provide a combined 
speedup between 1 and 2. Whenever CAB is below 1, it 
implies a performance degradation for SMT machines. 

 

 
Figure 8. Distribution of combined speedup for 
multiprogrammed Java benchmarks 

 
Figure 8 shows the combined speedups of cross-

product of nine single threaded Java applications on 
Pentium 4 processor. In other words, each application 
is run with every other application and the speedup is 
measured. Due to the large volume of data, we use box 
chart to plot our data. The chart displays a summary of 
data distribution in quarterly percentiles. The middle 
line and the square in the box represent median and 
average speedups while a benchmark is running with 
other Java programs. The other two lines (edges of the 
                                                           
1 The benchmark with smaller execution time probably has 
more than 12 runs to match up with the other benchmark. 



box) in each direction show the 25th and 75th percentile, 
respectively. Two whiskers, which are lines that ex-
tend from the edges of the box to the observed mini-
mum and maximum, are also shown in Figure 8. 

The box chart clearly presents the properties of each 
benchmark while running with other programs. For 
instance, Figure 8 shows that MolDyn is one of the 
benchmarks that generally does not detriment the per-
formance of other benchmarks. On average, it achieves 
a speedup of 1.26 while running with other Java pro-
grams. The best speedup, 1.32, is achieved while run-
ning RayTracer with MolDyn. On the other hand, 
many programs suffer greatly while running with jack. 
The average combined speedup of jack is below 1, 
which is an indication of performance slowdown on 
SMT processors. Compared with Figure 1, we see bet-
ter improvement while running multiprogrammed ap-
plications. Such improvement is attributed to the be-
haviors of multiprogrammed benchmarks, whose per-
formance is unaffected by many issues such as thread 
synchronization. 

Figure 9 shows the individual performance of each 
benchmark in a multiprogrammed pair. The figure is 
organized using a color map with a black-white scale. 
Each square describes the combined speedup of the 
row benchmark when sharing the processor with the 
column benchmark [3]. The first impression of this 
figure is the symmetry. We observe a pretty good re-
flective symmetry in this figure, which means combin-
ing two programs A and B will have a speedup close to 
combing B with A. While intuitive, [3] reported that 
reflective symmetry is not very good while combining 
SPEC2000 programs on a Pentium 4 processor. Such a 
difference is caused by the scheduling policy of the OS 
which causes unfair sharing of execution time while 
running SPEC2000 programs. 

Although most speedups are greater than 1, we do 
see some occurrences of slowdown in Figure 9. Out of 
81 combinations, nine combinations are observed to 
have performance slowdowns (CAB<1). As indicated in 
the figure (dash rectangle), these slowdowns are the 
combinations of three SPECjvm98 benchmarks (jack, 
javac, and jess). Likewise, other programs tend to 
perform worse while they pair with these three bench-
marks. What really makes these bad partners for other 
programs? Analysis using performance counters re-
veals that the programs are experiencing greater cache 
misses (in trace cache and/or L1 data cache) while 
running with these three programs. The detailed statis-
tical analysis revealed that trace cache is the major 
factor determining the pairing performance of Java 
applications. The complete results can be found in [11]. 

Due to the large number of combinations, we do not 
show the detailed micro-architecture behaviors of mul-

tiprogrammed Java benchmarks in this section. Our 
off-line data shows that the behaviors are similar to 
what we observed for multithreaded programs in sec-
tion 4.1. Namely, SMT improves the performance of 
L2 cache and ITLB, while trace cache, L1 data cache 
and BTB perform worse.  
 

 
Figure 9. Combined speedup color map 

 
4.3. Impacts of static resource partition on sin-
gle-threaded application 
 

Intel Hyper-Threading is an atypical SMT [28] de-
sign in that it statically partitions some hardware com-
ponents, such as issue queue, ROB entries and 
load/store buffers, into two parts. Each part is assigned 
to one thread and can not be shared by the other thread. 
Under this design single-threaded programs might ex-
perience performance drops. To demonstrate this prob-
lem, we compare the performance of single-threaded 
Java applications running on a Pentium 4 processor 
with Hyper-Threading enabled and disabled (Figure 
10).  

