
Altera Corporation
AN-307

June 2005, ver. 5.0
Altera Design Flow
for Xilinx Users
Application Note 307
Introduction Designing for Altera® Programmable Logic Devices (PLDs) is very
similar, both in concept and in practice, to designing for Xilinx PLDs. In
most cases, you can simply import your register transfer level (RTL) into
Altera’s Quartus® II software and begin compiling your design to the
target device. This document will demonstrate the similar flows between
the Altera Quartus II software and the Xilinx ISE software.

For designs, which the designer has included Xilinx CORE generator
modules or instantiated primitives, the bulk of this document guides the
designer in design conversion considerations.

Who Should Read This Document

The first and third sections of this application note are designed for
engineers who are familiar with the Xilinx ISE software and are using
Altera’s Quartus II software. This first section describes the possible
design flows available with the Altera Quartus II software and
demonstrates how similar they are to the Xilinx ISE flows. The third
section shows you how to convert your ISE constraints into Quartus II
constraints.

f For more information on setting up your design in the Quartus II
software, refer to the Altera Quick Start Guide For Quartus II Software.

The second section of this application note is designed for engineers
whose design code contains Xilinx CORE generator modules or
instantiated primitives. The second section provides comprehensive
information on how to migrate a design targeted at a Xilinx device to one
that is compatible with an Altera device. If your design contains pure
behavioral coding, you can skip the second section entirely.

1 This application note assumes you are familiar with the Virtex
and Spartan device families and features. Familiarity with
VHDL, Verilog HDL, and third-party synthesis tools is also
assumed. This application note is based on the latest
information available for the Quartus II software version 5.0 and
Xilinx ISE 7.1i software version.
 1
Preliminary

Altera Design Flow for Xilinx Users Table of Contents
Table of
Contents

Section 1 Page

Introduction . 1
Basic FPGA Design Flow Using Command Line Scripting. . . . 2
Basic FPGA Design Flow Using Tools with GUIs. 8
Additional Quartus II Features . 23
Scripting with Tcl and Synopsys Design Constraints (SDC) in the
Quartus II Software . 25
System Design with SOPC Builder . 31
Hardware Verification with SignalTap II. 31
Summary of Altera GUI Equivalents for Xilinx ISE Features . 31

Section 2

Xilinx-to-Altera Design Conversion . 32
Converting Xilinx Primitives for Use In Altera Devices 33
RAM Architecture Functional Specifications 37
DCM and DLL Conversion . 51
Double-Data Rate (DDR) I/O Conversion. 73

Section 3

Constraints . 80

Summary

References . 83

The Quartus II
Approach to
FPGA Design

The Quartus II software allows you to perform design implementation
either by using command-line executables and scripting, or by using the
Quartus II graphical user interface (GUI).

Basic FPGA Design Flow Using Command Line Scripting

The ability to automate the FPGA design process saves time and increases
productivity. Both Xilinx’s ISE software and the Quartus II software
provide the tools necessary to automate your FPGA design flow. Figure 1
shows the similarity between a typical command line implementation
flow using either Xilinx’s ISE or Altera’s Quartus II software.
2 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Figure 1. Typical Implementation Flow

f Refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook for information on the Quartus II command-line executable
flow.

For ISE software users who are familiar with the command-line
implementation flow that compiles a design and generates a
programming file for FPGA design files, a similar flow exists within the
Quartus II software known as the compilation flow. The compilation flow
is the sequence and method by which the Quartus II software translates
your design files, maps the translated design to device specific elements,
places and routes the design in the device, and generates a programming
file. These functions are performed by the Quartus II Integrated Synthesis
(QIS), Fitter, Assembler, and Timing Analyzer. Below is a description and
comparison of the two software flows using command line executables.

Design File Translation (ngdbuild versus quartus_map)

The ISE software provides the NGDBuild executable that is used to
translate your design files into a generic netlist consisting of device
specific primitives for the Xilinx implementation flow. This generic netlist
will then be used by the subsequent executables in the implementation
flow. Similarly, the Quartus II software provides the quartus_map

Project Creation

Translate Design Files

Map Design Elements
to Device Resources

Place & Route
Design Resources

Perform Timing Analysis

Generate Programming File

quartus_map

Altera
Executable

Xilinx
Executable

quartus_fit

quartus_tan

quartus_asm

NGDBUILD

MAP

PAR

TRCE

BITGEN
Altera Corporation 3
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
executable that will create a project database that integrates all the design
files in your project and performs an analysis and synthesis, if required,
on your design files.

The following is an example usage of the quartus_map executable:

quartus_map filtref --source=filtref.bdf
--family=stratixii --ver=<revision name>

The above command creates a new Quartus II project called filtref with
the filtref.bdf Block Design File (.bdf) as the top-level entity, including
the revision name. It targets the Stratix® II device family, and performs
logic synthesis and technology mapping on the design files.

Mapping Design Elements to Device Resources (map versus
quartus_map)

The ISE software provides the MAP executable which is used to map the
logical design elements created by NGDBuild to actual device resources
such as memory blocks and I/Os. In the Quartus II command-line flow,
quartus_map performs both the design translation and mapping of
design elements to device resources.

Place and Route Design Resources (par versus quartus_fit)

In place of the PAR executable provided by the ISE software to place and
route all device resources into your selected FPGA device, the Quartus II
software provides the quartus_fit command-line executable. Use
quartus_fit to place and route all device resources into your selected
FPGA device. The following is an example of quartus_fit usage:

quartus_fit filtref --part=EP2S15F484C3 --fmax=80MHz --tsu=8ns

This command performs fitting on the filtref project. A Stratix II
EP2S15F484C3 device is specified, and the fitter attempts to meet a global
fMAX requirement of 80 MHz and a global tSU requirement of 8 ns.

Timing Analysis (trce versus quartus_tan)

In place of the TRCE executable provided in the ISE software for
performing a static timing analysis on your design, the Quartus II
software provides the quartus_tan executable. The following is an
example of quartus_tan usage:

quartus_tan filtref
4 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
The quartus_tan filtref command performs timing analysis on the
filtref project to determine whether the design meets the timing
requirements that were specified using the quartus_fit command
earlier in the process.

Programming File Generation (bitgen versus quartus_asm)

The ISE software provides the BITGEN executable to generate FPGA
programming files. Similarly, the Quartus II software provides the
quartus_asm executable to generate programming files for FPGA
configuration. The following is an example of quartus_asm usage:

quartus_asm filtref

The quartus_asm filtref command creates programming files for
the filtref project.

Table 1 provides a summary and a description of the various executables
available in the ISE software and the Quartus II software.

1 For command line help on any of the Quartus II executables
described above, type <command-line executable> --help at the
command prompt. A GUI-enabled help browser is also
available that covers all of the Quartus II command-line
executables. Start this browser by typing
quartus_sh --qhelp at the command prompt.

Table 1. Implementation Flow Summary

Xilinx Executable Altera Executable Description

EDIF2NGD,
XNF2NGD,
NGDBuild, MAP

quartus_map Translates project design files, e.g.
RTL or EDA netlist, and map design
elements to device resources

PAR quartus_fit Places and routes the device
resources into the FPGA

TRCE quartus_tan Performs a static timing analysis on the
design

BITGEN quartus_asm Generates programming file from
post-placed-and-route design

NGDANNO quartus_cdb Back-annotates design for either post
or pre place-and-route design

NGD2EDIF,
NGD2VER,
NGD2VHDL

quartus_eda Generates output netlist files for use
with other EDA tools
Altera Corporation 5
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
The following is a complete Quartus II compilation flow of the multiple
executable example given in the previous sections:

quartus_map filtref --source=filtref.bdf --family=stratixii
quartus_fit filtref --part=EP2S15F484C3 --fmax=80MHz --tsu=8ns
quartus_tan filtref
quartus_asm filtref

All four executables can be run in sequence either through a script file or
Makefile to generate a programming file for your FPGA design.

f Refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook for information on command-line scripting of Quartus II
command-line executables.

Scripting with Quartus II Command-Line Executables

The Quartus II command-line executables reduce the amount of system
memory required during each step in the design flow. Because it targets
only one step in the design flow, each executable is relatively compact,
both in terms of file size and the amount of memory used when running.
This is particularly beneficial in design environments with heavily-used
computer networks or legacy workstations with low amounts of RAM.

Command-line executables allow for easy integration with scripted
design flows. You can easily create scripts in any language with a series
of command-line executable commands. These scripts can be
batch-processed, allowing for integration with distributed computing in
server farms. The Quartus II command-line executables can also be
integrated in Makefile-based design flows. All these features enhance the
ease of integration between the Quartus II software and other EDA
synthesis, simulation, and verification software.

Similar to ISE’s XFLOW implementation command, the Quartus II shell
(quartus_sh) contains a --flow option, which can be used to open a
project and perform a compilation or other related flow with one
command. For example, executing

quartus_sh --flow compile <project name> -c <revision name>

performs a complete compilation, including analysis and synthesis,
fitting, timing analysis, and programming file generation, based on
constraints and settings contained in the project’s revision name.
6 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
The Quartus II software provides command-line executables for each
stage in the design flow shown in Figure 1 on page 3. Additional
command-line executables are provided for specific tasks. Table 2 lists
each Quartus II command-line executable and provides a brief
description of its function.

Table 2. Quartus II Command-Line Executables and Descriptions (Part 1 of 2)

Executable Description

quartus_map The Quartus II Integrated Synthesis engine builds a single project
database that integrates all the design files in a design entity or project
hierarchy, performs logic synthesis to minimize the logic of the design,
and performs analysis and synthesis on the logic in the design.

quartus_fit The Quartus II Fitter fits the logic of a design into a device. The Fitter
selects appropriate interconnection paths, pin assignments, and logic
cell assignments.

quartus_tan The Quartus II Timing Analyzer computes delays for the given design
and device and annotates them on the netlist for subsequent use by the
Simulator. Then, the Timing Analyzer performs timing analysis,
allowing you to analyze the performance of all logic in your design.

quartus_sim The Quartus II Simulator performs one of two types of simulation:
functional simulation or timing simulation. The Quartus II Simulator is a
powerful tool for testing and debugging the logical operation and
internal timing of the design entities in your project.

quartus_asm The Quartus II Assembler converts the Fitter’s device, logic cell, and
pin assignments into a programming image for the device, in the form
of one or more Programmer Object Files (.pof), SRAM Object Files
(.sof), Hexadecimal (Intel-Format) Output Files (.hexout), Tabular
Text Files (.ttf), and Raw Binary Files (.rbf).

quartus_pgm The Quartus II Programmer programs the Altera provided devices. The
programmer will use one of the valid supported file format: SOF, POF,
jam, and JAM Byte-Code File (.jbc).

quartus_swb The Quartus II Software Builder creates object code from source files
to run on either the ARM-based ExcaliburTM devices or the Nios®II and
Nios embedded processor.

quartus_drc The Quartus II Design Assistant checks the reliability of a design based
on a set of design rules. The Design Assistant is especially useful for
checking the reliability of a design before converting the design for

HardCopy® devices.

quartus_cdb The Quartus II Compiler Database Interface generates and accesses
information on atoms. It can be used to back-annotate designs.

quartus_eda The Quartus II Netlist Writer generates output netlist files for use with
other EDA tools.
Altera Corporation 7
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
1 Each of the Quartus II executables creates its own report file. For
example, the quartus_map executable creates a file titled
<project name>.map.rpt.

Basic FPGA Design Flow Using Tools with GUIs

The Quartus II and ISE software Graphical User Interfaces (GUIs)
address each of the major FPGA design steps (shown in Figure 2) in
different ways. The following subsections present the Altera equivalents
for Xilinx ISE features.

Figure 2. Typical FPGA Design Flow

quartus_cpf The Quartus II Convert Programming Files converts one programming
file format to a different possible format.

quartus_sh The Quartus II Shell is a simple Quartus II tool command language
(Tcl) interpreter. The Shell may be started with a Tcl script to evaluate,
as an interactive Tcl interpreter (shell), or as a quick Tcl command
evaluator, evaluating the remaining command-line arguments as one
or more Tcl commands.

Table 2. Quartus II Command-Line Executables and Descriptions (Part 2 of 2)

Executable Description

Project Creation

Translate Design Files
(Design Entry)

Synthesize and Map Design
Elements to Device Resources

Place & Route
Design Resources

Perform Timing Analysis

Generate Programming File
8 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Project Creation

To begin a design in either the ISE or Quartus II software, you must first
create a project. The project specifies the design files and tools that will be
used in the project. Similar to the New Project command (File menu) in
the ISE software, the Quartus II software uses the New Project Wizard to
guide you through specifying a project name and directory, the top-level
design entity, any EDA tools you are using, and a target device. To invoke
the New Project Wizard, select New Project Wizard (File menu). Figure 3
shows the first page of the Quartus II New Project Wizard.

Figure 3. The New Project Wizard Start Screen

1 All the settings you make when creating your project with the
New Project Wizard can be modified at later stages in the design
process.

Design Entry

Both the ISE software and the Quartus II software support hardware
description language (HDL), EDA netlist, and schematic design files as
design entry methods.
Altera Corporation 9
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
In place of the Add Source dialog box of the Xilinx ISE software, the Files
page of the Settings dialog box (Assignments menu) in the Quartus II
software allows you to add or remove existing design files from your
project (Figure 4).

Figure 4. Files Page of Settings Dialog Box

HDL Design Entry

To create a new HDL design file in the Quartus II software, choose New
(File menu) and select the type of file to create. To assist you in creating
HDL designs, the Quartus II software provides templates for overall
AHDL, VHDL and Verilog HDL file structures and constructs, including
various logic functions and parameter declarations. Also, the Quartus II
Text Editor offers syntax coloring for highlighting HDL reserved words
and comments.
10 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
f For more information on design guidelines in the Quartus II software,
refer to the Design Recommendations for Altera Devices and Recommended
HDL Coding Styles chapters in volume 1 of the Quartus II Handbook.

