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Introduction Designing for Altera® Programmable Logic Devices (PLDs) is very 
similar, both in concept and in practice, to designing for Xilinx PLDs. In 
most cases, you can simply import your register transfer level (RTL) into 
Altera’s Quartus® II software and begin compiling your design to the 
target device. This document will demonstrate the similar flows between 
the Altera Quartus II software and the Xilinx ISE software. 

For designs, which the designer has included Xilinx CORE generator 
modules or instantiated primitives, the bulk of this document guides the 
designer in design conversion considerations.

Who Should Read This Document

The first and third sections of this application note are designed for 
engineers who are familiar with the Xilinx ISE software and are using 
Altera’s Quartus II software. This first section describes the possible 
design flows available with the Altera Quartus II software and 
demonstrates how similar they are to the Xilinx ISE flows. The third 
section shows you how to convert your ISE constraints into Quartus II 
constraints. 

f For more information on setting up your design in the Quartus II 
software, refer to the Altera Quick Start Guide For Quartus II Software.

The second section of this application note is designed for engineers 
whose design code contains Xilinx CORE generator modules or 
instantiated primitives. The second section provides comprehensive 
information on how to migrate a design targeted at a Xilinx device to one 
that is compatible with an Altera device. If your design contains pure 
behavioral coding, you can skip the second section entirely.

1 This application note assumes you are familiar with the Virtex 
and Spartan device families and features. Familiarity with 
VHDL, Verilog HDL, and third-party synthesis tools is also 
assumed. This application note is based on the latest 
information available for the Quartus II software version 5.0 and 
Xilinx ISE 7.1i software version.
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The Quartus II 
Approach to 
FPGA Design

The Quartus II software allows you to perform design implementation 
either by using command-line executables and scripting, or by using the 
Quartus II graphical user interface (GUI).

Basic FPGA Design Flow Using Command Line Scripting

The ability to automate the FPGA design process saves time and increases 
productivity. Both Xilinx’s ISE software and the Quartus II software 
provide the tools necessary to automate your FPGA design flow. Figure 1 
shows the similarity between a typical command line implementation 
flow using either Xilinx’s ISE or Altera’s Quartus II software.
2  Altera Corporation
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The Quartus II Approach to FPGA Design Altera Design Flow for Xilinx Users
Figure 1. Typical Implementation Flow

f Refer to the Command-Line Scripting chapter in volume 2 of the Quartus II 
Handbook for information on the Quartus II command-line executable 
flow.

For ISE software users who are familiar with the command-line 
implementation flow that compiles a design and generates a 
programming file for FPGA design files, a similar flow exists within the 
Quartus II software known as the compilation flow. The compilation flow 
is the sequence and method by which the Quartus II software translates 
your design files, maps the translated design to device specific elements, 
places and routes the design in the device, and generates a programming 
file. These functions are performed by the Quartus II Integrated Synthesis 
(QIS), Fitter, Assembler, and Timing Analyzer. Below is a description and 
comparison of the two software flows using command line executables.

Design File Translation (ngdbuild versus quartus_map)

The ISE software provides the NGDBuild executable that is used to 
translate your design files into a generic netlist consisting of device 
specific primitives for the Xilinx implementation flow. This generic netlist 
will then be used by the subsequent executables in the implementation 
flow. Similarly, the Quartus II software provides the quartus_map 
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Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
executable that will create a project database that integrates all the design 
files in your project and performs an analysis and synthesis, if required, 
on your design files.

The following is an example usage of the quartus_map executable:

quartus_map filtref --source=filtref.bdf
--family=stratixii --ver=<revision name>

The above command creates a new Quartus II project called filtref with 
the filtref.bdf Block Design File (.bdf) as the top-level entity, including 
the revision name. It targets the Stratix® II device family, and performs 
logic synthesis and technology mapping on the design files.

Mapping Design Elements to Device Resources (map versus 
quartus_map)

The ISE software provides the MAP executable which is used to map the 
logical design elements created by NGDBuild to actual device resources 
such as memory blocks and I/Os. In the Quartus II command-line flow, 
quartus_map performs both the design translation and mapping of 
design elements to device resources.

Place and Route Design Resources (par versus quartus_fit)

In place of the PAR executable provided by the ISE software to place and 
route all device resources into your selected FPGA device, the Quartus II 
software provides the quartus_fit command-line executable. Use 
quartus_fit to place and route all device resources into your selected 
FPGA device. The following is an example of quartus_fit usage:

quartus_fit filtref --part=EP2S15F484C3 --fmax=80MHz --tsu=8ns

This command performs fitting on the filtref project. A Stratix II 
EP2S15F484C3 device is specified, and the fitter attempts to meet a global 
fMAX requirement of 80 MHz and a global tSU requirement of 8 ns.

Timing Analysis (trce versus quartus_tan)

In place of the TRCE executable provided in the ISE software for 
performing a static timing analysis on your design, the Quartus II 
software provides the quartus_tan executable. The following is an 
example of quartus_tan usage:

quartus_tan filtref
4  Altera Corporation
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The quartus_tan filtref command performs timing analysis on the 
filtref project to determine whether the design meets the timing 
requirements that were specified using the quartus_fit command 
earlier in the process.

Programming File Generation (bitgen versus quartus_asm)

The ISE software provides the BITGEN executable to generate FPGA 
programming files. Similarly, the Quartus II software provides the 
quartus_asm executable to generate programming files for FPGA 
configuration. The following is an example of quartus_asm usage:

quartus_asm filtref

The quartus_asm filtref command creates programming files for 
the filtref project.

Table 1 provides a summary and a description of the various executables 
available in the ISE software and the Quartus II software.

1 For command line help on any of the Quartus II executables 
described above, type <command-line executable> --help at the 
command prompt. A GUI-enabled help browser is also 
available that covers all of the Quartus II command-line 
executables. Start this browser by typing 
quartus_sh --qhelp at the command prompt.

Table 1. Implementation Flow Summary

Xilinx Executable Altera Executable Description

EDIF2NGD, 
XNF2NGD, 
NGDBuild, MAP 

quartus_map Translates project design files, e.g. 
RTL or EDA netlist, and map design 
elements to device resources

PAR quartus_fit Places and routes the device 
resources into the FPGA

TRCE quartus_tan Performs a static timing analysis on the 
design

BITGEN quartus_asm Generates programming file from 
post-placed-and-route design

NGDANNO quartus_cdb Back-annotates design for either post 
or pre place-and-route design

NGD2EDIF, 
NGD2VER, 
NGD2VHDL 

quartus_eda Generates output netlist files for use 
with other EDA tools
Altera Corporation  5
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Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
The following is a complete Quartus II compilation flow of the multiple 
executable example given in the previous sections:

quartus_map filtref --source=filtref.bdf --family=stratixii
quartus_fit filtref --part=EP2S15F484C3 --fmax=80MHz --tsu=8ns
quartus_tan filtref
quartus_asm filtref

All four executables can be run in sequence either through a script file or 
Makefile to generate a programming file for your FPGA design.

f Refer to the Command-Line Scripting chapter in volume 2 of the Quartus II 
Handbook for information on command-line scripting of Quartus II 
command-line executables.

Scripting with Quartus II Command-Line Executables

The Quartus II command-line executables reduce the amount of system 
memory required during each step in the design flow. Because it targets 
only one step in the design flow, each executable is relatively compact, 
both in terms of file size and the amount of memory used when running. 
This is particularly beneficial in design environments with heavily-used 
computer networks or legacy workstations with low amounts of RAM.

Command-line executables allow for easy integration with scripted 
design flows. You can easily create scripts in any language with a series 
of command-line executable commands. These scripts can be 
batch-processed, allowing for integration with distributed computing in 
server farms. The Quartus II command-line executables can also be 
integrated in Makefile-based design flows. All these features enhance the 
ease of integration between the Quartus II software and other EDA 
synthesis, simulation, and verification software.

Similar to ISE’s XFLOW implementation command, the Quartus II shell 
(quartus_sh) contains a --flow option, which can be used to open a 
project and perform a compilation or other related flow with one 
command. For example, executing

quartus_sh --flow compile <project name> -c <revision name>

performs a complete compilation, including analysis and synthesis, 
fitting, timing analysis, and programming file generation, based on 
constraints and settings contained in the project’s revision name.
6  Altera Corporation
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The Quartus II software provides command-line executables for each 
stage in the design flow shown in Figure 1 on page 3. Additional 
command-line executables are provided for specific tasks. Table 2 lists 
each Quartus II command-line executable and provides a brief 
description of its function.