Figure 10 shows that 7 out of 9 benchmarks are ob-
served to have increased execution times, ranging from 
0.15% to 62%, when Hyper-Threading is turned on. 
The results indicate that non-multithreaded Java appli-
cations do not benefit from the Hyper-Threading tech-
nology. In fact, they may incur a performance penalty 
because of static resource partitioning. For comparison, 
Figure 11 examines the speedups of Multi-
programmed benchmarks running on a Hyper-
Threading processor. We run two identical copies of 
single threaded application simultaneously and meas-
ure the speedup. The results indicate that SMT can 
dramatically improve the performance of multipro-
grammed benchmarks. The exception includes three 
benchmarks, whose behaviors have been discussed in 
Section 4.2. 

 



 
Figure 10. Impact of Hyper-Threading technology 
on single-threaded Java programs 
 

 
Figure 11. Impact of Hyper-Threading technology 
on multi-programmed programs 

 
Since many Java programs are still single-threaded 

(i.e. one application thread), how to solve this per-
formance slowdown is of great significance. Possible 
solutions exist on both hardware and software levels. 
The hardware solution is to allow the resources to be 
shared dynamically instead of partitioning them stati-
cally. When there is only one thread available for exe-
cution, this design will dedicate all hardware resources 
to this running thread and thus reach the optimal per-
formance. Another solution, which does not require 
changing the architecture design, is to increase the 
thread-level parallelism (TLP) opportunity of single 
threaded Java programs on the software level. For ex-
ample, the virtual machine might be able to use specu-
lative pre-execution [1][5][4], a recently-proposed la-
tency tolerance technology for the SMT architecture, 
to eliminate the performance degrading events of the 
main thread, such as cache miss and branch miss pre-
diction. Because these events are the major perform-
ance bottlenecks of modern superscalar processors, 
this technique can improve the performance of Java 
programs. 

 
4.4. Impacts of multithreading on Hyper-
Threading processor 
 

While previous research results indicate that eight 
hardware contexts are the optimal number for SMT 
processor design, the current Intel Pentium 4 only 
adopts 2 contexts. In Java multithreaded applications it 
is easy to have more than two threads running at the 
same time, especially for server applications. There-
fore, understanding how the Java applications behave 
when the number of threads is greater than 2 is helpful 
for both software and hardware developers. 

Using the same set of multithreaded benchmarks, 
we vary the thread number of each benchmark from 1 
to 16 to observe the throughput changes (Figure 12). 
As might be expected, all benchmarks have dramati-
cally increased throughputs when the number of 
threads increases from 1 to 2. This is attributed to bet-
ter CPU resource utilization when there are two soft-
ware threads running simultaneously. For most 
benchmarks, the IPC is not affected by the number of 
threads when there are more than 2. This suggests that 
two threads might be the optimal number for multi-
threaded Java programs running on current Hyper-
Threading processors. The only exception is MolDyn, 
whose IPC drops significantly when the number of 
threads becomes 4. As shown in Figure 4, this is 
caused by substantially increased L1 data cache misses. 

 

 
Figure 12. IPC vs. the number of threads 

 
5. Conclusions 

 
This study uses a mixture of multithreaded, multi-

programmed and single-threaded workloads to evalu-
ate the performance of Java applications on Intel Hy-
per-Threading processors. A few key observations 
emerge. First, compared with other workloads, the 
performance improvement introduced by SMT for 
multithreaded Java programs is relatively small. The 
resource contention is the main reason for pipeline 
inefficiency. Secondly, due to the static partitioning 
design of Pentium 4 processors, most single threaded 
Java applications perform considerably worse when 
Hyper-Threading is turned on. These results indicate 
that programmers would better utilize the multithread-



ing capability provided by Java programming language 
whenever possible. The JVM can also be improved to 
handle this problem by controlling Hyper-Threading 
execution more actively. Thirdly, multithreaded proc-
essors can effectively boost the performance of Java 
applications running together simultaneously. Most 
combinations we examined have good combined 
speedups. However, some Java programs show influ-
ence on the applications they paired with and slow 
down the overall execution time. Our offline analysis 
reveals that trace cache miss rate can be used to effec-
tively predict the potential pairing performance. 
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