EDA Netlist Design Entry

The ISE and Quartus II software allow you to compile designs from
netlists generated from EDA tools such as Synplify or Precision RTL™. In
the Quartus II software, you can specify the EDA tools you are using for
synthesis, simulation, timing analysis, board-level signal verification,
formal verification, and physical synthesis in the EDA Tool Settings page
of the Settings dialog box (Assignments menu) as well as on the
appropriate page of the New Project Wizard(Figure 5). For more
information using third-party synthesis tools, see “Synthesis” on page 12.

Figure 5. The EDA Tool Settings Page of Settings Dialog Box
Altera Corporation 11
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
f For more information on using the Synplify and Precision RTL tools in
conjunction with the Quartus II software, refer to the Synplicity Synplify
& Synplify Pro Support and Mentor Graphics Precision RTL Synthesis
Support chapters in volume 1 of the Quartus II Handbook. Refer also the
Synopsys Design Compiler FPGA Support chapter in volume 1 of the
Quartus II Handbook.

Schematic Design Entry

In the Quartus II software, you can use Altera-supplied design elements
such as Boolean gates and registers, or you can create your own symbols
from HDL or EDA netlist design entities. The Quartus II software also
includes an extensive library of megafunctions supplied with the
software. These are added using representative schematic symbols
customized using the MegaWizard® Plug-In Manager.

1 See “Quartus II MegaWizard Plug-In Manager” on page 23 for
more information.

To create a block design file from a VHDL design file, a Verilog HDL
design file, or an EDA Netlist choose Create/Update > Create Symbol
Files for Current File (File menu).

Synthesis

Similar to the Xilinx Synthesis Technology (XST) in ISE, the Quartus II
software includes Quartus II Integrated Synthesis (QIS) which provides
full synthesis support for AHDL, VHDL, and Verilog HDL. The
integrated synthesis engine is invoked whenever the Quartus II software
encounters any files of the three supported HDL language types.

The Quartus II software also supports synthesized design files from
third-party synthesis tools including EDIF (.edf) and Verilog Quartus II
Mapping (.vqm) netlist files.

Design Assignments

Specifying device assignments assures that your design takes advantage
of specific features of your targeted device architecture and meets
performance goals. The ISE software provides two tools—the Constraints
Editor and the Pinout and Constraints Editor (PACE)—to create and edit
constraints. The Quartus II Assignment Editor conveniently allows you
to create and view constraints using a single centralized interface.
Additionally, the Quartus II Pin Planner allows you to view, create, and
edit pin assignments in a graphical interface.
12 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
The Quartus II Assignment Editor

In place of the Constraints Editor and PACE tools in the ISE software, use
the Quartus II Assignment Editor (Assignment menu) to make timing
and placement design constraints for your design. The Quartus II
software dynamically validates the assignments whenever changes are
made with the Assignment Editor, issuing errors or warnings for invalid
assignments. Adding or changing assignments is acknowledged with
messages reported in the System tab of the Quartus II message utility
window (Figure 6).

Figure 6. The Assignment Editor
Altera Corporation 13
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
The Quartus II Pin Planner

Like the PACE tool in the ISE software, the Quartus II Pin Planner
provides a graphical Package view allowing you to make pin location
assignments using a device Package view instead of pin numbers. With
the Pin Planner, you can identify I/O banks, VREF groups, and
differential pin pairings to help you through the I/O planning process.

To use the Pin Planner, choose Pin Planner (Assignments menu).
Figure 7 shows the Pin Planner.

f For more information on using the Pin Planner, refer to the I/O Planning
chapter in volume 2 of the Quartus II Handbook.

Figure 7. The Pin Planner
14 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Analysis & Synthesis and Fitter Settings

The Analysis & Synthesis Settings and the Fitter Settings dialog boxes
allow you to easily set project-wide Quartus II compiler settings. The
Analysis & Synthesis Settings dialog box (see Figure 8) allows you to set
options that affect the analysis and synthesis stage of the compilation
flow. These options include the Optimization Technique, State Machine
Processing, Restructure Multiplexers, and others.

Figure 8. Analysis & Synthesis Settings Dialog Box

The Fitter Settings dialog box (see Figure 9) allows you to set options that
affect the Fitter stage of the compilation flow. These options include Fitter
Effort, Fitting Attempts, Seed value, and so forth.
Altera Corporation 15
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
Figure 9. Fitter Settings Dialog Box

1 You can also use the Device page of the Settings dialog box
(Assignments menu) to select or change devices for your project.

Timing Settings

The Timing Requirements & Options page of the Settings dialog box
(Assignments menu) in the Quartus II software allows you to easily set
project-wide timing requirements for your design. You can specify
requirements for overall circuit frequency (fMAX), project-wide setup time
(tSU), hold time (tH), clock-to-output time (tCO), and pin-to-pin time (tPD).
You can also specify clock relationships and enter settings to control
timing analysis.
16 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Figure 10. Timing Requirements Dialog Box

f For more information on the Quartus II Timing Analyzer, refer to the
Quartus II Timing Analysis chapter in volume 3 of the Quartus II
Handbook.

You can use the Assignment Editor to make individual timing
assignments or to assign clock settings to a clock signal.

Design Implementation

The ISE software follows an implementation flow that compiles a design
and generates a programming file for your FPGA design files. A similar
flow exists within the Quartus II software known as the compilation flow.
The compilation flow is the sequence and method by which the
Quartus II software translates your design files, maps the translated
design to device specific elements, places-and-routes the design in the
device, and generates a programming file. These functions are performed
by the QIS, Fitter, Assembler, and Timing Analyzer.
Altera Corporation 17
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
You can start the compilation flow at any point in the design process,
whether or not you have completed making your project settings and
constraints. In the Quartus II software, choose Start Compilation
(Processing menu) to start the compilation process.

In the initial compilation phase, the QIS creates a database from your
design files containing all necessary design information. A design rule
check is performed on all design files in the project, ensuring that no
boundary connectivity errors or syntax errors exist. This database is
available for use for all subsequent steps in the compilation flow.

The QIS optimizes your design for the targeted Altera FPGA and maps
the design to the device. Mapping converts your design files into
architecture-specific atoms that target device resources such as logic
elements (LEs) and RAM blocks.

The Fitter places and routes the atoms created by the QIS in the selected
device. The Fitter performs additional optimization to improve your
design’s timing and resource usage based on timing constraints.

When the optimized fit is achieved, the Assembler generates the
programming file for your design. The programming file contains all
placement and routing information for your design and is used to
program the target Altera device.

The Timing Analyzer performs a static timing analysis on every path in
your design. This analysis allows you to identify critical paths and timing
errors necessary to meet the design timing budget or achieve timing
closure.

The Status utility window shows progress of the current compilation
(Figure 11). The results of a compilation may be viewed in the
Compilation Report window (Processing menu). The report window
opens automatically when you compile a design, and shows the design
hierarchy, a compilation summary, statistics on the performance of the
design, and a link to the floorplan view.

Figure 11. The Status Utility Window
18 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Use the Timing Closure Floorplan (Assignments menu) to view
compiler partitioning, fitting and timing results or to assign physical
device resources.

Each of the phases in the compilation flow can also be started
independently of the others, similar to the command-line executable
flow, within the Quartus II GUI using the Compiler Tool (Tools menu) as
shown in Figure 12.

Figure 12. Compiler Tool Window

Timing Analysis

Roughly equivalent to the Post-Place and Route Static Timing Report
generated by the Xilinx ISE software, the Quartus II Timing Analyzer
analyzes and reports the performance of all logic in your design, allowing
you to determine all of the critical paths that limit your design’s
performance. Figure 13 shows the timing analysis report.
Altera Corporation 19
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
Figure 13. An Example Timing Analysis Report

f For more information on the differences between timing analysis
methodologies, refer to the white paper Performing Equivalent Timing
Analysis Between the Altera Quartus II Software and Xilinx ISE.

Design Optimization

The Quartus II Fitter is guided by your design’s timing requirements, and
will attempt to satisfy all the timing constraints specified. Ensure that
your timing settings accurately reflect the timing requirements of your
design.

Choose Settings (Assignments menu) and select Fitter Settings in the
Category list. Specify the type of timing-driven compilation for the Fitter
to perform by turning on or off one or both of the following options:

■ Optimize timing directs the Fitter to optimize routing within a
device to meet timing requirements.

■ Optimize hold timing directs the Fitter to optimize minimum delay
timing constraints.

■ Optimize fast-corner timing directs the Fitter to optimize routing
under the fast-corner (fastest manufactured device, operating in low-
temperature and high-voltage conditions) condition. By default, the
20 Altera Corporation
Preliminary

The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Fitter will optimize under slow-corner (slowest manufactured device
for a given speed grade, operating in high-temperature and low-
voltage conditions) conditions.

f For more strategies for optimizing your design, refer to Section III: Area
Optimization & Timing Closure in volume 2 of the Quartus II Handbook.

Design Partitioning

LogicLock™ block-based design is a methodology available in the Altera
Quartus II software. The LogicLock methodology allows you to optimize
each design entity/module independent of other entities/modules.
Productivity is increased because each design module needs to be
optimized only once. During integration and system-level verification,
the performance of each logic module is preserved.

To create a LogicLock region in the Timing Closure Floorplan, perform
the following steps:

1. Choose Settings (Assignments menu), then select Device in the
Category list.

2. Specify a target device, then choose the Timing Closure Floorplan
(Assignments menu).

3. Click the Create New LogicLock Region button on the toolbar, then
click and drag the pointer until the region is the desired size.

1 You must select a target device (step 1) or the Create New
LogicLock Region button will be grayed out.

4. Choose Properties (right-button pop-up menu) on the LogicLock
region to view or edit the region’s properties.

f For more information on using LogicLock methodology, refer to the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Simulation

Just as with the Xilinx ISE software, the Quartus II software supports
integration with many third-party EDA simulation tools, including those
from Mentor Graphics®, Cadence, and Synopsys. To perform
functional/behavioral simulation on designs containing LPMs or
MegaWizard-generated functions, use the Altera functional simulation
models installed with the Quartus II software.
Altera Corporation 21
Preliminary

Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
The LPM simulation model files are:

■ 220model.v for Verilog HDL
■ 220pack.vhd and 220model.vhd for VHDL

The Altera megafunction simulation model files are:

■ altera_mf.v for Verilog HDL
■ altera_mf.vhd and altera_mf_components.vhd for VHDL

To perform gate-level timing simulation on a design, the Quartus II
software generates output netlist files containing information on how the
design was placed into device-specific architectural blocks. The
Quartus II software provides this information in the form of a .vo file for
Verilog HDL and a .vho file for VHDL output files. The accompanying
timing information is stored in a SDF file that annotates the delay for the
elements found in the .vo or .vho output netlist.

The Quartus II Simulator enables testing and debugging the logical
operation and internal timing of the design.

The Simulator page in the Settings dialog box (Assignments menu) helps
you create and save Simulator settings by specifying the time period
covered by the simulation and the source of the vector stimuli. You can
also turn on options for reporting the simulation coverage and setup and
hold time violations.

Create a Vector Waveform File (.vwf) in the Waveform Editor by
choosing New (File menu) and clicking the Other Files tab. Select Vector
Waveform File and click OK. The VWF should contain the vector inputs
for simulation and the names of the outputs to be simulated.

The Automatically add pins to simulation output waveforms option on
the Simulator section of the Settings dialog box (Assignments menu)
directs the Simulator to automatically add waveforms for all the output
pins in the project to the simulation outputs. This eliminates the need to
manually enter the names of the output nodes you want to monitor.

Choose Start Simulation (Processing menu) to run the simulation. View
the simulation results by choosing Simulation Report (Processing
menu).

Device Programming

The Quartus II Programmer allows you to use files generated in the
compilation flow to program or configure all Altera programmable logic
devices and supported configuration devices.
22 Altera Corporation
Preliminary

Additional Quartus II Features Altera Design Flow for Xilinx Users
Open the Programmer by choosing Programmer (Tools menu).

f For more information on using the Programmer, refer to the Assembler
section of the Online help in the Quartus II software.

Additional
Quartus II
Features

In addition to providing the standard set of tools required in any FPGA
design flow, the Quartus II software provides additional features and
tools to assist you with achieving your desired design requirements.

Quartus II MegaWizard Plug-In Manager

In place of the CoreGen and the Architecture Wizard available in the
Xilinx ISE software, the Altera MegaWizard Plug-In Manager helps you
create highly customized megafunctions that are optimized for the device
targeted in your design. These customizations draw on Altera-provided
megafunctions, including library-of-parameterized-modules (LPM)
functions, ranging from simple Boolean gates to complex memory
structures. The MegaWizard Plug-In Manager categorizes all supported
modules into folders titled: arithmetic, gates, I/O, memory compiler, and
storage.

You can access the MegaWizard Plug-In Manager as a stand-alone tool or
as an integrated tool in your Quartus II project. Table 3 provides a brief
list of supported megafunctions.

Use the MegaWizard Plug-In Manager to generate Altera equivalents for
Xilinx primitives and CoreGen and Architecture Wizard modules.
Figure 14 shows page 2a of the MegaWizard Plug-In Manager.

Table 3. Supported Megafunctions in the MegaWizard Plug-In Manager

Folder Megafunction

Arithmetic altaccumulate, altfp_mult, altmemmult,
altmult_accum (MAC), altmult_add, altsqrt,
lpm_add_sub, parallel_add

Gates lpm_add, lpm_bustri, lpm_clshift

I/O altddio_bidir, altddio_in, altll_reconfig, altpll,
altlvds

Memory Compiler FIFO, RAM : 1-Port, RAM : 3-Port

Storage altshift_taps, altsyncram, lpm_shiftreg
Altera Corporation 23
Preliminary

Altera Design Flow for Xilinx Users Additional Quartus II Features
Figure 14. MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager automatically generates a
Component Declaration file (with the extension .cmp) that can be used in
VHDL Design Files (.vhd) and an AHDL Include File (.inc) that can be
used in Text Design Files (.tdf) and Verilog Design Files (.v). The
MegaWizard Plug-In Manager also creates a sample instantiation
template with the extension _inst.tdf for AHDL designs, _inst.vhd for
VHDL designs, and _inst.v for Verilog HDL designs. A sample
declaration file with a _bb.v extension is also created for Verilog HDL
designs. The sample files contain module and port declarations for the
custom megafunction variation. A Block symbol file (.bsf) will also be
created which is a symbol that represents the logic in a schematic file.