Table 2. Quartus II Command-Line Executables and Descriptions (Part 1 of 2)

Executable Description

quartus_map The Quartus II Integrated Synthesis engine builds a single project 
database that integrates all the design files in a design entity or project 
hierarchy, performs logic synthesis to minimize the logic of the design, 
and performs analysis and synthesis on the logic in the design.

quartus_fit The Quartus II Fitter fits the logic of a design into a device. The Fitter 
selects appropriate interconnection paths, pin assignments, and logic 
cell assignments.

quartus_tan The Quartus II Timing Analyzer computes delays for the given design 
and device and annotates them on the netlist for subsequent use by the 
Simulator. Then, the Timing Analyzer performs timing analysis, 
allowing you to analyze the performance of all logic in your design.

quartus_sim The Quartus II Simulator performs one of two types of simulation: 
functional simulation or timing simulation. The Quartus II Simulator is a 
powerful tool for testing and debugging the logical operation and 
internal timing of the design entities in your project.

quartus_asm The Quartus II Assembler converts the Fitter’s device, logic cell, and 
pin assignments into a programming image for the device, in the form 
of one or more Programmer Object Files (.pof), SRAM Object Files 
(.sof), Hexadecimal (Intel-Format) Output Files (.hexout), Tabular 
Text Files (.ttf), and Raw Binary Files (.rbf).

quartus_pgm The Quartus II Programmer programs the Altera provided devices. The 
programmer will use one of the valid supported file format: SOF, POF, 
jam, and JAM Byte-Code File (.jbc).

quartus_swb The Quartus II Software Builder creates object code from source files 
to run on either the ARM-based ExcaliburTM devices or the Nios®II and 
Nios embedded processor.

quartus_drc The Quartus II Design Assistant checks the reliability of a design based 
on a set of design rules. The Design Assistant is especially useful for 
checking the reliability of a design before converting the design for 

HardCopy® devices.

quartus_cdb The Quartus II Compiler Database Interface generates and accesses 
information on atoms. It can be used to back-annotate designs.

quartus_eda The Quartus II Netlist Writer generates output netlist files for use with 
other EDA tools.
Altera Corporation  7
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Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
1 Each of the Quartus II executables creates its own report file. For 
example, the quartus_map executable creates a file titled 
<project name>.map.rpt.

Basic FPGA Design Flow Using Tools with GUIs

The Quartus II and ISE software Graphical User Interfaces (GUIs) 
address each of the major FPGA design steps (shown in Figure 2) in 
different ways. The following subsections present the Altera equivalents 
for Xilinx ISE features.

Figure 2. Typical FPGA Design Flow

quartus_cpf The Quartus II Convert Programming Files converts one programming 
file format to a different possible format.

quartus_sh The Quartus II Shell is a simple Quartus II tool command language 
(Tcl) interpreter. The Shell may be started with a Tcl script to evaluate, 
as an interactive Tcl interpreter (shell), or as a quick Tcl command 
evaluator, evaluating the remaining command-line arguments as one 
or more Tcl commands.

Table 2. Quartus II Command-Line Executables and Descriptions (Part 2 of 2)

Executable Description

Project Creation

Translate Design Files
(Design Entry)

Synthesize and Map Design
Elements to Device Resources

Place & Route
Design Resources

Perform Timing Analysis

Generate Programming File
8  Altera Corporation
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Project Creation

To begin a design in either the ISE or Quartus II software, you must first 
create a project. The project specifies the design files and tools that will be 
used in the project. Similar to the New Project command (File menu) in 
the ISE software, the Quartus II software uses the New Project Wizard to 
guide you through specifying a project name and directory, the top-level 
design entity, any EDA tools you are using, and a target device. To invoke 
the New Project Wizard, select New Project Wizard (File menu). Figure 3 
shows the first page of the Quartus II New Project Wizard.

Figure 3. The New Project Wizard Start Screen

1 All the settings you make when creating your project with the 
New Project Wizard can be modified at later stages in the design 
process.

Design Entry

Both the ISE software and the Quartus II software support hardware 
description language (HDL), EDA netlist, and schematic design files as 
design entry methods.
Altera Corporation  9
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Altera Design Flow for Xilinx Users The Quartus II Approach to FPGA Design
In place of the Add Source dialog box of the Xilinx ISE software, the Files 
page of the Settings dialog box (Assignments menu) in the Quartus II 
software allows you to add or remove existing design files from your 
project (Figure 4).

Figure 4. Files Page of Settings Dialog Box

HDL Design Entry

To create a new HDL design file in the Quartus II software, choose New 
(File menu) and select the type of file to create. To assist you in creating 
HDL designs, the Quartus II software provides templates for overall 
AHDL, VHDL and Verilog HDL file structures and constructs, including 
various logic functions and parameter declarations. Also, the Quartus II 
Text Editor offers syntax coloring for highlighting HDL reserved words 
and comments.
10  Altera Corporation
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f For more information on design guidelines in the Quartus II software, 
refer to the Design Recommendations for Altera Devices and Recommended 
HDL Coding Styles chapters in volume 1 of the Quartus II Handbook.

EDA Netlist Design Entry

The ISE and Quartus II software allow you to compile designs from 
netlists generated from EDA tools such as Synplify or Precision RTL™. In 
the Quartus II software, you can specify the EDA tools you are using for 
synthesis, simulation, timing analysis, board-level signal verification, 
formal verification, and physical synthesis in the EDA Tool Settings page 
of the Settings dialog box (Assignments menu) as well as on the 
appropriate page of the New Project Wizard(Figure 5). For more 
information using third-party synthesis tools, see “Synthesis” on page 12.

Figure 5. The EDA Tool Settings Page of Settings Dialog Box
Altera Corporation  11
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f For more information on using the Synplify and Precision RTL tools in 
conjunction with the Quartus II software, refer to the Synplicity Synplify 
& Synplify Pro Support and Mentor Graphics Precision RTL Synthesis 
Support chapters in volume 1 of the Quartus II Handbook. Refer also the 
Synopsys Design Compiler FPGA Support chapter in volume 1 of the 
Quartus II Handbook. 

Schematic Design Entry

In the Quartus II software, you can use Altera-supplied design elements 
such as Boolean gates and registers, or you can create your own symbols 
from HDL or EDA netlist design entities. The Quartus II software also 
includes an extensive library of megafunctions supplied with the 
software. These are added using representative schematic symbols 
customized using the MegaWizard® Plug-In Manager.

1 See “Quartus II MegaWizard Plug-In Manager” on page 23 for 
more information.

To create a block design file from a VHDL design file, a Verilog HDL 
design file, or an EDA Netlist choose Create/Update > Create Symbol 
Files for Current File (File menu).

Synthesis

Similar to the Xilinx Synthesis Technology (XST) in ISE, the Quartus II 
software includes Quartus II Integrated Synthesis (QIS) which provides 
full synthesis support for AHDL, VHDL, and Verilog HDL. The 
integrated synthesis engine is invoked whenever the Quartus II software 
encounters any files of the three supported HDL language types.

The Quartus II software also supports synthesized design files from 
third-party synthesis tools including EDIF (.edf) and Verilog Quartus II 
Mapping (.vqm) netlist files.

Design Assignments

Specifying device assignments assures that your design takes advantage 
of specific features of your targeted device architecture and meets 
performance goals. The ISE software provides two tools—the Constraints 
Editor and the Pinout and Constraints Editor (PACE)—to create and edit 
constraints. The Quartus II Assignment Editor conveniently allows you 
to create and view constraints using a single centralized interface. 
Additionally, the Quartus II Pin Planner allows you to view, create, and 
edit pin assignments in a graphical interface.
12  Altera Corporation
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The Quartus II Assignment Editor

In place of the Constraints Editor and PACE tools in the ISE software, use 
the Quartus II Assignment Editor (Assignment menu) to make timing 
and placement design constraints for your design. The Quartus II 
software dynamically validates the assignments whenever changes are 
made with the Assignment Editor, issuing errors or warnings for invalid 
assignments. Adding or changing assignments is acknowledged with 
messages reported in the System tab of the Quartus II message utility 
window (Figure 6).