Quartus II Incremental Compilation

In place of the Incremental Design feature in ISE, Quartus II Incremental
Compilation allows you to organize your design in logical and physical
partitions for synthesis and fitting. Design iteration time can be
dramatically reduced by focusing new compilations on a particular
design partition and merging the results with previous compilation
24 Altera Corporation
Preliminary

Additional Quartus II Features Altera Design Flow for Xilinx Users
results from other partitions. Incremental compilation facilitates
block-based design, and allows you to preserve performance for
unchanged blocks of your design. You can also target optimization
techniques, such as physical synthesis, to specific design partitions while
leaving other blocks untouched.

f For more information, refer to the Quartus II Incremental Compilation
chapter in volume 1 of the Quartus II Handbook.

Scripting with Tcl and Synopsys Design Constraints (SDC) in the
Quartus II Software

The Quartus II GUI provides an easy way to access all features and
commands offered by the software. However, as designs grow in
resource utilization and complexity, the need to automate common tasks
and to streamline the entire FPGA design flow becomes a requirement.
The Quartus II software provides support for Tcl and SDC to help
facilitate project assignments, compilation, and constraints. The
following provides a brief description of the Quartus II software support
of Tcl and SDC.

f For more information, refer to the Tcl Scripting chapter in volume 2 of the
Quartus II Handbook.

The Quartus II software contains Tcl application program interface (API)
functions that you can use to automate a variety of common tasks, such
as making assignments, compiling designs, analyzing timing, and
controlling simulation. The Quartus II software offers the following ways
to run your Tcl scripts:

■ Interactively from the shell
■ Using scripts in batch from the shell
■ As a Batch file from the DOS or UNIX prompt
■ Directly from the command line

Running Tcl Scripts Interactively from the Shell

Using the -s or --shell switch option starts an interactive Tcl shell
session, replacing the normal command line prompt with tcl>:

c:\>quartus_sh -s
Info: **
Info: The Quartus II Shell supports all Tcl commands in addition
to
Info: Quartus II Tcl commands
Info: All unrecognized commands are assumed to be external
Info: and are run using Tcl's "exec" command
Info: To exit, type "exit"
Altera Corporation 25
Preliminary

Altera Design Flow for Xilinx Users Additional Quartus II Features
Info: For a list of all Quartus II Tcl commands, type "help"
Info: **
tcl>

Everything typed in the Tcl shell will be directly interpreted by the
Quartus II Tcl interpreter.

1 The Tcl shell includes a history list of previous commands
entered, but it does not allow commands to span more than one
line.

Using Scripts in Batch from a Shell

Once you create a Tcl script file (.tcl), you can run it by typing the
following command in a Tcl shell:

source <script_name>.tcl

This will run the Tcl script, a previously written set of Tcl commands to
help configure a project or project assignments created in Tcl.

Running Scripts from the DOS or UNIX Prompt

The following command will run the Quartus II Tcl shell and use the Tcl
file specified by the -t option as the input Tcl script:

quartus_sh -t <script_name>.tcl

The Quartus II Tcl interpreter will read in process and execute the Tcl
commands in the Tcl script file and then exit back to the command-line
prompt. Most of the examples in this application note are written to be
run as a batch file.

Running Scripts Directly from the Command-line

The last way of accessing Tcl is using the --tcl_eval option. This
directly evaluates the rest of the command line arguments as one or more
Tcl commands. If there are two or more Tcl commands, you have to
separate them with semicolons. The Quartus II Tcl interpreter is used to
interpret these Tcl commands. For example, typing the following
command:

quartus_sh --tcl_eval puts Hello; puts World

will cause the following output:

Hello
World
26 Altera Corporation
Preliminary

Additional Quartus II Features Altera Design Flow for Xilinx Users
The Tcl evaluate option allows external scripting programs (such as
make, perl, and sh) to access information from Quartus II software. One
such application may be to obtain device family information for a
targeted part.

The --tcl_eval option is also very useful to get Tcl help information
directly from the command-line prompt.

Using the Tcl Console in the Quartus II GUI

You can execute Tcl commands directly in the Quartus II Tcl Console
window. To open the Tcl Console window, choose Auxiliary Windows >
Tcl Console (View menu). The Tcl Console is usually located on the
bottom-right corner of the Quartus II GUI.

The following example Tcl script performs these tasks:

■ Opens the fir_filter project if it exists. If the project doesn’t exist, the
script creates the project

■ Sets the project to target a Stratix II EP2S15F672C3 device
■ Assigns the clk pin to the physical pin F18
■ performs compilation

This Tcl file works with quartus_sh.exe
This Tcl file will compile the Quartus II tutorial
fir_filter design

set the project_name to fir_filter
set compiler setting to filtref

set project_name fir_filter
set csf_name filtref

Create a new project and open it
Project_name is project name
Require package ::quartus::project

if {![project_exists $project_name]} {
project_new -cmp $csf_name $project_name;

} else {
project_open -cmp $csf_name $project_name;
}

#------ Make device assignments ------#

set_global_assignment -name FAMILY “Stratix II”
set_global_assignment -name DEVICE EP2S15F672C3

#------ Make instance assignments ------#

assign pin clk to pin location F18
Altera Corporation 27
Preliminary

Altera Design Flow for Xilinx Users Additional Quartus II Features
set_location_assignment -to clk Pin_F18

#------ project compilation ------#

The project is compiled here

package require ::quartus::flow
execute_flow -compile

project_close

Using Synopsys Design Constraints with the Quartus II Software

To ease the integration with EDA synthesis tools, the Quartus II software
supports the SDC functions. Table 4 provides a brief list of supported
SDC functions.

Table 4. Quartus II Supported SDC Functions (Part 1 of 2)

Command Description

create_clock Creates a base clock with the given name and waveform, and applies the clock to
the specified clock pin list.

set_clock_latency Inserts a source latency into an existing base clock.

set_false_path Specifies that the timing paths that start from a designated start node and end at a
designated destination node are false paths.

set_input_delay Specifies the external input delay of a set of input or bidirectional pins with respect
to the designated clock.

remove_clock Removes all the clocks that are used in the current design if the -all option is
specified.

create_generated_clock Creates a derived, or generated clock from the given clock source. A generated
clock can be derived only from a base clock. The generated clock is always assumed
to be propagated.

get_clocks Returns the list of clock pins as specified in the <clock_pin_list>. The input list is
returned as the output. When <no port list> is specified, the command returns
nothing.

remove_input_delay Removes the specified input delay assignments from the current design.

remove_output_delay Removes the specified output delay assignments from the current design.

reset_path Removes the specified timing path assignments from the current design. If neither
the -setup or -hold option is specified, then both setup and hold paths are
removed.

set_false_path Specifies that the timing paths that start from the designated <from_pin_list> and
end in the designated <to_pin_list> are false paths.
28 Altera Corporation
Preliminary

Additional Quartus II Features Altera Design Flow for Xilinx Users
f Refer to the Quartus II on-line help for a complete list of supported Tcl
and SDC functions.

set_input_delay Specifies the external input delay of a set of input or bidir pins with respect to the
designated clock. The delay applies to both the positive and negative edges of the
clock. The specification is internally translated into the equivalent Quartus II software
tSU requirements.

set_max_delay Specifies the maximum delay for the timing paths that start from the designated
<from_pin_list> and end in the designated <to_pin_list>.

set_min_delay Specifies the minimum delay for the timing paths that start from the designated
<from_pin_list> and end in the designated <to_pin_list>.

set_multicycle_path Specifies that the given timing paths have multicycle setup or hold delays with the
number of cycles specified by the <path_multiplier>. The meaning of multicycle hold
differs between the Quartus II timing analysis and the Synopsys PrimeTime
software. Refer to the online Help for each software package for more information.

set_output_delay Specifies the external output delay of a set of output or bidir pins with respect to the
designated clock. The delay applies to both the positive and negative edges of the
clock. The specification is internally translated into the equivalent Quartus II software
tCO requirements.

set_propogated_clock Specifies that a given clock is propagated using the actual clock network delays. This
command is included for compatibility with the Quartus II software SDC commands.
The Quartus II software ignores the command because it supports only propagated
clocks.

get_ports Returns the list of ports as specified in the <port list>.

Table 4. Quartus II Supported SDC Functions (Part 2 of 2)

Command Description
Altera Corporation 29
Preliminary

Altera Design Flow for Xilinx Users Additional Quartus II Features
Cross-probing in the Quartus II Software

Cross-probing is the ability to select design elements from one tool and
locate them in another tool. All features and tools within the Quartus II
software are highly integrated, resulting in a design environment that
provides seamless cross-probing abilities. Table 5 shows the
cross-probing support provided by the Quartus II software.

For example, with the cross-probing ability in the Quartus II software you
can locate design elements from the RTL Viewer to the Assignment
Editor. This eliminates the searching time for node names and pin names
when applying design constraints in the Assignment Editor.

Table 5. Cross Probing Support in the Quartus II Software

From

To

Schematic
Editor

HDL
Editor

RTL
Viewer

Assignment
Editor

Pin
Planner Floorplanner Technology

Map Viewer
Chip

Editor

Project
Navigator v v v v v v v v

Message
Window v v v v v v v v

Schematic
Editor v v v v v v

HDL Editor v v v v v v

RTL Viewer v v v v v v v

Assignment
Editor v v v v v v v

Pin Planner v v v v v v v

Waveform
Editor v v v v v v v v

Floorplanner v v v v v v v

Technology
Map Viewer v v v v v v v

Timing Report v v v v v v v v

Chip Editor v v v v v v v

Signal Tap II v v v v v v v v

PowerPlay
Power
Analyzer
Reports

v v v v v v v v
30 Altera Corporation
Preliminary

Summary of Altera GUI Equivalents for Xilinx ISE Features Altera Design Flow for Xilinx Users
f Refer to the Quartus II Handbook for more information on the features
and tools listed in Table 5.

System Design with SOPC Builder

The SOPC Builder feature included and integrated in the Quartus II
software enables the use of processors (such as Altera Nios and Nios II
embedded processors), interfaces to off-chip processors, standard
peripherals, IP cores, on-chip memory, interfaces to off-chip memory,
and user-defined logic into a custom system module.

SOPC Builder generates a single system module that instantiates these
components, and automatically generates the necessary interconnect
logic to bind them together.

f For more information on system design with the SOPC Builder, refer to
Volume 4: SOPC Builder of the Quartus II Handbook.

Hardware Verification with SignalTap II

The SignalTap® II Logic Analyzer is a multiple-input, digital acquisition
instrument that captures and stores signal activity from any internal
device node(s).

f For more information on SignalTap II Logic Analysis, see the Design
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

Summary of
Altera GUI
Equivalents for
Xilinx ISE
Features

Table 6 lists the stages of the design flow, the Xilinx software features
used in each stage, and their equivalents in the Quartus II software.

Table 6. GUI Equivalents in the Quartus II Software for ISE Features (Part 1 of 2)

Feature Xilinx ISE Quartus II

Project Creation New Project New Project Wizard

Design constraint assignments Constraints Editor and PACE Quartus II Assignment Editor, I/O
Analyzer, and Pin Planner
Altera Corporation 31
Preliminary

Altera Design Flow for Xilinx Users Xilinx-to-Altera Design Conversion
Xilinx-to-Altera
Design
Conversion

Successfully converting a Xilinx-targeted design for use in an Altera
device is a three-step process.

1. Replace Xilinx-specific primitives with Altera primitives,
megafunctions, or constraints.

2. Replace Xilinx CoreGen or Architecture Wizard modules with
Altera megafunctions generated with the Quartus II MegaWizard
Plug-In Manger.

3. Set timing and device constraints using the Quartus II software
corresponding to those found in the Xilinx design you are
converting.

Design Entry HDL Editor HDL Editor

Schematic Entry Schematic Entry

CoreGen and Architecture Wizard MegaWizard Plug-In Manager

Synthesis Xilinx Synthesis Technology (XST)
or Third-party EDA Synthesis

Quartus II Integrated Synthesis
(QIS) or Third-Party EDA Synthesis

Implementation Flow consists of
design translation, mapping, and
place-and-route of the design into
the FPGA to meet requirements set
by user

Design Implementation: Translate,
Map, and Place-and-Route

Design Compilation: QIS and Fitter

Power Analysis XPower PowerPlay Power Analyzer

Static timing analysis on post-fitted
design

Xilinx Timing Analyzer and Trace Quartus II Timing Analyzer

Functional and Timing Simulation 3rd Party Simulation Tools 3rd Party Simulation Tools or Native
Quartus II Simulator

Generation of device programming
file

Bitgen Assembler

Hardware Verification ChipScope Pro SignalTap II

Viewing and editing design
placement

Floorplanner or FPGA Editor Timing Closure Floorplan, Chip
Editor

Customization and generation of IP
cores through the GUI

CoreGen System and Architecture
Wizard

MegaWizard Plug-In Manager

Compilation and assignment
process for power users

Tcl Scripting

Technique used to design, optimize,
and lock down nodes one at a time

Modular Design Flow LogicLock, Netlist Optimization
options

Table 6. GUI Equivalents in the Quartus II Software for ISE Features (Part 2 of 2)

Feature Xilinx ISE Quartus II
32 Altera Corporation
Preliminary

Converting Xilinx Primitives for Use In Altera Devices Altera Design Flow for Xilinx Users
Converting
Xilinx Primitives
for Use In Altera
Devices

Primitives are the basic building blocks of a Xilinx design. They perform
various dedicated functions within the device, such as shift registers, and
implement specific I/O standards for the Xilinx device I/O pins. Xilinx
primitives have fixed ports and cannot be customized.

Primitives can be easily identified because their names are standardized.
Table 7 lists commonly used Xilinx primitives and describes an
equivalent Altera design element.

Table 7. Summary of Commonly Used Xilinx primitives with their Altera Equivalent

Xilinx Primitive Description Altera Equivalent Conversion Type

BUF, 4, 8, 16 General Purpose Buffer WIRE assignment HDL

BUFG Global Clock Buffer GLOBAL Altera Primitive or
Global Signal
Assignment Editor
setting

FD D Flip Flop DFF or DFFE Altera Primitive

IBUF, 4, 8, 16 Single and Multiple
Input Buffers

WIRE assignment HDL

IBUFG_<selectable I/O standard> Input Global Buffer with
selectable interface

WIRE and I/O
Assignment with the
Assignment Editor

HDL and I/O Standard
Assignment Editor
setting

IBUF_<selectable I/O standard> Input Buffer with
selectable I/O interface

WIRE and I/O
Assignment with the
Assignment Editor

HDL and I/O Standard
Assignment Editor
setting

IOBUF_ <selectable I/O standard> Bidirectional buffer with
selectable I/O interface

WIRE and I/O
Assignment with the
Assignment Editor

HDL and I/O Standard
Assignment Editor
setting

OBUF, 4, 8, 16 Single and Multiple
Output Buffers

WIRE assignment HDL

OBUF_<selectable I/O standard> Output Buffer with
selectable I/O interface

WIRE and I/O
Assignment with the
Assignment Editor

HDL and I/O Standard
Assignment Editor
setting

OBUFG_<selectable I/O standard> Output Global Buffer
with selectable I/O
interface

WIRE and I/O
Assignment with the
Assignment Editor

HDL and I/O Standard
Assignment Editor
setting

SRL16 16-Bit Shift Register
Look-Up-Table (LUT)

LPM_SHIFTREG or
ALTSHIFT_TAPS

Altera MegaWizard
Altera Corporation 33
Preliminary

Altera Design Flow for Xilinx Users Converting Xilinx Primitives for Use In Altera Devices
1 The following is a sample of I/O standards that are supported
by primitives with the <selectable I/O standard> parameter listed
in Table 5: LVTTL (default), AGP, CTT, GTL, HSTL_I,
LVCMOS2, LVCMOS18, LVDS, LVPECL, PCI33_3, PCI33_5,
PCI66_3, PCIX, PCIX66_3, SSTL18_I, SSTL2_I, SSTL3_I, and
SSTL3_II.

The following methods can be used to replace Xilinx primitives with
Altera equivalents.

■ Replace the primitive with an equivalent Altera primitive
■ Replace the primitive with a user assignment in the Quartus II

Assignment Editor, such as an I/O standard assignment
■ Replace the primitive with an equivalent Altera function generated

using the MegaWizard Plug-In Manager

Input, output, or bidirectional buffers are automatically inserted by the
Quartus II Compiler. As a result, remove input, output, and bidirectional
buffers used in a Xilinx design. A simple wire assignment is shown in the
Verilog HDL code samples below. Before wire conversion:

module top (a, b, c, clk);

input a, b, clk;
output c;

reg c;
wire clk_out;

//global buffer instantiation
BUFG inst1 (.I (clk), .O (clk_out));

always @ (posedge clk_out)
begin

c<=a & b;
end

endmodule

After wire conversion:

module top (a, b, c, clk);

input a, b, clk;
output c;

reg c;
wire clk_out;

//no need for buffer
34 Altera Corporation
Preliminary

Converting Xilinx Primitives for Use In Altera Devices Altera Design Flow for Xilinx Users
//BUFG inst1 (.I (clk), .O (clk_out));

//simple wire assignment
assign clk_out = clk;

always @ (posedge clk_out)
begin

c<=a & b;
end
endmodule

As an alternative to creating a wire to replace the buffers, you can also
delete them. The Quartus II software automatically inserts the
appropriate buffers in the design. Deleting these buffers requires that you
replace the output of the buffer with the input into the buffer in your
HDL. The following is an example of this process (in both VHDL and
Verilog HDL):

module top (a, b, c, clk);
input a, b, clk;
output c;
reg c;

//no need for wire
//wire clk_out;
//no need for buffer
//BUFG inst1 (.I (clk), .O (clk_out));
//replaced clk_out port with clk port

always @ (posedge clk)
begin
 c<=a & b;
end
endmodule

The following shows deletion of an input buffer in VHDL:

ENTITY top IS
 PORT(
 a, b : IN std_ulogic;
 clk : IN std_ulogic;
 c : OUT std_ulogic
);
END top;
ARCHITECTURE behave OF top IS
--no need for clk_out signal
--signal clk_out : std_ulogic;
--no need of BUFG component
--component BUFG
--port (O : out STD_ULOGIC;
--I : in STD_ULOGIC);
Altera Corporation 35
Preliminary

Altera Design Flow for Xilinx Users Converting Xilinx Primitives for Use In Altera Devices
--end component;
BEGIN
--no need for port map
--inst1 : BUFG port map (O => clk_out, I => clk);
--replaced clk_out port with clk port
 PROCESS(clk)
 BEGIN
 IF (clk'event and clk = '1') then

c <= a AND b;
 END IF;
 END PROCESS;
END behave;

Xilinx I/O standard primitives are converted into Quartus II assignments
using the Assignment Editor. I/O standard assignments are not required
to be declared within your HDL when designing with the Quartus II
software. Instead you use the Assignment Editor to make I/O standard
assignments. Figure 15 shows an I/O standard assignment with the
Assignment Editor.

Figure 15. I/O Standard Assignment with the Assignment Editor
36 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
RAM
Architecture
Functional
Specifications

Stratix and Stratix GX devices feature the TriMatrix™ memory structure,
composed of three sizes of embedded RAM blocks. TriMatrix memory
includes 512-bit M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM
blocks, each of which can be configured to support a wide range of
features.

1 Cyclone™ devices contain M4K blocks only.

Table 8 summarizes the features supported by the three sizes of the
TriMatrix memory in Stratix, Stratix GX and Cyclone devices.

Table 8. Summary of RAM Architectural Features in Stratix, Stratix GX, and
Cyclone Devices Note (1) (Part 1 of 2)

Feature M512 Block M4K Block M-RAM Block

Total RAM bits
(including parity
bits)

576 4608 589,824

Parity bits v v v

Byte Enable v v

Single-port
memory v v v

Simple dual-port
memory v v v

True dual-port
memory v v

Embedded shift
register v v

Simple dual-port
mixed width
support

v v v

True dual-port
mixed width
support

v v

Memory
initialization (.mif
and . hex)

v v

Mixed-clock mode v v v
Altera Corporation 37
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
Differences exist in the RAM structure supported by Altera devices and
Xilinx devices. These differences are detailed in the following sections.

Read-during-Write Operation at the Same Address

For RAM in Altera devices, there are two types of read-during-write
operations: same-port and mixed-port. Figure 16 shows the output of the
RAM during a write operation.

Figure 16. Same-Port Read-during-Write Functionality

In mixed-port read-during write operations, the same memory location is
written to on one port and simultaneously read from a different port
using the same clock for both.

Power-up
condition

Outputs cleared Outputs cleared Outputs unknown

Register clears Input and output
registers (2)

Input and output
registers (3)

Output registers

Same-port read-
during-write

New data available
at positive clock
edge

New data available
at positive clock
edge

New data
available at
positive clock
edge

Mixed-port read-
during-write

Outputs set to
unknown or old
data

Outputs set to
unknown or old
data

Unknown output

Notes to Table 8:
(1) Cyclone devices do not contain M512 and M-RAM blocks.
(2) The rden register on the M512 memory block does not have a clear port.
(3) On the M4K block, asserting the clear port of the rden and byte enable

registers drives the output of these registers high.

Table 8. Summary of RAM Architectural Features in Stratix, Stratix GX, and
Cyclone Devices Note (1) (Part 2 of 2)

Feature M512 Block M4K Block M-RAM Block

inclock

data_in

wren

data_out A

BA

Old
38 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
The READ_DURING_WRITE_MODE_MIXED_PORTS parameter for M512
and M4K memory blocks determines whether to output the old data at
the address or a “don’t care” value. Setting this parameter to OLD_DATA
outputs the old data at that address. Setting this parameter to
DONT_CARE outputs an unknown value. See Figures 17 and 18 for sample
functional waveforms showing this operation. These figures assume that
the outputs are not registered.

Figure 17. Mixed-Port Read-during-Write: OLD_DATA

Figure 18. Mixed-Port Read-during-Write: DON'T_CARE

1 Designs containing Xilinx RAM read-during-write modes not
supported by Altera RAM need to be modified.

inclock

Port A
data_in

Port A
wren

Port B
data_out

A B

AOld

Port B
wren

B

Address Q
addressA and

addressB

inclock

Port A
data_in

Port A
wren

Port B
data_out

A B

BUnknown

Port B
wren

Address Q
addressA and

addressB
Altera Corporation 39
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
Table 9 lists the output of the RAM during read-during-write operation
at the same address for Altera RAM and Xilinx RAM (Virtex-II and
Virtex-II PRO only).

Byte Enable

In M4K and M-RAM blocks, byte enables can mask the input data so that
only specific bytes of data are written. The unwritten bytes retain the
previous written value. Memory in Xilinx devices does not support this
feature.

f For more information on the byte enable feature, see the TriMatrix
Embedded Memory Blocks in Stratix & Stratix GX Devices chapter in
volume 2 of the Stratix Device Handbook.

SRVAL Constraint

In Virtex-II and Virtex-II Pro, the SRVAL constraint initializes the output
of the memory to a user-defined value when the SSR signal is asserted.
Memory in Altera devices does not support this feature.

Memory Port Configurations

Memory in Altera and Xilinx devices can be configured as single-port,
simple dual-port, and true dual-port RAM:

■ Single-port: Single-port mode supports non-simultaneous reads and
writes.

Table 9. Read-During-Write Operation Comparison in Altera RAM and Xilinx RAM

Feature Virtex-II and
Virtex-II PRO RAM

Altera M512 Block
(1)

Altera M4K Block
(1) (2)

Altera M-RAM
Block (1)

Same-port read-
during-write

The following modes
are supported
1.READ_FIRST
2.WRITE_FIRST
3.NO_CHANGE

New data available
at positive edge of
the clock

New data available
at positive edge of
the clock

New data available
at positive edge of
the clock

Mixed-port read-
during-write

The following modes
are supported
2.WRITE_FIRST
3.NO_CHANGE

Outputs set to
unknown or old data

Outputs set to
unknown or old data

Unknown output

Notes to Table 9:
(1) Included in Stratix and Stratix GX devices.
(2) Included in Cyclone devices.
40 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
■ Simple dual-port: Simple dual-port mode supports a simultaneous
read and write.

■ True dual-port: True dual-port mode supports any combination of
two-port operations: two reads, two writes, or one read and one
write at two different clock frequencies.

The table below compares the different port configurations supported by
Altera and Xilinx RAM.

RAM Stitching

Stratix TriMatrix memory structures are optimized to implement
different types of memory functions, providing a complete coverage of
RAM applications. For example, the small M512 blocks are used for small
first-in first-out (FIFO) functions. The M4K blocks are ideal for
applications requiring medium-sized memory, such as asynchronous
transfer mode (ATM) cell processing.

1 When creating memory modules with the MegaWizard Plug-In
Manger, the stitching of RAM is not required. The MegaWizard
Plug-In Manager will combine the appropriate TriMatrix
memory blocks together to create the required memory width
and depth.

The memory implemented in Xilinx distributed RAM modules can be
combined together in the M512 or M4K blocks in Altera devices for better
performance and more efficient use of logic resources. Similarly, smaller
RAM modules created using Xilinx 18Kb Block RAMs can be transferred
to Altera M4K or M512 blocks to use RAM resources most efficiently. See
“RAM Stitching Example” on page 48 for examples of RAM stitching.

Table 10. RAM modes supported in Altera RAM and Xilinx RAM

Feature M512 Block
(1)

M4K Block
(1) (2)

M-RAM Block
(1)

Xilinx
Distributed

RAM

Xilinx Block
RAM

Single-Port v v v v v

Simple Dual-Port v v v v v

True Dual-Port v v v

Notes to Table 10:
(1) Included in Stratix and Stratix GX devices.
(2) Included in Cyclone devices.
Altera Corporation 41
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
1 The altsyncram megafunction can be configured to
automatically assign the most appropriate RAM module for the
requested amount of memory. For more information, see
“Creating Altera RAM Using the MegaWizard Plug-In
Manager” on page 47.

Converting Asynchronous RAM to Synchronous RAM

This section describes how to convert Xilinx asynchronous distributed
RAM to Altera synchronous RAM.

Xilinx distributed RAM supports synchronous write and asynchronous
read operations. Xilinx Block RAM supports synchronous read and write
operations. Altera RAM supports synchronous write and read for M512,
M4K and M-RAM blocks. In addition, Altera RAM has an optional output
register.

Where RAM has input and/or output registers in slices with no
combinatorial logic between them, the design needs to be modified so
that the Altera RAM absorbs the slice input and output registers. The
converted design will have the same latency as the original design.

Where distributed RAM has no input register, the only option is to
directly replace Xilinx asynchronous distributed RAM with Altera
synchronous RAM. Latency of the converted design will change from 0 to
1. To maintain the functionality of the original design, modification may
be required.

Figure 19 illustrates a situation when combinatorial logic exists between
the input register and the RAM. In this example, the data will be valid on
the output two clock cycles after the address is valid at the input.