Figure 6. The Assignment Editor
Altera Corporation  13
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The Quartus II Pin Planner

Like the PACE tool in the ISE software, the Quartus II Pin Planner 
provides a graphical Package view allowing you to make pin location 
assignments using a device Package view instead of pin numbers. With 
the Pin Planner, you can identify I/O banks, VREF groups, and 
differential pin pairings to help you through the I/O planning process.

To use the Pin Planner, choose Pin Planner (Assignments menu). 
Figure 7 shows the Pin Planner.

f For more information on using the Pin Planner, refer to the I/O Planning 
chapter in volume 2 of the Quartus II Handbook.

Figure 7. The Pin Planner
14  Altera Corporation
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Analysis & Synthesis and Fitter Settings

The Analysis & Synthesis Settings and the Fitter Settings dialog boxes 
allow you to easily set project-wide Quartus II compiler settings. The 
Analysis & Synthesis Settings dialog box (see Figure 8) allows you to set 
options that affect the analysis and synthesis stage of the compilation 
flow. These options include the Optimization Technique, State Machine 
Processing, Restructure Multiplexers, and others.

Figure 8. Analysis & Synthesis Settings Dialog Box

The Fitter Settings dialog box (see Figure 9) allows you to set options that 
affect the Fitter stage of the compilation flow. These options include Fitter 
Effort, Fitting Attempts, Seed value, and so forth.
Altera Corporation  15
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Figure 9. Fitter Settings Dialog Box

1 You can also use the Device page of the Settings dialog box 
(Assignments menu) to select or change devices for your project.

Timing Settings

The Timing Requirements & Options page of the Settings dialog box 
(Assignments menu) in the Quartus II software allows you to easily set 
project-wide timing requirements for your design. You can specify 
requirements for overall circuit frequency (fMAX), project-wide setup time 
(tSU), hold time (tH), clock-to-output time (tCO), and pin-to-pin time (tPD). 
You can also specify clock relationships and enter settings to control 
timing analysis.
16  Altera Corporation
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Figure 10. Timing Requirements Dialog Box

f For more information on the Quartus II Timing Analyzer, refer to the 
Quartus II Timing Analysis chapter in volume 3 of the Quartus II 
Handbook.

You can use the Assignment Editor to make individual timing 
assignments or to assign clock settings to a clock signal.

Design Implementation

The ISE software follows an implementation flow that compiles a design 
and generates a programming file for your FPGA design files. A similar 
flow exists within the Quartus II software known as the compilation flow. 
The compilation flow is the sequence and method by which the 
Quartus II software translates your design files, maps the translated 
design to device specific elements, places-and-routes the design in the 
device, and generates a programming file. These functions are performed 
by the QIS, Fitter, Assembler, and Timing Analyzer.
Altera Corporation  17
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You can start the compilation flow at any point in the design process, 
whether or not you have completed making your project settings and 
constraints. In the Quartus II software, choose Start Compilation 
(Processing menu) to start the compilation process.

In the initial compilation phase, the QIS creates a database from your 
design files containing all necessary design information. A design rule 
check is performed on all design files in the project, ensuring that no 
boundary connectivity errors or syntax errors exist. This database is 
available for use for all subsequent steps in the compilation flow.

The QIS optimizes your design for the targeted Altera FPGA and maps 
the design to the device. Mapping converts your design files into 
architecture-specific atoms that target device resources such as logic 
elements (LEs) and RAM blocks.

The Fitter places and routes the atoms created by the QIS in the selected 
device. The Fitter performs additional optimization to improve your 
design’s timing and resource usage based on timing constraints.

When the optimized fit is achieved, the Assembler generates the 
programming file for your design. The programming file contains all 
placement and routing information for your design and is used to 
program the target Altera device.

The Timing Analyzer performs a static timing analysis on every path in 
your design. This analysis allows you to identify critical paths and timing 
errors necessary to meet the design timing budget or achieve timing 
closure.

The Status utility window shows progress of the current compilation 
(Figure 11). The results of a compilation may be viewed in the 
Compilation Report window (Processing menu). The report window 
opens automatically when you compile a design, and shows the design 
hierarchy, a compilation summary, statistics on the performance of the 
design, and a link to the floorplan view.

Figure 11. The Status Utility Window
18  Altera Corporation
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Use the Timing Closure Floorplan (Assignments menu) to view 
compiler partitioning, fitting and timing results or to assign physical 
device resources.

Each of the phases in the compilation flow can also be started 
independently of the others, similar to the command-line executable 
flow, within the Quartus II GUI using the Compiler Tool (Tools menu) as 
shown in Figure 12.

Figure 12. Compiler Tool Window

Timing Analysis

Roughly equivalent to the Post-Place and Route Static Timing Report 
generated by the Xilinx ISE software, the Quartus II Timing Analyzer 
analyzes and reports the performance of all logic in your design, allowing 
you to determine all of the critical paths that limit your design’s 
performance. Figure 13 shows the timing analysis report.
Altera Corporation  19
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Figure 13. An Example Timing Analysis Report

f For more information on the differences between timing analysis 
methodologies, refer to the white paper Performing Equivalent Timing 
Analysis Between the Altera Quartus II Software and Xilinx ISE.

Design Optimization

The Quartus II Fitter is guided by your design’s timing requirements, and 
will attempt to satisfy all the timing constraints specified. Ensure that 
your timing settings accurately reflect the timing requirements of your 
design.

Choose Settings (Assignments menu) and select Fitter Settings in the 
Category list. Specify the type of timing-driven compilation for the Fitter 
to perform by turning on or off one or both of the following options:

■ Optimize timing directs the Fitter to optimize routing within a 
device to meet timing requirements.

■ Optimize hold timing directs the Fitter to optimize minimum delay 
timing constraints.

■ Optimize fast-corner timing directs the Fitter to optimize routing 
under the fast-corner (fastest manufactured device, operating in low-
temperature and high-voltage conditions) condition. By default, the 
20  Altera Corporation
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Fitter will optimize under slow-corner (slowest manufactured device 
for a given speed grade, operating in high-temperature and low-
voltage conditions)  conditions. 

f For more strategies for optimizing your design, refer to Section III: Area 
Optimization & Timing Closure in volume 2 of the Quartus II Handbook.

Design Partitioning

LogicLock™ block-based design is a methodology available in the Altera 
Quartus II software. The LogicLock methodology allows you to optimize 
each design entity/module independent of other entities/modules. 
Productivity is increased because each design module needs to be 
optimized only once. During integration and system-level verification, 
the performance of each logic module is preserved.

To create a LogicLock region in the Timing Closure Floorplan, perform 
the following steps:

1. Choose Settings (Assignments menu), then select Device in the 
Category list.

2. Specify a target device, then choose the Timing Closure Floorplan 
(Assignments menu).

3. Click the Create New LogicLock Region button on the toolbar, then 
click and drag the pointer until the region is the desired size.

1 You must select a target device (step 1) or the Create New 
LogicLock Region button will be grayed out.

4. Choose Properties (right-button pop-up menu) on the LogicLock 
region to view or edit the region’s properties.

f For more information on using LogicLock methodology, refer to the 
LogicLock Design Methodology chapter in volume 2 of the Quartus II 
Handbook.

Simulation

Just as with the Xilinx ISE software, the Quartus II software supports 
integration with many third-party EDA simulation tools, including those 
from Mentor Graphics®, Cadence, and Synopsys. To perform 
functional/behavioral simulation on designs containing LPMs or 
MegaWizard-generated functions, use the Altera functional simulation 
models installed with the Quartus II software.
Altera Corporation  21
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The LPM simulation model files are: 

■ 220model.v for Verilog HDL
■ 220pack.vhd and 220model.vhd for VHDL

The Altera megafunction simulation model files are:

■ altera_mf.v for Verilog HDL
■ altera_mf.vhd and altera_mf_components.vhd for VHDL

To perform gate-level timing simulation on a design, the Quartus II 
software generates output netlist files containing information on how the 
design was placed into device-specific architectural blocks. The 
Quartus II software provides this information in the form of a .vo file for 
Verilog HDL and a .vho file for VHDL output files. The accompanying 
timing information is stored in a SDF file that annotates the delay for the 
elements found in the .vo or .vho output netlist.

The Quartus II Simulator enables testing and debugging the logical 
operation and internal timing of the design.

The Simulator page in the Settings dialog box (Assignments menu) helps 
you create and save Simulator settings by specifying the time period 
covered by the simulation and the source of the vector stimuli. You can 
also turn on options for reporting the simulation coverage and setup and 
hold time violations.

Create a Vector Waveform File (.vwf) in the Waveform Editor by 
choosing New (File menu) and clicking the Other Files tab. Select Vector 
Waveform File and click OK. The VWF should contain the vector inputs 
for simulation and the names of the outputs to be simulated.

The Automatically add pins to simulation output waveforms option on 
the Simulator section of the Settings dialog box (Assignments menu) 
directs the Simulator to automatically add waveforms for all the output 
pins in the project to the simulation outputs. This eliminates the need to 
manually enter the names of the output nodes you want to monitor.

Choose Start Simulation (Processing menu) to run the simulation. View 
the simulation results by choosing Simulation Report (Processing 
menu).

Device Programming

The Quartus II Programmer allows you to use files generated in the 
compilation flow to program or configure all Altera programmable logic 
devices and supported configuration devices. 
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Open the Programmer by choosing Programmer (Tools menu).

f For more information on using the Programmer, refer to the Assembler 
section of the Online help in the Quartus II software.

Additional 
Quartus II 
Features

In addition to providing the standard set of tools required in any FPGA 
design flow, the Quartus II software provides additional features and 
tools to assist you with achieving your desired design requirements.

Quartus II MegaWizard Plug-In Manager

In place of the CoreGen and the Architecture Wizard available in the 
Xilinx ISE software, the Altera MegaWizard Plug-In Manager helps you 
create highly customized megafunctions that are optimized for the device 
targeted in your design. These customizations draw on Altera-provided 
megafunctions, including library-of-parameterized-modules (LPM) 
functions, ranging from simple Boolean gates to complex memory 
structures. The MegaWizard Plug-In Manager categorizes all supported 
modules into folders titled: arithmetic, gates, I/O, memory compiler, and 
storage.

You can access the MegaWizard Plug-In Manager as a stand-alone tool or 
as an integrated tool in your Quartus II project. Table 3 provides a brief 
list of supported megafunctions.

Use the MegaWizard Plug-In Manager to generate Altera equivalents for 
Xilinx primitives and CoreGen and Architecture Wizard modules. 
Figure 14 shows page 2a of the MegaWizard Plug-In Manager.

Table 3. Supported Megafunctions in the MegaWizard Plug-In Manager

Folder Megafunction

Arithmetic altaccumulate, altfp_mult, altmemmult, 
altmult_accum (MAC), altmult_add, altsqrt, 
lpm_add_sub, parallel_add

Gates lpm_add, lpm_bustri, lpm_clshift

I/O altddio_bidir, altddio_in, altll_reconfig, altpll, 
altlvds

Memory Compiler FIFO, RAM : 1-Port, RAM : 3-Port

Storage altshift_taps, altsyncram, lpm_shiftreg
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Figure 14. MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager automatically generates a 
Component Declaration file (with the extension .cmp) that can be used in 
VHDL Design Files (.vhd) and an AHDL Include File (.inc) that can be 
used in Text Design Files (.tdf) and Verilog Design Files (.v). The 
MegaWizard Plug-In Manager also creates a sample instantiation 
template with the extension _inst.tdf for AHDL designs, _inst.vhd for 
VHDL designs, and _inst.v for Verilog HDL designs. A sample 
declaration file with a _bb.v extension is also created for Verilog HDL 
designs. The sample files contain module and port declarations for the 
custom megafunction variation. A Block symbol file (.bsf) will also be 
created which is a symbol that represents the logic in a schematic file.

Quartus II Incremental Compilation 

In place of the Incremental Design feature in ISE, Quartus II Incremental 
Compilation allows you to organize your design in logical and physical 
partitions for synthesis and fitting. Design iteration time can be 
dramatically reduced by focusing new compilations on a particular 
design partition and merging the results with previous compilation 
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results from other partitions. Incremental compilation facilitates 
block-based design, and allows you to preserve performance for 
unchanged blocks of your design. You can also target optimization 
techniques, such as physical synthesis, to specific design partitions while 
leaving other blocks untouched.

f For more information, refer to the Quartus II Incremental Compilation 
chapter in volume 1 of the Quartus II Handbook.

Scripting with Tcl and Synopsys Design Constraints (SDC) in the 
Quartus II Software

The Quartus II GUI provides an easy way to access all features and 
commands offered by the software. However, as designs grow in 
resource utilization and complexity, the need to automate common tasks 
and to streamline the entire FPGA design flow becomes a requirement. 
The Quartus II software provides support for Tcl and SDC to help 
facilitate project assignments, compilation, and constraints. The 
following provides a brief description of the Quartus II software support 
of Tcl and SDC.

f For more information, refer to the Tcl Scripting chapter in volume 2 of the 
Quartus II Handbook.

The Quartus II software contains Tcl application program interface (API) 
functions that you can use to automate a variety of common tasks, such 
as making assignments, compiling designs, analyzing timing, and 
controlling simulation. The Quartus II software offers the following ways 
to run your Tcl scripts:

■ Interactively from the shell
■ Using scripts in batch from the shell
■ As a Batch file from the DOS or UNIX prompt
■ Directly from the command line

Running Tcl Scripts Interactively from the Shell

Using the -s or --shell switch option starts an interactive Tcl shell 
session, replacing the normal command line prompt with tcl>:

c:\>quartus_sh -s
Info: **********************************************************
Info: The Quartus II Shell supports all Tcl commands in addition 
to
Info: Quartus II Tcl commands
Info: All unrecognized commands are assumed to be external
Info: and are run using Tcl's "exec" command
Info: To exit, type "exit"
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Info: For a list of all Quartus II Tcl commands, type "help"
Info: **********************************************************
tcl>

Everything typed in the Tcl shell will be directly interpreted by the 
Quartus II Tcl interpreter.

1 The Tcl shell includes a history list of previous commands 
entered, but it does not allow commands to span more than one 
line.

Using Scripts in Batch from a Shell

Once you create a Tcl script file (.tcl), you can run it by typing the 
following command in a Tcl shell:

source <script_name>.tcl

This will run the Tcl script, a previously written set of Tcl commands to 
help configure a project or project assignments created in Tcl.

Running Scripts from the DOS or UNIX Prompt

The following command will run the Quartus II Tcl shell and use the Tcl 
file specified by the -t option as the input Tcl script:

quartus_sh -t <script_name>.tcl

The Quartus II Tcl interpreter will read in process and execute the Tcl 
commands in the Tcl script file and then exit back to the command-line 
prompt. Most of the examples in this application note are written to be 
run as a batch file.

Running Scripts Directly from the Command-line

The last way of accessing Tcl is using the --tcl_eval option. This 
directly evaluates the rest of the command line arguments as one or more 
Tcl commands. If there are two or more Tcl commands, you have to 
separate them with semicolons. The Quartus II Tcl interpreter is used to 
interpret these Tcl commands. For example, typing the following 
command:

quartus_sh --tcl_eval puts Hello; puts World

will cause the following output:

Hello
World
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The Tcl evaluate option allows external scripting programs (such as 
make, perl, and sh) to access information from Quartus II software. One 
such application may be to obtain device family information for a 
targeted part.

The --tcl_eval option is also very useful to get Tcl help information 
directly from the command-line prompt.

Using the Tcl Console in the Quartus II GUI

You can execute Tcl commands directly in the Quartus II Tcl Console 
window. To open the Tcl Console window, choose Auxiliary Windows > 
Tcl Console (View menu). The Tcl Console is usually located on the 
bottom-right corner of the Quartus II GUI. 