Figure 19. Original Xilinx Design With Combinatorial Logic Between the Registers and the RAM

Combinatorial
Logic

Xilinx RAM

INPUT

OUTPUT
42 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
The first option for solving this problem uses straight replacement of
Xilinx memory with Altera memory as indicated in Figure 20 below.
When an address is valid on the input, the data will be valid on the output
three clock cycles later. The latency of the design is increased by one clock
cycle. To maintain the functionality of the original design, the converted
design might need modifications.

Figure 20. Replacement of Xilinx RAM with Altera RAM

The second option for solving this problem replaces Xilinx memory with
Altera memory, inverting the clock (Figure 21). This option does not add
any additional cycles of latency. When address is valid on the input, the
data will be valid on the output two clocks later. However, meeting
timing requirements can be a challenge with this approach. The input
signal has only one half of a clock cycle to propagate from register 1 to
register 2. The following timing equation has to be satisfied for the design
to function without errors:

where:

TCO (Register 1) = the clock to output time of register 1
T(Combinatorial logic) = the time taken for the data to propagate through
the combinatorial logic
TSU (Register 2) = the setup time of register 2
T = the time period of the input clock

Combinatorial
Logic

RAM

CLOCK

OUTPUT

Altera RAM

INPUT

TCO (Register 1) + T (Combinatorial Logic) + TSU (Register 2) < T
2

Altera Corporation 43
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
Figure 21. Substitution of Xilinx Memory with Altera Memory, Inverting the Clocks

After you convert an asynchronous RAM to a synchronous RAM, check
latency of the converted design. Further changes may be needed to
maintain functionality of the original design. Make sure the timing
parameters of the converted RAM are within timing budget limitations.
Perform timing/functional simulation to ensure the converted design
functions as expected.

Port Mapping Between Altera RAM and Xilinx RAM

Table 11 lists the altsyncram megafunction ports (when used in true
dual-port mode) and the corresponding Xilinx Block RAM primitive
ports.

Combinatorial
Logic

RAM

CLOCK

OUTPUT

Altera RAM

INPUT

Register 1 Register 2

Register 3

Table 11. Port Mapping from the Xilinx Block RAM Primitive to the Altera
altsyncram Megafunction in True Dual Port Mode (Part 1 of 2)

Feature Altera altsyncram
Megafunction Xilinx Block RAM

Address Port A address_a ADDRA

Data Port A data_a DIA

Write Enable Port A wren_a WEA

Enable Port A enable_a ENA

Synchronous Initialization Port A See Table 13 SINITA

Clock Port A clock_a CLKA

Output Port A q_a DOA

Address Port B address_b ADDRB

Data Port B data_b DIB
44 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
Table 12 lists the altsyncram megafunction ports (when used in
single-port and simple dual-port modes) and the corresponding Xilinx
distributed RAM primitive ports.

Write Enable Port B wren_b WEB

Enable Port B enable_b ENB

Synchronous Initialization Port B See Table 13 SINITB

Clock Port B clock_b CLKB

Output Port B q_b DOB

Table 12. Port Mapping from Xilinx Distributed RAM Primitive to the Altera
altsyncram Megafunction in Single Port and Simple Dual Port Modes

Feature Altera altsyncram
Megafunction Xilinx Distributed RAM

Data Port data D

Write Address Port wraddress A

Read Address Port rdaddress DPRA

Read Enable Port rden -

Write Clock Port wrclock WCLK

Read Clock Port rdclock -

Write Enable Port wren WE

Read Clock Enable Port rdclocken -

Write Clock Enable Port wrclocken -

Clear for Read Port rd_clr -

Clear for Write Port wr_clr -

Output q DPO

Table 11. Port Mapping from the Xilinx Block RAM Primitive to the Altera
altsyncram Megafunction in True Dual Port Mode (Part 2 of 2)

Feature Altera altsyncram
Megafunction Xilinx Block RAM
Altera Corporation 45
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
Table 13 lists the altsyncram megafunction ports and the
corresponding Xilinx Block RAM CoreGen module ports.

Table 14 lists the altsyncram megafunction ports (when used in single
port and simple dual port modes) and the corresponding Xilinx
distributed RAM CoreGen module ports.

Table 13. Port Mapping from the Xilinx Block RAM CoreGen Module to the
Altera altsyncram Megafunction in True Dual Port Mode

Feature Altera altsyncram
Megafunction Xilinx Block RAM

Address Port A address_a ADDRA

Data Port A data_a DINA

Write Enable Port A wren_a WEA

Enable Port A enable_a ENA

Synchronous
Initialization Port A

See Table 11 and
Table 12

SINITA

Clock Port A clock_a CLKA

Output Port A q_a DOUTA

Address Port A address_b ADDRB

Data Port A data_b DINB

Write Enable Port A wren_b WEB

Enable Port A enable_b ENB

Synchronous
Initialization Port B

See Table 11 and
Table 12

SINITB

Clock Port A clock_b CLKB

Output Port A q_b DOUTB

Table 14. Port Mapping from the Xilinx Block RAM CoreGen Module to the
Altera altsyncram Megafunction in Single Port an Simple Dual Port
Modes (Part 1 of 2)

Feature Altera altsyncram
Megafunction Xilinx Distributed RAM

Write Address wraddress A

Input Clock inclock CLk

Data Input data D

Write Enable wren WE

Input Clock Enable inclocken I_CE
46 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
Creating Altera RAM Using the MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager is a GUI that enables users to quickly
and easily specify parameters for Altera-specific functions. Using the
MegaWizard Plug-In Manager, the Memory Compiler can be used to
instantiate single- and multi-port RAM in Stratix, Stratix GX, and Cyclone
devices. The following options allow you to customize the megafunctions
contained in the Memory Compiler to meet requirements.

■ The altsyncram function can be used in one of the following ways:

● With one read port (ROM mode)
● With one read/write port (Single-port mode)
● With one read and one write port (Simple dual-port mode)
● With two read/write ports (True dual-port mode)

■ You can specify the memory size in terms of number of bits or
number of words

■ You can select the width and depth of RAM

■ You can select different widths for different ports

■ There are three options available to select the clocking scheme for the
RAM:

Read Address rdaddress DPRA

Output Clock Enable outclocken QDPO_CE

Non-registered Output q DPO

Registered Output q QDPO

Output Asynchronous
Reset

out_aclr (1) QDPO_RST

Output Synchronous
Reset

out_aclr (1) QDPO_SRST

Output Clock outclock QDPO_CLK

Note to Table 14:
(1) altsyncram does not support synchronous and asynchronous reset. The port can

be connected to the “out_aclr” port.

Table 14. Port Mapping from the Xilinx Block RAM CoreGen Module to the
Altera altsyncram Megafunction in Single Port an Simple Dual Port
Modes (Part 2 of 2)

Feature Altera altsyncram
Megafunction Xilinx Distributed RAM
Altera Corporation 47
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
● Single clock
● Dual clock-use separate ‘read’ and ‘write’ clocks
● Dual clock-use separate ‘input’ and ‘output’ clocks

■ Option to turn the output register on or off

■ Option to create asynchronous clear and enable signals

■ Four options to select the TriMatrix memory block type to be used to
implement the memory function. Choosing Auto allows Quartus II
software to choose the TriMatrix block type during compilation.
Alternately, choosing M512, M4K, or M-RAM options specify the
TriMatrix block to be used.

■ The initial memory content can be specified by using a Memory
Initialization File (.mif) or Hexadecimal (Intel-Format) file (.hex)

f For more information on the altsyncram megafunction, refer to AN
207: TriMatrix Memory Selection using the Quartus II Software.

Examples

This section contains examples on RAM stitching and Verilog code before
and after RAM conversion.

RAM Stitching Example

In this example, four Xilinx 128 ×1S distributed RAM modules are
stitched together to form one 512 ×1 RAM block (Figure 22). The extra
logic and routed resources required to stitch up the RAMs can be saved
by implementing a 512 ×1 sized RAM in an Altera M512 Block.
48 Altera Corporation
Preliminary

RAM Architecture Functional Specifications Altera Design Flow for Xilinx Users
Figure 22. Four Xilinx RAM128x1 RAM Modules Converted to One Altera M512 Block

RAM Limiting Example

In Figure 23, the 18Kb Xilinx block RAM is being used as a 4K RAM block
by grounding two address bits. RAM resources are not being used
efficiently since 8K RAM bits cannot be accessed. The same design can be
implemented in one Altera M4K block.

Figure 23. Xilinx 16K Block RAM Converted to Altera M4K RAM

Example Verilog Code Containing Xilinx RAM Modules Before and After
Conversion

In this section sample Verilog code targeting a Xilinx Virtex-II device is
converted to target Altera Stratix, Stratix GX, or Cyclone devices. Below
is the original Verilog code targeting a Virtex-II device. A 512 × 36 RAM
is instantiated by the RAMB16_S36_S36 Xilinx primitive.

addr[6:0]

Xilinx RAM128x1S module

din

addr[7]

addr[8]

din_0

din_1

din_2

din_3

dout_0

dout_1

dout_2

dout_3

addr[7]

addr[8]

dout Altera
M512 Block

512x1addr[8:0]

din

dout

Xilinx RAM128x1S module

Xilinx RAM128x1S module

Xilinx RAM128x1S module

addr[8:0]

din[1:0] dout[1:0]

Altera
M4K Block

2Kx2addr[8:0]
dout

Xilinx Block RAM
2Kx2 (effectively)addr[8:0]

addr[11]

addr[12]

din[1:0]
Altera Corporation 49
Preliminary

Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
The following is Verilog code targeting a Xilinx Virtex-II device:

module 512x36dualport (CLKA, ENA, SSRA, WEA, ADDRA, DIA, DOA,
CLKB, ENB, SSRB, WEB, DDRB, DIB, DOB, DOPA, DOPB, DIPA, DIPB);

input CLKA; // Port A clock
input ENA; // Port A select
input SSRA; // Port A reset, active low
input WEA; // Port A direction control, 1=write
input [8:0] ADDRA; // Port A address
input [31:0] DIA; // Port A input data
input [3:0] DIPA; // Port A input data parity
output [31:0] DOA; // Port A output data
output [3:0] DOPA; // Port A output data parity
input CLKB; // Port B clock
input ENB; // Port B select
input SSRB; // Port B reset, active low
input WEB; // Port B direction control, 1=write
input [8:0] ADDRB; // Port B address
input [31:0] DIB; // Port B input data
input [3:0] DIPB; // Port B input data parity
output [31:0] DOB; // Port B output data
output [3:0] DOPB; // Port B output data parity

RAMB16_S36_S36 ram(.ADDRA(ADDRA),
.CLKA(CLKA),
.DIA(DIA),
.DIPA(DIPA),
.WEA(WEA),
.ENA(ENA),
.SSRA(SSRA),
.DOA(DOA),
.DOPA(DOPA),
.ADDRB(ADDRB),
.CLKB(CLKB),
.DIB(DIB),
.DIPB(DIPB),
.WEB(WEB),
.ENB(ENB),
.SSRB(SSRB),
.DOB(DOB),
.DOPB(DOPB));

endmodule;

To target the sample Verilog code to Altera devices, only the
RAMB16_S36_S36 module was altered. The following changes were
made to the original Verilog code:

■ The data and parity inputs in Xilinx RAM have different input ports.
In Altera RAM, parity and data inputs have the same ports. To
account for this difference, the following modification was made to
the code.

assign data_in_a ={DIPA, DIA}
assign data_in_b ={DIPB, DIB}
50 Altera Corporation
Preliminary

DCM and DLL Conversion Altera Design Flow for Xilinx Users
■ The data and parity outputs from the Xilinx RAM have different
output ports (DOA, DOPA). For Altera RAM, the most significant
bits of the q_a/b ports correspond to the parity bits. To account for
this difference, the following modification was made to the code.

assign DOA = data_out_a[31:0];
assign DOPA = data_out_a[35:32];
assign DOB = data_out_b[31:0];
assign DOPB = data_out_a[35:32];

■ The ramb16_s36_s36_altera module was created from the
altsyncram megafunction using the MegaWizard Plug-In
Manager. The MegaWizard Plug-In Manager generates a
RAM16_s36_s36_altera.vhd file that should be included with the
512x36dualport module during compilation.

This portion of the code replaces the RAMB16_S36_S36 module in the
original code. Everything else remains the same.

wire [36:0] data_in_a, data_in_b, data_out_a, data_out_b;
assign data_in_a = {DIPA, DIA};
assign data_in_b = {DIPB, DIB};

ramb16_s36_s36_alteraramb16_s36_s36_altera_inst (
data_a (data_in_a),
wren_a (WEA),
address_a (ADDRA),
data_b (data_in_b),
address_b (ADDRB),
wren_b (WEB),
clock_a (CLKA),
enable_a (ENA),
clock_b (CLKB),
enable_b (ENB),
q_a (data_out_a),
q_b (data_out_b));

assign DOA = data_out_a[31:0];
assign DOPA = data_out_a[35:32];
assign DOB = data_out_b[31:0];
assign DOPB = data_out_b[35:32];

DCM and DLL
Conversion

To increase device and board-level performance, some Altera and Xilinx
FPGA device families offer support for phase-locked loops (PLLs) and
digital clock managers (DLL / DCM) respectively. These specialized
blocks allow you to minimize clock skew and clock delay and provide
support for clock synthesis.
Altera Corporation 51
Preliminary

Altera Design Flow for Xilinx Users DCM and DLL Conversion
Architectural Description

In place of the DLLs / DCMs provided for clock skew, frequency
synthesis, and phase shifting in the Xilinx Spartan-IIE, Virtex-II and
Virtex-II Pro families (see Figure 24), Altera Stratix devices contain two
types of PLLs: enhanced PLLs and fast PLLs. The enhanced PLLs provide
you with complete control over clocks and system timing. The fast PLLs
provide general-purpose clocking with multiplication and phase shifting
as well as high-speed output for high-speed differential I/O support.