The following example Tcl script performs these tasks:

■ Opens the fir_filter project if it exists. If the project doesn’t exist, the 
script creates the project

■ Sets the project to target a Stratix II EP2S15F672C3 device
■ Assigns the clk pin to the physical pin F18
■ performs compilation

# This Tcl file works with quartus_sh.exe
# This Tcl file will compile the Quartus II tutorial
# fir_filter design

# set the project_name to fir_filter
# set compiler setting to filtref

set project_name fir_filter
set csf_name filtref

# Create a new project and open it
# Project_name is project name
# Require package ::quartus::project

if {![project_exists $project_name]} {
project_new -cmp $csf_name $project_name;

} else {
project_open -cmp $csf_name $project_name;
}

#------ Make device assignments ------#

set_global_assignment -name FAMILY “Stratix II”
set_global_assignment -name DEVICE EP2S15F672C3

#------ Make instance assignments ------#

# assign pin clk to pin location F18
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set_location_assignment -to clk Pin_F18

#------ project compilation ------#

# The project is compiled here

package require ::quartus::flow
execute_flow -compile

project_close

Using Synopsys Design Constraints with the Quartus II Software

To ease the integration with EDA synthesis tools, the Quartus II software 
supports the SDC functions. Table 4 provides a brief list of supported 
SDC functions.

Table 4. Quartus II Supported SDC Functions (Part 1 of 2)

Command Description

create_clock Creates a base clock with the given name and waveform, and applies the clock to 
the specified clock pin list.

set_clock_latency Inserts a source latency into an existing base clock.

set_false_path Specifies that the timing paths that start from a designated start node and end at a 
designated destination node are false paths.

set_input_delay Specifies the external input delay of a set of input or bidirectional pins with respect 
to the designated clock.

remove_clock Removes all the clocks that are used in the current design if the -all option is 
specified.

create_generated_clock Creates a derived, or generated clock from the given clock source. A generated 
clock can be derived only from a base clock. The generated clock is always assumed 
to be propagated.

get_clocks Returns the list of clock pins as specified in the <clock_pin_list>. The input list is 
returned as the output. When <no port list> is specified, the command returns 
nothing.

remove_input_delay Removes the specified input delay assignments from the current design.

remove_output_delay Removes the specified output delay assignments from the current design.

reset_path Removes the specified timing path assignments from the current design. If neither 
the -setup or -hold option is specified, then both setup and hold paths are 
removed.

set_false_path Specifies that the timing paths that start from the designated <from_pin_list> and 
end in the designated <to_pin_list> are false paths.
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f Refer to the Quartus II on-line help for a complete list of supported Tcl 
and SDC functions.

set_input_delay Specifies the external input delay of a set of input or bidir pins with respect to the 
designated clock. The delay applies to both the positive and negative edges of the 
clock. The specification is internally translated into the equivalent Quartus II software 
tSU requirements.

set_max_delay Specifies the maximum delay for the timing paths that start from the designated 
<from_pin_list> and end in the designated <to_pin_list>.

set_min_delay Specifies the minimum delay for the timing paths that start from the designated 
<from_pin_list> and end in the designated <to_pin_list>.

set_multicycle_path Specifies that the given timing paths have multicycle setup or hold delays with the 
number of cycles specified by the <path_multiplier>. The meaning of multicycle hold 
differs between the Quartus II timing analysis and the Synopsys PrimeTime 
software. Refer to the online Help for each software package for more information.

set_output_delay Specifies the external output delay of a set of output or bidir pins with respect to the 
designated clock. The delay applies to both the positive and negative edges of the 
clock. The specification is internally translated into the equivalent Quartus II software 
tCO requirements.

set_propogated_clock Specifies that a given clock is propagated using the actual clock network delays. This 
command is included for compatibility with the Quartus II software SDC commands. 
The Quartus II software ignores the command because it supports only propagated 
clocks.

get_ports Returns the list of ports as specified in the <port list>.

Table 4. Quartus II Supported SDC Functions (Part 2 of 2)

Command Description
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Cross-probing in the Quartus II Software

Cross-probing is the ability to select design elements from one tool and 
locate them in another tool. All features and tools within the Quartus II 
software are highly integrated, resulting in a design environment that 
provides seamless cross-probing abilities. Table 5 shows the 
cross-probing support provided by the Quartus II software.

For example, with the cross-probing ability in the Quartus II software you 
can locate design elements from the RTL Viewer to the Assignment 
Editor. This eliminates the searching time for node names and pin names 
when applying design constraints in the Assignment Editor.

Table 5. Cross Probing Support in the Quartus II Software

From

To

Schematic 
Editor

HDL 
Editor

RTL 
Viewer

Assignment 
Editor

Pin 
Planner Floorplanner Technology 

Map Viewer
Chip 

Editor

Project 
Navigator v v v v v v v v

Message 
Window v v v v v v v v

Schematic 
Editor v v v v v v

HDL Editor v v v v v v

RTL Viewer v v v v v v v

Assignment 
Editor v v v v v v v

Pin Planner v v v v v v v

Waveform 
Editor v v v v v v v v

Floorplanner v v v v v v v

Technology 
Map Viewer v v v v v v v

Timing Report v v v v v v v v

Chip Editor v v v v v v v

Signal Tap II v v v v v v v v

PowerPlay 
Power 
Analyzer 
Reports

v v v v v v v v
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f Refer to the Quartus II Handbook for more information on the features 
and tools listed in Table 5.

System Design with SOPC Builder

The SOPC Builder feature included and integrated in the Quartus II 
software enables the use of processors (such as Altera Nios and Nios II 
embedded processors), interfaces to off-chip processors, standard 
peripherals, IP cores, on-chip memory, interfaces to off-chip memory, 
and user-defined logic into a custom system module.

SOPC Builder generates a single system module that instantiates these 
components, and automatically generates the necessary interconnect 
logic to bind them together.

f For more information on system design with the SOPC Builder, refer to 
Volume 4: SOPC Builder of the Quartus II Handbook.

Hardware Verification with SignalTap II

The SignalTap® II Logic Analyzer is a multiple-input, digital acquisition 
instrument that captures and stores signal activity from any internal 
device node(s). 

f For more information on SignalTap II Logic Analysis, see the Design 
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in 
volume 3 of the Quartus II Handbook. 

Summary of 
Altera GUI 
Equivalents for 
Xilinx ISE 
Features

Table 6 lists the stages of the design flow, the Xilinx software features 
used in each stage, and their equivalents in the Quartus II software.

Table 6. GUI Equivalents in the Quartus II Software for ISE Features (Part 1 of 2)

Feature Xilinx ISE Quartus II

Project Creation New Project New Project Wizard

Design constraint assignments Constraints Editor and PACE Quartus II Assignment Editor, I/O 
Analyzer, and Pin Planner
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Xilinx-to-Altera 
Design 
Conversion

Successfully converting a Xilinx-targeted design for use in an Altera 
device is a three-step process.

1. Replace Xilinx-specific primitives with Altera primitives, 
megafunctions, or constraints.

2. Replace Xilinx CoreGen or Architecture Wizard modules with 
Altera megafunctions generated with the Quartus II MegaWizard 
Plug-In Manger.

3. Set timing and device constraints using the Quartus II software 
corresponding to those found in the Xilinx design you are 
converting.

Design Entry HDL Editor HDL Editor

Schematic Entry Schematic Entry

CoreGen and Architecture Wizard MegaWizard Plug-In Manager

Synthesis Xilinx Synthesis Technology (XST) 
or Third-party EDA Synthesis

Quartus II Integrated Synthesis 
(QIS) or Third-Party EDA Synthesis

Implementation Flow consists of 
design translation, mapping, and 
place-and-route of the design into 
the FPGA to meet requirements set 
by user

Design Implementation: Translate, 
Map, and Place-and-Route

Design Compilation: QIS and Fitter

Power Analysis XPower PowerPlay Power Analyzer

Static timing analysis on post-fitted 
design

Xilinx Timing Analyzer and Trace Quartus II Timing Analyzer

Functional and Timing Simulation 3rd Party Simulation Tools 3rd Party Simulation Tools or Native 
Quartus II Simulator

Generation of device programming 
file

Bitgen Assembler

Hardware Verification ChipScope Pro SignalTap II

Viewing and editing design 
placement

Floorplanner or FPGA Editor Timing Closure Floorplan, Chip 
Editor

Customization and generation of IP 
cores through the GUI

CoreGen System and Architecture 
Wizard

MegaWizard Plug-In Manager

Compilation and assignment 
process for power users

Tcl Scripting

Technique used to design, optimize, 
and lock down nodes one at a time

Modular Design Flow LogicLock, Netlist Optimization 
options

Table 6. GUI Equivalents in the Quartus II Software for ISE Features (Part 2 of 2)

Feature Xilinx ISE Quartus II
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Converting 
Xilinx Primitives 
for Use In Altera 
Devices

Primitives are the basic building blocks of a Xilinx design. They perform 
various dedicated functions within the device, such as shift registers, and 
implement specific I/O standards for the Xilinx device I/O pins. Xilinx 
primitives have fixed ports and cannot be customized.

Primitives can be easily identified because their names are standardized. 
Table 7 lists commonly used Xilinx primitives and describes an 
equivalent Altera design element.

Table 7. Summary of Commonly Used Xilinx primitives with their Altera Equivalent

Xilinx Primitive Description Altera Equivalent Conversion Type

BUF, 4, 8, 16 General Purpose Buffer WIRE assignment HDL

BUFG Global Clock Buffer GLOBAL Altera Primitive or 
Global Signal 
Assignment Editor 
setting

FD D Flip Flop DFF or DFFE Altera Primitive

IBUF, 4, 8, 16 Single and Multiple 
Input Buffers

WIRE assignment HDL

IBUFG_<selectable I/O standard> Input Global Buffer with 
selectable interface

WIRE and I/O 
Assignment with the 
Assignment Editor

HDL and I/O Standard 
Assignment Editor 
setting 

IBUF_<selectable I/O standard> Input Buffer with 
selectable I/O interface

WIRE and I/O 
Assignment with the 
Assignment Editor

HDL and I/O Standard 
Assignment Editor 
setting

IOBUF_ <selectable I/O standard> Bidirectional buffer with 
selectable I/O interface

WIRE and I/O 
Assignment with the 
Assignment Editor

HDL and I/O Standard 
Assignment Editor 
setting

OBUF, 4, 8, 16 Single and Multiple 
Output Buffers

WIRE assignment HDL

OBUF_<selectable I/O standard> Output Buffer with 
selectable I/O interface

WIRE and I/O 
Assignment with the 
Assignment Editor

HDL and I/O Standard 
Assignment Editor 
setting

OBUFG_<selectable I/O standard> Output Global Buffer 
with selectable I/O 
interface

WIRE and I/O 
Assignment with the 
Assignment Editor

HDL and I/O Standard 
Assignment Editor 
setting

SRL16 16-Bit Shift Register 
Look-Up-Table (LUT)

LPM_SHIFTREG or 
ALTSHIFT_TAPS

Altera MegaWizard
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1 The following is a sample of I/O standards that are supported 
by primitives with the <selectable I/O standard> parameter listed 
in Table 5: LVTTL (default), AGP, CTT, GTL, HSTL_I, 
LVCMOS2, LVCMOS18, LVDS, LVPECL, PCI33_3, PCI33_5, 
PCI66_3, PCIX, PCIX66_3, SSTL18_I, SSTL2_I, SSTL3_I, and 
SSTL3_II.

The following methods can be used to replace Xilinx primitives with 
Altera equivalents.

■ Replace the primitive with an equivalent Altera primitive
■ Replace the primitive with a user assignment in the Quartus II 

Assignment Editor, such as an I/O standard assignment
■ Replace the primitive with an equivalent Altera function generated 

using the MegaWizard Plug-In Manager

Input, output, or bidirectional buffers are automatically inserted by the 
Quartus II Compiler. As a result, remove input, output, and bidirectional 
buffers used in a Xilinx design. A simple wire assignment is shown in the 
Verilog HDL code samples below. Before wire conversion:

module top (a, b, c, clk);

input a, b, clk;
output c;

reg c;
wire clk_out;

//global buffer instantiation
BUFG inst1 (.I (clk), .O (clk_out));

always @ (posedge clk_out)
begin

c<=a & b;
end

endmodule

After wire conversion:

module top (a, b, c, clk);

input a, b, clk;
output c;

reg c;
wire clk_out;

//no need for buffer
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//BUFG inst1 (.I (clk), .O (clk_out));

//simple wire assignment
assign clk_out = clk;

always @ (posedge clk_out)
begin

c<=a & b;
end
endmodule

As an alternative to creating a wire to replace the buffers, you can also 
delete them. The Quartus II software automatically inserts the 
appropriate buffers in the design. Deleting these buffers requires that you 
replace the output of the buffer with the input into the buffer in your 
HDL. The following is an example of this process (in both VHDL and 
Verilog HDL):

module top (a, b, c, clk);
input a, b, clk;
output c;
reg c;

//no need for wire
//wire clk_out;
//no need for buffer
//BUFG inst1 (.I (clk), .O (clk_out));
//replaced clk_out port with clk port

always @ (posedge clk) 
begin
     c<=a & b;
end
endmodule

The following shows deletion of an input buffer in VHDL:

ENTITY top IS
    PORT(
        a, b  : IN std_ulogic;
        clk  : IN std_ulogic;
        c       : OUT std_ulogic
        );
END top;
ARCHITECTURE behave OF top IS
--no need for clk_out signal
--signal clk_out : std_ulogic;
--no need of BUFG component
--component BUFG
--port (O : out STD_ULOGIC;
--I : in STD_ULOGIC);
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--end component;
BEGIN
--no need for port map
--inst1 : BUFG port map (O => clk_out, I => clk);
--replaced clk_out port with clk port
    PROCESS(clk)
    BEGIN
            IF (clk'event and clk = '1') then 

c <= a AND b;
            END IF;
    END PROCESS;
END behave;

Xilinx I/O standard primitives are converted into Quartus II assignments 
using the Assignment Editor. I/O standard assignments are not required 
to be declared within your HDL when designing with the Quartus II 
software. Instead you use the Assignment Editor to make I/O standard 
assignments. Figure 15 shows an I/O standard assignment with the 
Assignment Editor.

Figure 15. I/O Standard Assignment with the Assignment Editor
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RAM 
Architecture 
Functional 
Specifications

Stratix and Stratix GX devices feature the TriMatrix™ memory structure, 
composed of three sizes of embedded RAM blocks. TriMatrix memory 
includes 512-bit M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM 
blocks, each of which can be configured to support a wide range of 
features.

1 Cyclone™ devices contain M4K blocks only. 

Table 8 summarizes the features supported by the three sizes of the 
TriMatrix memory in Stratix, Stratix GX and Cyclone devices.

Table 8. Summary of RAM Architectural Features in Stratix, Stratix GX, and 
Cyclone Devices Note (1) (Part 1 of 2)

Feature M512 Block M4K Block M-RAM Block

Total RAM bits 
(including parity 
bits)

576 4608 589,824

Parity bits v v v

Byte Enable v v

Single-port 
memory v v v

Simple dual-port 
memory v v v

True dual-port 
memory v v

Embedded shift 
register v v

Simple dual-port 
mixed width 
support

v v v

True dual-port 
mixed width 
support

v v

Memory 
initialization (.mif 
and . hex)

v v

Mixed-clock mode v v v
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Differences exist in the RAM structure supported by Altera devices and 
Xilinx devices. These differences are detailed in the following sections. 

Read-during-Write Operation at the Same Address

For RAM in Altera devices, there are two types of read-during-write 
operations: same-port and mixed-port. Figure 16 shows the output of the 
RAM during a write operation.

Figure 16. Same-Port Read-during-Write Functionality

In mixed-port read-during write operations, the same memory location is 
written to on one port and simultaneously read from a different port 
using the same clock for both.

Power-up 
condition

Outputs cleared Outputs cleared Outputs unknown

Register clears Input and output 
registers (2)

Input and output 
registers (3)

Output registers

Same-port read-
during-write

New data available 
at positive clock 
edge

New data available 
at positive clock 
edge

New data 
available at 
positive clock 
edge

Mixed-port read-
during-write

Outputs set to 
unknown or old 
data

Outputs set to 
unknown or old 
data

Unknown output

Notes to Table 8:
(1) Cyclone devices do not contain M512 and M-RAM blocks.
(2) The rden register on the M512 memory block does not have a clear port.
(3) On the M4K block, asserting the clear port of the rden and byte enable 

registers drives the output of these registers high.