Figure 24. Virtex-II DCM

Enhanced PLLs

The enhanced PLLs available in Stratix devices are highly versatile and
robust PLLs that support the following features:

■ Clock multiplication and division
■ Clock switchover
■ Phase and delay shifting
■ Clock feedback
■ PLL reconfiguration
■ Programmable bandwidth
■ External clock outputs
■ Spread-spectrum clocking
■ Lock detect and programmable gated lock
■ Programmable duty cycle
■ Advanced clear and enable control
52 Altera Corporation
Preliminary

DCM and DLL Conversion Altera Design Flow for Xilinx Users
This section will briefly cover clock multiplication and division, clock
switchover, phase and delay shifting, and clock feedback. Figure 25
shows a block diagram of the signals used by an enhanced PLL.

Figure 25. Enhanced PLL Signals

f For more detailed information on Stratix enhanced PLLs, refer to the
General-Purpose PLLs in Stratix & Stratix GX Devices chapter in volume 2
of the Stratix Device Handbook.

Clock Multiplication and Division

Enhanced PLLs perform clock multiplication and division using
m / (n × post-scale counter) as scaling factors for the output of the PLL.
The input clock is divided by a pre-scaler divider, n, and is then
multiplied by the m feedback factor. This ability allows you to customize
each output of the enhanced PLL to the requirements of your design.

Virtex-II DCM limits you to 3 customizable output ports; CLKDV, CLKFX,
and CLKFX180 for clock multiplication and division. The output port
CLKDV supports clock division in the form of (1/n) × CLK0. CLKFX

inclk0

inclk1

clkswitch

scandata

scanclk

pllenable
clk[5..0]

locked

Physical Pin

clkloss
areset

clkena[5..0]

pfdena

Signal Driven by Internal Logic

Signal Driven to Internal Logic

Internal Clock Signal

extclk4

active_clock

extclkena[3..0]

pll_out0pfbin Only PLLs
5 and 6

clkbad[1..0]

(1)

(2)

(2)

pll_out0n

pll_out1p

pll_out1n

pll_out2p

pll_out2n

pll_out3p

pll_out3n

scanaclr

(2)

Only PLLs
11 and 12

scandataout

(3)

(3)

(3)

(3)
Altera Corporation 53
Preliminary

Altera Design Flow for Xilinx Users DCM and DLL Conversion
provides clock multiplication in the form of (CLKFX_MULTIPLY_value
/ CLKFX_DIVIDE_value) × CLK0. CLKFX180 is limited to the same
frequency multiplication as CLKFX except with a 180° shift.

Clock Switchover

Stratix-enhanced PLLs offer a flexible clock switchover capability
unavailable in the Virtex-II Pro DCM. This configurable capability in
Stratix devices provides an effective means of developing high-reliability
systems which must contain multiple clocks to provide redundancy.
Clock-sense circuitry automatically switches from the PLL reference
primary clock to the secondary clock when the primary clock signal is not
present.

Phase and Delay Shifting

Phase shifting is implemented in the Stratix enhanced PLLs by specifying
a phase shift (in degrees or time units) for each PLL clock output port or
for all outputs together. In addition to the phase-shift feature, the fine
tune clock delay shift feature provides advanced time delay shift control
on each of the four PLL outputs. Each PLL output shifts in 250-ps
increments for a range of +/-3.0 ns between any two outputs using
discrete delay elements.

Phase shifting is also supported by Virtex-II Pro DCM defined attributes
associated with the DCM instantiation.

Clock Feedback

Stratix enhanced PLLs support the following clock feedback modes:

■ Zero delay buffer: The external clock output pin is phase-aligned
with the clock input pin for zero delay.

■ External feedback: The external feedback input pin, FBIN, is
phase-aligned with the clock input, CLK, pin. Aligning these clocks
allows the designer to remove clock delay and skew between
devices.

■ Normal mode: If an internal clock is used in this mode, it is
phase-aligned to the input clock pin. The external clock output pin
will have a phase delay relative to the clock input pin if connected in
this mode.

Fast PLLs

To complement the enhanced PLLs, Stratix devices also provide fast PLLs
with high-speed differential I/O interface ability and general-purpose
features. The fast PLLs support the following features:
54 Altera Corporation
Preliminary

DCM and DLL Conversion Altera Design Flow for Xilinx Users
■ Clock multiplication and division
■ External clock inputs
■ External clock outputs
■ Phase shifting
■ Control signals

This section will briefly cover clock multiplication and division and
external clock inputs.

f For more detailed information on Stratix enhanced PLLs, refer to the
General-Purpose PLLs in Stratix & Stratix GX Devices chapter in volume 2
of the Stratix Device Handbook.

Clock Multiplication and Division

Fast PLLs provide clock synthesis for PLL output ports using m / (post
scaler) scaling factors. The input clock is multiplied by the m feedback
factor. Each output port has a unique post scale counter to divide down
the high-frequency VCO.

In the case of a high-speed differential interface, you can set the output
counter to 1 to allow the high-speed VCO frequency to drive the dedicated
serializer/deserializer (SERDES) circuitry.

External Clock Inputs

Each fast PLL supports single-ended or differential inputs for
source-synchronous transmitters or for general-purpose use.
Source-synchronous receivers support differential clock inputs.

Converting DLLs / DCMs

You can easily convert DCMs that target a Xilinx device into PLLs in an
Altera device using the MegaWizard Plug-In Manager. Unlike the
Virtex-II DCM, which requires specific input buffers to feed into the
source clock port of the DCM, e.g., IBUF, IBUFG, or BUFGMUX, PLLs in
Altera devices do not require input buffers.

When converting DCMs, you can use the altpll megafunction. This
megafunction will allow you to create and customize your PLLs targeting
Stratix, Stratix GX, or Cyclone device families.
Altera Corporation 55
Preliminary

Altera Design Flow for Xilinx Users DCM and DLL Conversion
Table 15 summarizes the port mapping between the DCM and the
altpll megafunction.

As shown in Table 15, all outputs of altpll can be configured to support
any of the clock synthesis ports of the DCM. This allows you to combine
multiple DCMs into one instance of the altpll megafunction. For
example, to implement a multiplication factor of 2/3 and 6/5, you would
require two CLKFX ports in a Xilinx device. However, one altpll
instance can achieve the same functionality by applying the
multiplication factor of 2/3 to clock c0 and applying 6/5 to clock c1 or
vice versa.

Implementing Altera PLLs Using the MegaWizard Plug-In
Manager

The altpll megafunction allows you to configure either the enhanced
or fast PLL in Stratix or Stratix GX devices. This megafunction will also
allow you to configure PLLs in Cyclone devices. This section is a brief
description of altpll megafunction creation using the MegaWizard.

The third page of the altpll megafunction in the MegaWizard Plug-In
Manager allows you to customize the general settings of the PLL, such as
the PLL type to be used (enhanced or fast), clock frequency into the PLL,
and the creation of optional ports. Figure 26 shows the first page of the
altpll megafunction.

Table 15. Port Mapping Comparison of DCM and altpll.

Xilinx Port Altera Port Comment

CLKIN inclk0

CLKFB fbin

RST areset

PSINCDEC Not Supported

PSEN Not Supported

PSCLK Not Supported

PSDONE Not Supported

CLK0, CLK90, CLK180,
CLK270, CLK2X,
CLK2X180, CLKDV,
CLKFX, CLKFX180

Supported by all outputs
of ALTPLL

Set the output of the PLL
to correspond to that of
the output of the DCM

LOCKED locked

STATUS[7:0] Not Supported
56 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Figure 26. Page 3 of the altpll Megafunction in the MegaWizard Plug-In Manager

Page 4 allow you to set parameters for the scan and lock, bandwidth and
spread spectrum, and clock switchover capabilities of the PLL.

Pages 5 through 7 allow you to customize the outputs of the PLL feeding
into the core of the device such as multiplication factor, division factor,
and phase shifts.

Page 8 allows you to check or uncheck files that are created by the
MegaWizard Plug-In Manager.

f For more information on the altpll Megafunction, refer to the altpll
Megafunction User Guide.

Multiplier
Conversion

The basic building blocks of all Digital Signal Processing (DSP)
applications are high-performance multiply-adders and
multiply-accumulators. To address this requirement in FPGA devices,
Altera Corporation 57
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Altera’s Stratix devices offer dedicated DSP blocks, combining five
arithmetic operations—multiplication, addition, subtraction,
accumulation, and summation—into a single block. Xilinx’s Virtex II Pro
devices are limited to offering only embedded multipliers to perform
multiplications only.

Architectural Description

You can configure a single Stratix DSP block to perform any of the
following functions:

■ Simple multiply
■ Multiply accumulate
■ Multiply add

The dedicated multipliers in Virtex-II are known as Embedded
Multipliers. These multipliers provide a dedicated 18 × 18 multiplication
function in either combinatorial or pipelined form.

Simple Multiplier Mode

In simple multiplier mode, the Stratix DSP block performs individual
multiplication operations. This mode allows you to configure a single
DSP block to perform one of the following operations:

■ Eight 9 × 9 bit multiplications
■ Four 18 × 18 bit multiplications
■ One 36 × 36 bit multiplication

The multiplier operands can accept signed integers, unsigned integers, or
a combination as determined by the signa and signb signals. Figure 27
shows the simple multiplier mode.
58 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Figure 27. Stratix DSP Block in Simple Multiplier Mode

You can implement various independent multipliers or a single large
multiplier using a single DSP block. This preserves valuable logic
resources when creating simple multipliers.

Multiply Accumulate Mode

In multiply accumulate mode, the output of the multiplier stage feeds the
adder/output block, which is configured as an accumulator or
subtractor. You can implement up to two independent 18-bit multiply
accumulators in one DSP block. Figure 28 shows multiply accumulate
mode.

CLRN

D Q

ENA

A

CLRN

D Q

ENA

CLRN

D Q

ENA

A

B

shiftoutb shiftouta

signb

signa

Adder Output Block
Altera Corporation 59
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Figure 28. Stratix DSP Block in Multiply Accumulate Mode

Virtex-II Embedded multipliers require additional logic resources to
carry out the same multiply accumulator mode.

1 In multiply accumulator mode, Stratix DSP blocks are also
capable of implementing adder and accumulator functionality
previously implemented in the slices of Xilinx devices.

Multiply Add Modes

There are two multiply add modes: two-multiplier adder and
four-multiplier adder.

Two-Multiplier Adder
In this mode, the DSP block outputs two sums or differences for
multipliers up to 18 bits, or four sums or differences for 9-bit or smaller
multipliers. A single DSP block can implement one 18 × 18-bit complex
multiplier or two 9 × 9-bit complex multipliers.

A complex multiplication can be written as:

(a + jb) × (c + jd) = (a × c - b × d) + j × (a × d + b × c)

CLRN

D Q

ENA

CLRN

D Q

ENA

Data A

Data B

Data Out

overflow

shiftoutb shiftouta

shiftinashiftinb

aclr
clock

ena

signa (1)
signb (1)

CLRN

D Q

ENA

CLRN

D Q

ENA

Accumulator

addnsub1

signa

signb

accum_sload1

CLRN

D Q

ENA
60 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
In this mode, a single DSP block calculates the real part (a × c - b × d)
using one adder/subtractor/accumulator and the imaginary part (a × d
+ b × c) using another adder/subtractor/accumulator for data up to 18
bits. Figure 29 shows an 18-bit complex multiplication.

Figure 29. Complex Multiplier Implemented Using Two-Multiplier Adder Mode

1 The multiply add modes of Stratix DSP blocks are also capable
of implementing adder and accumulator functionality
previously implemented in the slices of Xilinx devices.

Four-Multiplier Adder Mode
In the four-multiplier adder mode, which you can use for 1-dimensional
and 2-dimensional filtering applications, the DSP block adds the results
of two adder/subtractor/accumulators in a final stage. Figure 30 shows
four-multiplier adder mode.

Virtex-II embedded multipliers require additional logic resources to
carry out the same multiplier adder modes.

Subtractor

36

36

18

18

18

37

A

C

B

D

18

A × C - B × D
(Real Part)

Adder

36

36

18

18

37

A

D

B

C

A × D + B × C
(Imaginary Part)

18

18

18

DSP Block
Altera Corporation 61
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Figure 30. Stratix DSP Block in Four-Multiplier Adder Mode

f For more detailed information on Stratix’s DSP blocks, refer to the Using
the DSP Blocks in Stratix & Stratix GX Devices chapter in volume 2 of the
Stratix Device Handbook.

CLRN

D Q
ENA

Data A

Data B

shiftinb

shiftina
aclr

clock
ena

signa
signb

CLRN

D Q

ENA

CLRN

D Q

ENA

CLRN

D Q
ENA

Data A

Data B

CLRN

D Q

ENA

CLRN

D Q

ENA

Adder/
Subtractor

CLRN

D Q
ENA

Data A

Data B

CLRN

D Q

ENA

CLRN

D Q

ENA

CLRN

D Q
ENA

Data A

Data B

shiftoutb shiftouta

CLRN

D Q

ENA

CLRN

D Q

ENA

Adder/
Subtractor

addnsub0
signa
signb CLRN

D Q
ENA

Data Out

addnsub1

Adder
62 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Table 16 summarizes the resource comparison of implementing
multipliers with Stratix’s DSP blocks to multipliers in Virtex-II Pro
Embedded Multipliers.

f For more information on logic comparison, refer to the white paper An
Analytical Review of FPGA Logic Efficiency in Stratix, Virtex-II & Virtex-II
Pro.

Converting Multipliers

You can easily convert CoreGen Multipliers that target a Xilinx device
into multipliers for an Altera device using the Quartus II MegaWizard
Plug-In Manager. Similar to CoreGen multipliers, the Quartus II
MegaWizard Plug In Manager multipliers can use either logic elements
or the dedicated multiplier blocks in the device.

When converting CoreGen multipliers, you can use either the lpm_mult
or altmult_add megafunction. With both of these megafunctions, you
can create multipliers that use logic elements or dedicated multipliers
using Stratix or Stratix GX DSP blocks.

Table 16. Resource Comparison of Implementing Multipliers with Stratix DSP Blocks vs. Implementing
Multipliers In Virtex-II Pro Embedded Multipliers

Multiplier Size Stratix DSP Block
Resources

Stratix Logic
Element Resources

Virtex-II 18 × 18
Multiplier Block

Resources

Virtex II Logic
Element Resources

(3)

Signed 9x9 1/8 (1) 0 [0] (2) 1 0 [36] (2)

Signed 18x18 1/4 (1) 0 [0] (2) 1 0 [72] (2)

Signed 36x36 1 0 [0] (2) 4 326 [397] (2)

18 x 18 Multiply
Accumulate

1/2 0 [0] (2) 1 49 [134] (2)

18 x 18 Complex
Multiplication

1 0 [0] (2) 4 76 [153] (2)

Notes to Table 16:
(1) One DSP block can be configured as 8 independent 9 × 9 multipliers, 4 independent 18x18 multipliers, or 1 36 × 36

multiplier.
(2) The numeric value in brackets [] indicates the number of LEs needed when both input and output signals are

registered.
(3) This is the number of LE-equivalent elements.
Altera Corporation 63
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Use the following guidelines with the lpm_mult megafunction when
replacing CoreGen multipliers.

■ Port B can either be a constant or dynamic value
■ Both input ports must be of the same sign

If your design does not meet these requirements, you can use the
altmult_add megafunction to replace CoreGen multipliers.

The required options for the lpm_mult megafunction to operate in a
similar manner as the CoreGen multiplier function are:

■ Disable the ‘sum’ input port option
■ Specify the sign of the multiplier
■ If a constant value is used for port B, specify this value
■ Specify a pipeline of 2 to register both inputs and outputs. Specify a

pipeline of 1 to register only inputs. This value should match the
output latency for the CoreGen multiplier.

Figure 31 shows the lpm_mult megafunction.

Figure 31. lpm_mult Megafunction

Table 17 summarizes the port mapping between the CoreGen multiplier
and lpm_mult.

Table 17. CoreGen Multiplier and lpm_mult Port Mapping Comparison (Part
1 of 2)

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE clken Clock Enable

CLK clock Clock Port

ACLR aclr Asynchronous Clear Port

dataa[7..0]

datab[7..0]

lpm_mult

result[15..0]

Unsigned
multiplication
64 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
You can also use the altmult_add megafunction (Figure 32) to replace
the CoreGen multiplier function if your design does not meet the
requirements for the lpm_mult megafunction. You can register inputs
and outputs with the altmult_add megafunction; the sign of port A can
be dynamic, and the signs of the input ports can be different.

Q result with registered outputs set

O result Without registered outputs set

A_SIGNED N/A lpm_mult allows both ports to be either signed
or unsigned

LOADB Not
Supported

SWAPB Not
Supported

SCLR Not
Supported

LOAD_DONE Not
Supported

RDY Not
Supported

Hand Shaking Signal

RFD Not
Supported

Hand Shaking Signal

ND Not
Supported

Hand Shaking Signal

Table 17. CoreGen Multiplier and lpm_mult Port Mapping Comparison (Part
2 of 2)

Xilinx Port Altera Port Comment
Altera Corporation 65
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Figure 32. altmult_add Megafunction

Table 18 summarizes the port mapping between CoreGen’s multiplier
and the altmult_add megafunction.

Table 18. CoreGen multiplier and altmult_add Port Mapping Comparison

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE ena0 Clock Enable

CLK clock0

ACLR aclr3

Q result With registered outputs
set

O result Without registered
outputs set

A_SIGNED signa No Registering of port
required

LOADB Not Supported

SWAPB Not Supported

SCLR Not Supported

LOAD_DONE Not Supported

RDY Not Supported Hand Shaking Signal

RFD Not Supported Hand Shaking Signal

ND Not Supported Hand Shaking Signal

dataa_0[15..0]

datab_0[15..0]

clock

altmult_add

result[15..0]

CD

CD

CD CD

MULT0
66 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Conversion of Virtex-II Pro’s MULT18 × 18 can also be converted using
either the lpm_mult or altmult_add megafunction.

Implementing Altera DSP Blocks Using the MegaWizard Plug-In
Manager

The MegaWizard Plug-In Manager provides you with three
megafunctions to ease the integration and allow you to take full
advantage of the DSP blocks in Stratix devices in your design. These
megafunctions are lpm_mult, altmult_accum, and altmult_add.

The lpm_mult megafunction creates simple multipliers. The
altmult_accum megafunction creates a single multiplier feeding an
accumulator. The altmult_add megafunction creates one or more
multipliers feeding a parallel adder.

This section shows how to create an altmult_add instance using the
MegaWizard Plug-In Manager.

The altmult_add megafunction configures the DSP block into
multiply add mode. The third page of the altmult_add megafunction
in the MegaWizard Plug-In Manager configures the bus width and sign
representation of the operands (see Figure 33).
Altera Corporation 67
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Figure 33. Page 3 of altmult_add MegaWizard Plug-In Manager

Page 4 of the altmult_add megafunction (Figure 34) creates optional
ports, types of adder operation, and selects the type of device
implementation to be used.
68 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Figure 34. Page 4 of the altmult_add in the MegaWizard Plug-In Manager

Page 5 (Figure 35) allows you to further customize the altmult_add
megafunction by providing the ability to register the input and output
ports.
Altera Corporation 69
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
Figure 35. Page 5 of the altmult_add in the MegaWizard Plug-In Manager

f Third-party synthesis tools can infer Stratix DSP blocks in either VHDL
or Verilog HDL. For more information on using the Synplify and
Precision RTL tools in conjunction with the Quartus II software, refer to
the Synplicity Synplify & Synplify Pro Support and Mentor Graphics
Precision RTL Synthesis Support chapters in volume 1 of the Quartus II
Handbook.

Examples

Figure 36 shows a generic multiplier block that has been created using the
MegaWizard Plug-In Manager’s lpm_mult and CoreGen’s multiplier
module. Figure 37 shows a functional simulation (using ModelSim®) of
CoreGen’s 16 × 16 multiplier implemented in a Virtex-II Embedded
Multiplier. Figure 38 shows the converted 16 × 16 multiplier using the
lpm_mult implemented in a Stratix DSP block simulated in the
Quartus II Simulator.
70 Altera Corporation
Preliminary

Multiplier Conversion Altera Design Flow for Xilinx Users
Figure 36. Generic Multiplier Block

Figure 37. CoreGen 16 x 16 Embedded Multiplier with ModelSim XE

Figure 38. Simulation of a 16 x 16 Multiplier in a Stratix DSP Block Using Native Quartus II Simulation

The conversion of CoreGen multipliers with the altmult_add is similar
to that of lpm_mult.
Altera Corporation 71
Preliminary

Altera Design Flow for Xilinx Users Multiplier Conversion
You can also use the altmult_add megafunction, shown in Figure 39, to
replace the CoreGen multiplier function if your design does not meet the
requirements for the lpm_mult megafunction. You can register inputs
and outputs with the altmult_add megafunction, the sign of port A can
by dynamic, and the sign of the input ports can be different.

Figure 39. altmult_add Megafunction

Table 19 summaries the port mapping between CoreGen’s multiplier and
altmult_add megafunction.

Table 19. CoreGen Multiplier and altmult_add Port Mapping Summary (Part
1 of 2)

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE ena0 Clock Enable

CLK clock0

ACLR aclr3

Q result With registered outputs set

O result Without registered outputs set

A_SIGNED signa No Registering of port required

LOADB N/A

SWAPB N/A

SCLR N/A

LOAD_DONE N/A

A

LOADB

SWAPB

RFD

RDY

O

Q

LOAD_DONE

A_SIGNED

B

CLK

ND

CE

SCLRACLR
72 Altera Corporation
Preliminary

Double-Data Rate (DDR) I/O Conversion Altera Design Flow for Xilinx Users
Double-Data
Rate (DDR) I/O
Conversion

This section contains information on the conversion of the dedicated
DDR I/O function and architecture differences between Xilinx devices
(Virtex-II, Virtex-II PRO and Spartan-3) and the Altera Stratix and
Stratix GX product families.

Architectural Description

Stratix and Stratix GX devices have a dedicated DDR circuit in each of
their I/O elements that streams serial data on both the rising and falling
edges of the clock, effectively doubling the data rate. Xilinx Virtex-II,
Virtex-II PRO and Spartan-3 also have a dedicated DDR function in their
I/O blocks that handles timing somewhat differently.

f For more information, refer to the Altera Double Data Rate Megafunctions
User Guide.

Figure 40 shows a functional block diagram of the Stratix and Stratix GX
input DDR path.

Figure 40. Stratix and Stratix GX Input DDR Path

RDY N/A Hand Shaking Signal

RFD N/A Hand Shaking Signal

ND N/A Hand Shaking Signal

Table 19. CoreGen Multiplier and altmult_add Port Mapping Summary (Part
2 of 2)

Xilinx Port Altera Port Comment

D Q

DFF

I

D Q

LATCH

ENA

D Q

DFF

INPUT

datain

inclock

neg_reg_out dataout_l

dataout_h

Input Reg A

Input Reg B Latch C

Latch

Logic
Array

I I
Altera Corporation 73
Preliminary

Altera Design Flow for Xilinx Users Double-Data Rate (DDR) I/O Conversion
Figure 41 shows a functional block diagram of the Stratix and Stratix GX
output DDR I/O path configuration.

Figure 41. Stratix and Stratix GX Output DDR I/O Path Configuration

Figure 42 shows a functional block diagram of the Stratix and Stratix GX
bidirectional DDR path.

OUTPUT

Logic Array

outclock

datain_h

datain_l
D Q

DFF

D Q

DFF

0
1

Output Reg Ao

Output Reg Bo

D Q

DFF

(1)

D Q

DFF

(3)

OR2

TRI

dataout

oe

OE Reg BOE

OE Reg AOE

0

1

(2)

(4)
74 Altera Corporation
Preliminary

Double-Data Rate (DDR) I/O Conversion Altera Design Flow for Xilinx Users
Figure 42. Stratix and Stratix GX Bidirectional DDR Path

DQ

DFF

I

DQ

LATCH

ENA

DQ

DFF

Input Reg A

Input Reg BLatch C

D Q

DFF

D Q

DFF

0
1

Output Reg Ao

Output Reg Bo

D Q

DFF

D Q

DFF

OR2

TRI I/O Pin

OE Reg B (3)OE

OE Reg AOE

Logic Array

Latch

dataout_l

dataout_h

outclock

datain_h

datain_l

oe

inclock

neg_reg_out

II

0
(2)

(1)

combout

1

(4)
Altera Corporation 75
Preliminary

Altera Design Flow for Xilinx Users Double-Data Rate (DDR) I/O Conversion
The Stratix and Stratix GX DDR input path has an extra latch to delay the
low data by half a clock cycle. Consequently, high and low data appear in
the LE at the same rising clock edge. The output path has a local clock
inverter element on the low data register to optimize for performance and
produce a 50% duty cycle.

The differences between Xilinx and Altera DDR I/O configurations are:

■ The high and low data in the input path appear at the FPGA LE at the
same rising clock edge in Stratix and Stratix GX devices. In Xilinx
devices, the high data appears at the rising edge and the low data at
the falling edge.

■ The DCM is required to clock the DDR registers in Xilinx devices.
Xilinx recommends that the 180º phase shift output is used as a
second global clock network to feed the low data registers. Stratix
and Stratix GX devices do not require the use of a second clock signal
since the inversion is done locally.

■ Quartus II DDR megafunctions do not have synchronous set/reset.
Also, the asynchronous set and reset signals cannot be used at the
same time.

Because of these differences, timing discrepancies will occur after device
programming when migrating DDR functionality to a design targeting
Altera devices. Designers must take this into consideration and adjust the
interfacing logic accordingly.

Converting DDR I/O

Xilinx ISE has several DDR primitives for input or output DDR
configurations:

■ IFDDRCPE: Input DDR with asynchronous clear and preset and
clock enable

■ IFDDRRSE: Input DDR with synchronous reset and set and clock
enable

■ OFDDRCPE: Output DDR with asynchronous clear and preset and
clock enable

■ OFDDRRSE: Output DDR with synchronous reset and set and clock
enable

■ OFDDRTCPE: Output DDR with tristate, asynchronous clear and
preset and clock enable

■ OFDDRTRSE: Output DDR with tristate, synchronous reset and set
and clock enable

The Quartus II software includes 3 DDR megafunctions, available from
the MegaWizard Plug-In Manager:
76 Altera Corporation
Preliminary

Double-Data Rate (DDR) I/O Conversion Altera Design Flow for Xilinx Users
■ altddio_in: for DDR input
■ altddio_out: for DDR output
■ altddio_bidir: for DDR bidirectional input/output

DDR Input Conversion

Table 20 lists the mapping of IFDDRCPE and IFDDRRSE Xilinx
primitives to the Altera altddio_in megafunction.

Only the C0 port (data high clock signal) of the IFDDRCPE and
IFDDRRSE primitives needs to be connected to the inclock port of the
altddio_in megafunction. The C1 port (data low clock signal), which is
normally connected to the output of the 180º output of the DCM or the
inverted C0 signal, is not used during the mapping. The altddio_in
megafunction automatically negotiates the relationship between the data
high and the data low signals.

Since the appearance of the high and low data between Altera and Xilinx
DDR functions are 180º apart, the FPGA logic interfacing with the
incoming data may need to be adjusted accordingly.