Table 8. Summary of RAM Architectural Features in Stratix, Stratix GX, and 
Cyclone Devices Note (1) (Part 2 of 2)

Feature M512 Block M4K Block M-RAM Block

inclock

data_in

wren

data_out A

BA

Old
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The READ_DURING_WRITE_MODE_MIXED_PORTS parameter for M512 
and M4K memory blocks determines whether to output the old data at 
the address or a “don’t care” value. Setting this parameter to OLD_DATA 
outputs the old data at that address. Setting this parameter to 
DONT_CARE outputs an unknown value. See Figures 17 and 18 for sample 
functional waveforms showing this operation. These figures assume that 
the outputs are not registered.

Figure 17. Mixed-Port Read-during-Write: OLD_DATA

Figure 18. Mixed-Port Read-during-Write: DON'T_CARE

1 Designs containing Xilinx RAM read-during-write modes not 
supported by Altera RAM need to be modified.
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Table 9 lists the output of the RAM during read-during-write operation 
at the same address for Altera RAM and Xilinx RAM (Virtex-II and 
Virtex-II PRO only).

Byte Enable

In M4K and M-RAM blocks, byte enables can mask the input data so that 
only specific bytes of data are written. The unwritten bytes retain the 
previous written value. Memory in Xilinx devices does not support this 
feature.

f For more information on the byte enable feature, see the TriMatrix 
Embedded Memory Blocks in Stratix & Stratix GX Devices chapter in 
volume 2 of the Stratix Device Handbook.

SRVAL Constraint

In Virtex-II and Virtex-II Pro, the SRVAL constraint initializes the output 
of the memory to a user-defined value when the SSR signal is asserted. 
Memory in Altera devices does not support this feature.

Memory Port Configurations

Memory in Altera and Xilinx devices can be configured as single-port, 
simple dual-port, and true dual-port RAM:

■ Single-port: Single-port mode supports non-simultaneous reads and 
writes.

Table 9. Read-During-Write Operation Comparison in Altera RAM and Xilinx RAM

Feature Virtex-II and 
Virtex-II PRO RAM

Altera M512 Block 
(1)

Altera M4K Block 
(1) (2)

Altera M-RAM 
Block (1)

Same-port read-
during-write

The following modes 
are supported
1.READ_FIRST
2.WRITE_FIRST
3.NO_CHANGE

New data available 
at positive edge of 
the clock

New data available 
at positive edge of 
the clock

New data available 
at positive edge of 
the clock

Mixed-port read-
during-write

The following modes 
are supported
2.WRITE_FIRST
3.NO_CHANGE

Outputs set to 
unknown or old data

Outputs set to 
unknown or old data

Unknown output

Notes to Table 9:
(1) Included in Stratix and Stratix GX devices.
(2) Included in Cyclone devices.
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■ Simple dual-port: Simple dual-port mode supports a simultaneous 
read and write. 

■ True dual-port: True dual-port mode supports any combination of 
two-port operations: two reads, two writes, or one read and one 
write at two different clock frequencies.

The table below compares the different port configurations supported by 
Altera and Xilinx RAM.

RAM Stitching

Stratix TriMatrix memory structures are optimized to implement 
different types of memory functions, providing a complete coverage of 
RAM applications. For example, the small M512 blocks are used for small 
first-in first-out (FIFO) functions. The M4K blocks are ideal for 
applications requiring medium-sized memory, such as asynchronous 
transfer mode (ATM) cell processing.

1 When creating memory modules with the MegaWizard Plug-In 
Manger, the stitching of RAM is not required. The MegaWizard 
Plug-In Manager will combine the appropriate TriMatrix 
memory blocks together to create the required memory width 
and depth.

The memory implemented in Xilinx distributed RAM modules can be 
combined together in the M512 or M4K blocks in Altera devices for better 
performance and more efficient use of logic resources. Similarly, smaller 
RAM modules created using Xilinx 18Kb Block RAMs can be transferred 
to Altera M4K or M512 blocks to use RAM resources most efficiently. See 
“RAM Stitching Example” on page 48 for examples of RAM stitching.

Table 10. RAM modes supported in Altera RAM and Xilinx RAM

Feature M512 Block
(1)

M4K Block 
(1) (2)

M-RAM Block 
(1)

Xilinx 
Distributed 

RAM

Xilinx Block 
RAM

Single-Port v v v v v

Simple Dual-Port v v v v v

True Dual-Port v v v

Notes to Table 10:
(1) Included in Stratix and Stratix GX devices.
(2) Included in Cyclone devices.
Altera Corporation  41
Preliminary



Altera Design Flow for Xilinx Users RAM Architecture Functional Specifications
1 The altsyncram megafunction can be configured to 
automatically assign the most appropriate RAM module for the 
requested amount of memory. For more information, see 
“Creating Altera RAM Using the MegaWizard Plug-In 
Manager” on page 47.

Converting Asynchronous RAM to Synchronous RAM

This section describes how to convert Xilinx asynchronous distributed 
RAM to Altera synchronous RAM. 

Xilinx distributed RAM supports synchronous write and asynchronous 
read operations. Xilinx Block RAM supports synchronous read and write 
operations. Altera RAM supports synchronous write and read for M512, 
M4K and M-RAM blocks. In addition, Altera RAM has an optional output 
register.

Where RAM has input and/or output registers in slices with no 
combinatorial logic between them, the design needs to be modified so 
that the Altera RAM absorbs the slice input and output registers. The 
converted design will have the same latency as the original design.

Where distributed RAM has no input register, the only option is to 
directly replace Xilinx asynchronous distributed RAM with Altera 
synchronous RAM. Latency of the converted design will change from 0 to 
1. To maintain the functionality of the original design, modification may 
be required.

Figure 19 illustrates a situation when combinatorial logic exists between 
the input register and the RAM. In this example, the data will be valid on 
the output two clock cycles after the address is valid at the input.

Figure 19. Original Xilinx Design With Combinatorial Logic Between the Registers and the RAM

Combinatorial 
Logic

Xilinx RAM

INPUT

OUTPUT
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The first option for solving this problem uses straight replacement of 
Xilinx memory with Altera memory as indicated in Figure 20 below. 
When an address is valid on the input, the data will be valid on the output 
three clock cycles later. The latency of the design is increased by one clock 
cycle. To maintain the functionality of the original design, the converted 
design might need modifications.

Figure 20. Replacement of Xilinx RAM with Altera RAM

The second option for solving this problem replaces Xilinx memory with 
Altera memory, inverting the clock (Figure 21). This option does not add 
any additional cycles of latency. When address is valid on the input, the 
data will be valid on the output two clocks later. However, meeting 
timing requirements can be a challenge with this approach. The input 
signal has only one half of a clock cycle to propagate from register 1 to 
register 2. The following timing equation has to be satisfied for the design 
to function without errors:

where:

TCO (Register 1) = the clock to output time of register 1
T(Combinatorial logic) = the time taken for the data to propagate through 
the combinatorial logic
TSU (Register 2) = the setup time of register 2
T = the time period of the input clock

Combinatorial 
Logic

RAM

CLOCK

OUTPUT

Altera RAM

INPUT

TCO (Register 1)  +  T (Combinatorial Logic)  +  TSU (Register 2)    < T
2
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Figure 21. Substitution of Xilinx Memory with Altera Memory, Inverting the Clocks

After you convert an asynchronous RAM to a synchronous RAM, check 
latency of the converted design. Further changes may be needed to 
maintain functionality of the original design. Make sure the timing 
parameters of the converted RAM are within timing budget limitations. 
Perform timing/functional simulation to ensure the converted design 
functions as expected.

Port Mapping Between Altera RAM and Xilinx RAM

Table 11 lists the altsyncram megafunction ports (when used in true 
dual-port mode) and the corresponding Xilinx Block RAM primitive 
ports.

Combinatorial 
Logic

RAM

CLOCK

OUTPUT

Altera RAM

INPUT

Register 1 Register 2

Register 3

Table 11. Port Mapping from the Xilinx Block RAM Primitive to the Altera 
altsyncram Megafunction in True Dual Port Mode (Part 1 of 2)

Feature Altera altsyncram 
Megafunction Xilinx Block RAM

Address Port A address_a ADDRA

Data Port A data_a DIA

Write Enable Port A wren_a WEA

Enable Port A enable_a ENA

Synchronous Initialization Port A See Table 13 SINITA

Clock Port A clock_a CLKA

Output Port A q_a DOA

Address Port B address_b ADDRB

Data Port B data_b DIB
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Table 12 lists the altsyncram megafunction ports (when used in 
single-port and simple dual-port modes) and the corresponding Xilinx 
distributed RAM primitive ports.