Table 20. Mapping of IFDDRCPE and IFDDRRSE Xilinx primitives to the
Altera altddio_in Megafunction

Xilinx Port Altera Port Comment

PRE / S aset altddio_in only supports
asynchronous preset

D data_in[] Can combine multiple signals into a bus

CE inclocken

C0 inclock

C1 Not Applicable The negative clock edge signal is taken
care of automatically by altddio_in

CLR / R aclr altddio_in only supports
asynchronous clear

Q0 dataout_h[] Can combine multiple signals into a bus

Q1 dataout_l[] Can combine multiple signals into a bus
Altera Corporation 77
Preliminary

Altera Design Flow for Xilinx Users Double-Data Rate (DDR) I/O Conversion
DDR Output Conversion

Table 21 lists the mapping of IFDDRCPE and IFDDRRSE Xilinx
primitives to Altera altddio_out megafunction.

Only the C0 port (the data high clock signal) of the IFDDRCPE and
IFDDRRSE primitives must be connected to the outclock port of the
altddio_out megafunction. The C1 port (data low clock signal), which
is normally connected to the output of the 180º output of the DCM or the
inverted C0 signal, is not used during the mapping. The altddio_out
megafunction automatically negotiates of the relationship between the
data high and the data low signals.

DDR Bidirectional Conversion

The Xilinx ISE software does not have a bidirectional DDR design
element. A combination of input and output DDR primitives is used to
achieve bidirectional DDR functionality. The combination of input and
output DDR primitives located in the same I/O block must be replaced
by the altddio_bidir primitive in a design targeting an Altera device.
See “DDR Input Conversion” on page 77 and “DDR Output Conversion”
on page 78 for port mapping information.

Table 21. Port Mapping Comparison of Xilinx DDR Output Primitives and the
Altera altddio_out Megafunction

Xilinx Port Altera Port Comment

PRE / S aset altddio_out only supports
asynchronous preset

D0 datain_h[] Can combine multiple signals into a bus

D1 datain_l[] Can combine multiple signals into a bus

CE outclocken

C0 outclock

C1 Not Applicable The negative clock edge signal is taken
care of automatically by altddio_out

CLR / R aclr altddio_out only supports
asynchronous clear

Q / O dataout[] Can combine multiple signals into a bus

T oe
78 Altera Corporation
Preliminary

Double-Data Rate (DDR) I/O Conversion Altera Design Flow for Xilinx Users
Implementing DDR I/O Using the Quartus II MegaWizard Plug-In
Manager

The 3 DDR I/O megafunctions (altddio_in, altddio_out, and
altddio_bidir) included with the Quartus II software are all
parameterizable (Figure 43). (The DDR I/O megafunctions are found in
the I/O category.) Once a megafunction is selected, the user can
parameterize the target architecture, the data bus width, the use of clear
and preset signals, and other parameters.

Figure 43. altddio_bidir Megafunction Parameters

Examples

An input DDR conversion in Verilog is shown below.

module IFDDRCPE (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
endmodule

module DDR_top (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
IFDDRCPE my_ddr (.PRE(PRE),

.D(D),
Altera Corporation 79
Preliminary

Altera Design Flow for Xilinx Users Constraints
.CE(CE),

.C0(C0),

.C1(C1),

.CLR(CLR),

.Q0(Q0),

.Q1(Q1));
endmodule

After conversion, the code will look like the following:

module my_altddio_in (aset, data_in, inclocken, inclock, aclr,
datain_h, datain_l);

// This is the module created by the MegaWizard
input aset, data_in, inclocken, inclock, aclr;
output datain_h, datain_l;
endmodule

module DDR_top (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
my_altddio_in my_ddr (.aset(PRE),

.data_in(D),

.inclocken(CE),

.inclock(C0), // C1 is not connected

.aclr(CLR),

.datain_h(Q0),

.datain_l(Q1));
endmodule

Constraints When designing for a Xilinx device, the User Constraint File (.ucf)
contains the constraints and attributes for the design. This file is similar
to the Quartus II Settings File (.qsf). The UCF file contains all of the
design’s constraints and attributes, including timing requirements and
location assignments. Since ISE does not report unconstrained paths, you
must provide constraints for two purposes: to constrain the net (or
instance), and to report the constraint. The Quartus II Timing Analyzer
analyzes and reports on all paths in a design, therefore, constraints
provided merely to report a constraint are not required. As a result, many
constraints in the Xilinx tool are not necessary after converting your
design into Altera’s Quartus II design environment.

Converting Constraints

Constraints specify what requirements are necessary for the design to
function correctly. These constraints may include system performance,
I/O timing requirements, or point-to-point timing requirements. The
Quartus II Assignment Editor allows you to view, add, and create
assignments to nodes and entities, such as location assignments, timing
assignments, options for individual nodes only, options for individual
entities, parameter, and simulation assignments.
80 Altera Corporation
Preliminary

Table 22 provides typical constraints and attributes found in Xilinx UCF
and their Altera equivalents.

Table 22. Typical Constraints and Attributes Found in Xilinx UCF and their Altera Equivalents. (Part 1 of 2)

Xilinx
Constraint Constraint Function Altera Equivalent

DRIVE This constraint controls the
output pin current value

Current Strength
Current Strength can be found under the Option field in the
Assignment Editor

FAST This constraint turns on Fast
Slew Rate Control

Slow Slew Rate
Slew Rate can be found under the Option field in the
Assignment Editor

IOB This constraint is used to specify
whether or not a register should
be placed within the IOB of the
device

Fast Input Register or Fast Output Register
Both constraints can be found under the Option field in the
Assignment Editor

IOBDELAY This constraint is used to specify
a delay before an input pad feeds
the IOB, or an external element,
from the IOB. The input pad can
either feed the local IOB flip-flop
or an external element from the
IOB.

Adjust Input Delay to Input Register
This constraint can be used to adjust the delay of the input
pin to the input register. This option can be turned to either
ON or OFF. This constraint can be found under Option in
the Assignment Editor

IOSTANDARD This constraint is used to specify
the I/O standard for an I/O pin.

I/O standards are specified in the Assignment Editor This
constraint can be found under the option “I/O Standard” in
the Assignment Editor, then selecting the appropriate I/O
standard from the list.

KEEP The KEEP constraint is used to
prevent a net from either being
absorbed by a block, or
synthesized out.

You can insert an LCELL between the two nets in
question. Inserting an LCELL between the two will prevent
either net from being synthesized out.

DCM and DLL Constraints

Attributes are required to be set when instantiating a either a DCM or
DLL in a Xilinx design such as CLKDV_DIVIDE and CLKFX_MULTIPLY.
However, when creating an Altera PLL, these parameters are all specified

MAXDELAY This constraint is used to specify
the maximum delay in a net.

Use the Maximum Delay assignment in the Assignment
Editor to apply this constraint in the Quartus II software.
This assignment will override any clock settings if the
assignment is applied a path between two registers.
However, an fMAX constraint can be used. If the net is
purely combinatorial, a tPD assignment can be made.

MAXSKEW This constraint is used to specify
the maximum skew in a net.

Use Maximum Data Arrival Skew or Maximum Clock
Arrival, depending on the net, in the Assignment Editor to
apply this constraint in the Quartus II software.

NODELAY This constraint is used to reduce
setup time at the cost of positive
hold time.

Specify a Setup time parameter option, tSU, that is
available in the Assignment Editor. Make a tSU assignment
using the Assignment Editor

OFFSET This constraint specifies the
correlation between a global
clock and its associated data in,
or data out, pin. This is used to
specify setup and Clock to Out
constraints on the data registers.

The Assignment Editor can be used to specify the tCO
constraint in the Quartus II software. Use the Assignment
Editor to specify a tSU constraint.

PERIOD This constraint specifies the
timing relationship of a global
clock such as an fMAX
requirement.

fMAX timing requirements can be specified in the Timing
Settings dialog box. Make individual and global clock
settings using the Timing Settings dialog box (Project
menu).

Table 22. Typical Constraints and Attributes Found in Xilinx UCF and their Altera Equivalents. (Part 2 of 2)

Xilinx
Constraint Constraint Function Altera Equivalent

Summary Altera Design Flow for Xilinx Users
using the MegaWizard Plug-In Manager. See “Implementing Altera PLLs
Using the MegaWizard Plug-In Manager” on page 56 for more
information.

Xilinx-based placement constraints do not carry over to Altera placement
constraints. Do not make placement constraints to a design until the
conversion process involving the Quartus II software is complete.

Xilinx-based placement constraints include the following:

■ LOC
■ RLOC
■ RLOC_ORIGIN
■ RLOC_RANGE
■ MAP

Summary Section one demonstrated that the Quartus II software provides a suite of
tools similar to those found in the Xilinx ISE software. In addition, the
cross-probing, SOPC Builder, SignalTap Logic Analysis, and Tcl scripting
capabilities allow you to increase your productivity when designing for
Altera devices. Section two provided guidelines to migrate a design
targeted at a Xilinx device to one that is compatible with an Altera device.
Section three showed you how to convert your ISE constraints into
Quartus II constraints.

References For more information, refer to the following documents:

■ Using General-Purpose PLLs in Stratix & Stratix GX Devices chapter in
volume 2 of the Stratix Device Handbook

■ TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices
chapter in volume 2 of the Stratix Device Handbook

■ DSP Blocks in Stratix & Stratix GX Devices chapter in volume 2 of the
Stratix Device Handbook

■ Switching from Xilinx ISE to the Quartus II Software—available on
www.altera.com/switch

■ Performing Equivalent Timing Analysis Between the Altera Quartus II
Software and Xilinx ISE—white paper

■ Synplicity Synplify & Synplify Pro Support chapter in volume 1 of the
Quartus II Handbook

■ Mentor Graphics Precision RTL Synthesis Support chapter in volume 1
of the Quartus II Handbook

■ Synopsys Design Compiler FPGA Support chapter in volume 1 of the
Quartus II Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook
Altera Corporation 83
Preliminary

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

Revision History The information contained in the current version AN 307: Altera Design
Flow for Xilinx Users supersedes information published in previous
versions.

Date & Version Description of Changes

June 2005, v5.0 ● Revised content for software versions ISE 7.1i and
Quartus II 5.0

● Updated terminology
● Added Pin Planner subsection
● Added Quartus II Incremental Compilation

Feb 2004, v4.0 ● Revised content for software versions ISE 6.3i and
Quartus II 4.2

● Updated Table 6 for Power
● Updated cross-probing chart

Jan 2004, v3.1 ● Updated terminology

Oct 2004, v.3.0 ● Revised content for software versions ISE 6.2i and
Quartus II 4.1 sp2

● Added information on cross-probing

July 2003, v. 2.0 ● Revised content for software version ISE 5.1i and
Quartus II 3.0

● Added information on the Quartus II modular executables
and command-line scripting

● Added information on DDR RAM conversions

v1.0 New document

Revision History Altera Design Flow for Xilinx Users
Altera Corporation 85
Preliminary

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Printed on recycled paper

	Altera Design Flow for Xilinx Users
	Introduction
	Who Should Read This Document

	Table of Contents
	The Quartus II Approach to FPGA Design
	Basic FPGA Design Flow Using Command Line Scripting
	Design File Translation (ngdbuild versus quartus_map)
	Mapping Design Elements to Device Resources (map versus quartus_map)
	Place and Route Design Resources (par versus quartus_fit)
	Timing Analysis (trce versus quartus_tan)
	Programming File Generation (bitgen versus quartus_asm)
	Scripting with Quartus II Command-Line Executables
	Basic FPGA Design Flow Using Tools with GUIs
	Project Creation
	Design Entry
	HDL Design Entry
	EDA Netlist Design Entry
	Schematic Design Entry

	Synthesis
	Design Assignments
	The Quartus II Assignment Editor
	The Quartus II Pin Planner
	Analysis & Synthesis and Fitter Settings
	Timing Settings

	Design Implementation
	Timing Analysis
	Design Optimization
	Design Partitioning
	Simulation
	Device Programming

	Additional Quartus II Features
	Quartus II MegaWizard Plug-In Manager
	Quartus II Incremental Compilation
	Scripting with Tcl and Synopsys Design Constraints (SDC) in the Quartus II Software
	Running Tcl Scripts Interactively from the Shell
	Using Scripts in Batch from a Shell
	Running Scripts from the DOS or UNIX Prompt
	Running Scripts Directly from the Command-line
	Using the Tcl Console in the Quartus II GUI

	Using Synopsys Design Constraints with the Quartus II Software
	Cross-probing in the Quartus II Software
	System Design with SOPC Builder
	Hardware Verification with SignalTap II

	Summary of Altera GUI Equivalents for Xilinx ISE Features
	Xilinx-to-Altera Design Conversion
	Converting Xilinx Primitives for Use In Altera Devices
	RAM Architecture Functional Specifications
	Read-during-Write Operation at the Same Address
	Byte Enable
	SRVAL Constraint
	Memory Port Configurations
	RAM Stitching
	Converting Asynchronous RAM to Synchronous RAM
	Port Mapping Between Altera RAM and Xilinx RAM
	Creating Altera RAM Using the MegaWizard Plug-In Manager
	Examples
	RAM Stitching Example
	RAM Limiting Example
	Example Verilog Code Containing Xilinx RAM Modules Before and After Conversion

	DCM and DLL Conversion
	Architectural Description
	Enhanced PLLs
	Clock Multiplication and Division
	Clock Switchover
	Phase and Delay Shifting
	Clock Feedback

	Fast PLLs
	Clock Multiplication and Division
	External Clock Inputs

	Converting DLLs / DCMs
	Implementing Altera PLLs Using the MegaWizard Plug-In Manager

	Multiplier Conversion
	Architectural Description
	Simple Multiplier Mode
	Multiply Accumulate Mode
	Multiply Add Modes

	Converting Multipliers
	Implementing Altera DSP Blocks Using the MegaWizard Plug-In Manager
	Examples

	Double-Data Rate (DDR) I/O Conversion
	Architectural Description
	Converting DDR I/O
	DDR Input Conversion
	DDR Output Conversion
	DDR Bidirectional Conversion
	Implementing DDR I/O Using the Quartus II MegaWizard Plug-In Manager
	Examples

	Constraints
	Converting Constraints
	DCM and DLL Constraints

	Summary
	References
	Revision History