Write Enable Port B wren_b WEB

Enable Port B enable_b ENB

Synchronous Initialization Port B See Table 13 SINITB

Clock Port B clock_b CLKB

Output Port B q_b DOB

Table 12. Port Mapping from Xilinx Distributed RAM Primitive to the Altera 
altsyncram Megafunction in Single Port and Simple Dual Port Modes

Feature Altera altsyncram 
Megafunction Xilinx Distributed RAM

Data Port data D

Write Address Port wraddress A

Read Address Port rdaddress DPRA

Read Enable Port rden -

Write Clock Port wrclock WCLK

Read Clock Port rdclock -

Write Enable Port wren WE

Read Clock Enable Port rdclocken -

Write Clock Enable Port wrclocken -

Clear for Read Port rd_clr -

Clear for Write Port wr_clr -

Output q DPO

Table 11. Port Mapping from the Xilinx Block RAM Primitive to the Altera 
altsyncram Megafunction in True Dual Port Mode (Part 2 of 2)

Feature Altera altsyncram 
Megafunction Xilinx Block RAM
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Table 13 lists the altsyncram megafunction ports and the 
corresponding Xilinx Block RAM CoreGen module ports.

Table 14 lists the altsyncram megafunction ports (when used in single 
port and simple dual port modes) and the corresponding Xilinx 
distributed RAM CoreGen module ports.

Table 13. Port Mapping from the Xilinx Block RAM CoreGen Module to the 
Altera altsyncram Megafunction in True Dual Port Mode

Feature Altera altsyncram 
Megafunction Xilinx Block RAM

Address Port A address_a ADDRA

Data Port A data_a DINA

Write Enable Port A wren_a WEA

Enable Port A enable_a ENA

Synchronous 
Initialization Port A

See Table 11 and 
Table 12

SINITA

Clock Port A clock_a CLKA

Output Port A q_a DOUTA

Address Port A address_b ADDRB

Data Port A data_b DINB

Write Enable Port A wren_b WEB

Enable Port A enable_b ENB

Synchronous 
Initialization Port B

See Table 11 and 
Table 12

SINITB

Clock Port A clock_b CLKB

Output Port A q_b DOUTB

Table 14. Port Mapping from the Xilinx Block RAM CoreGen Module to the 
Altera altsyncram Megafunction in Single Port an Simple Dual Port 
Modes (Part 1 of 2)

Feature Altera altsyncram 
Megafunction Xilinx Distributed RAM

Write Address wraddress A

Input Clock inclock CLk

Data Input data D

Write Enable wren WE

Input Clock Enable inclocken I_CE
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Creating Altera RAM Using the MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager is a GUI that enables users to quickly 
and easily specify parameters for Altera-specific functions. Using the 
MegaWizard Plug-In Manager, the Memory Compiler can be used to 
instantiate single- and multi-port RAM in Stratix, Stratix GX, and Cyclone 
devices. The following options allow you to customize the megafunctions 
contained in the Memory Compiler to meet requirements.

■ The altsyncram function can be used in one of the following ways:

● With one read port (ROM mode)
● With one read/write port (Single-port mode)
● With one read and one write port (Simple dual-port mode)
● With two read/write ports (True dual-port mode)

■ You can specify the memory size in terms of number of bits or 
number of words

■ You can select the width and depth of RAM

■ You can select different widths for different ports

■ There are three options available to select the clocking scheme for the 
RAM:

Read Address rdaddress DPRA

Output Clock Enable outclocken QDPO_CE

Non-registered Output q DPO

Registered Output q QDPO

Output Asynchronous 
Reset

out_aclr (1) QDPO_RST

Output Synchronous 
Reset

out_aclr (1) QDPO_SRST

Output Clock outclock QDPO_CLK

Note to Table 14: 
(1) altsyncram does not support synchronous and asynchronous reset. The port can 

be connected to the “out_aclr” port.

Table 14. Port Mapping from the Xilinx Block RAM CoreGen Module to the 
Altera altsyncram Megafunction in Single Port an Simple Dual Port 
Modes (Part 2 of 2)

Feature Altera altsyncram 
Megafunction Xilinx Distributed RAM
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● Single clock
● Dual clock-use separate ‘read’ and ‘write’ clocks
● Dual clock-use separate ‘input’ and ‘output’ clocks

■ Option to turn the output register on or off

■ Option to create asynchronous clear and enable signals

■ Four options to select the TriMatrix memory block type to be used to 
implement the memory function. Choosing Auto allows Quartus II 
software to choose the TriMatrix block type during compilation. 
Alternately, choosing M512, M4K, or M-RAM options specify the 
TriMatrix block to be used.

■ The initial memory content can be specified by using a Memory 
Initialization File (.mif) or Hexadecimal (Intel-Format) file (.hex)

f For more information on the altsyncram megafunction, refer to AN 
207: TriMatrix Memory Selection using the Quartus II Software.

Examples

This section contains examples on RAM stitching and Verilog code before 
and after RAM conversion.

RAM Stitching Example

In this example, four Xilinx 128 ×1S distributed RAM modules are 
stitched together to form one 512 ×1 RAM block (Figure 22). The extra 
logic and routed resources required to stitch up the RAMs can be saved 
by implementing a 512 ×1 sized RAM in an Altera M512 Block.
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Figure 22. Four Xilinx RAM128x1 RAM Modules Converted to One Altera M512 Block

RAM Limiting Example

In Figure 23, the 18Kb Xilinx block RAM is being used as a 4K RAM block 
by grounding two address bits. RAM resources are not being used 
efficiently since 8K RAM bits cannot be accessed. The same design can be 
implemented in one Altera M4K block. 

Figure 23. Xilinx 16K Block RAM Converted to Altera M4K RAM

Example Verilog Code Containing Xilinx RAM Modules Before and After 
Conversion

In this section sample Verilog code targeting a Xilinx Virtex-II device is 
converted to target Altera Stratix, Stratix GX, or Cyclone devices. Below 
is the original Verilog code targeting a Virtex-II device. A 512 × 36 RAM 
is instantiated by the RAMB16_S36_S36 Xilinx primitive.
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The following is Verilog code targeting a Xilinx Virtex-II device:

module 512x36dualport (CLKA, ENA, SSRA, WEA, ADDRA, DIA, DOA, 
CLKB, ENB, SSRB, WEB, DDRB, DIB, DOB, DOPA, DOPB, DIPA, DIPB);

input CLKA; // Port A clock
input ENA; // Port A select
input SSRA; // Port A reset, active low
input WEA; // Port A direction control, 1=write
input [ 8:0] ADDRA; // Port A address
input [31:0] DIA; // Port A input data
input [ 3:0] DIPA; // Port A input data parity
output [31:0] DOA; // Port A output data
output [3:0] DOPA; // Port A output data parity
input CLKB; // Port B clock
input ENB; // Port B select
input SSRB; // Port B reset, active low
input WEB; // Port B direction control, 1=write
input [8:0] ADDRB; // Port B address
input [31:0] DIB; // Port B input data
input [ 3:0] DIPB; // Port B input data parity
output [31:0] DOB; // Port B output data
output [3:0] DOPB; // Port B output data parity

RAMB16_S36_S36 ram(  .ADDRA(ADDRA),
.CLKA(CLKA),
.DIA(DIA),
.DIPA(DIPA),
.WEA(WEA),
.ENA(ENA),
.SSRA(SSRA),
.DOA(DOA),
.DOPA(DOPA),
.ADDRB(ADDRB),
.CLKB(CLKB),
.DIB(DIB),
.DIPB(DIPB),
.WEB(WEB),
.ENB(ENB),
.SSRB(SSRB),
.DOB(DOB),
.DOPB(DOPB));

endmodule;

To target the sample Verilog code to Altera devices, only the 
RAMB16_S36_S36 module was altered. The following changes were 
made to the original Verilog code:

■ The data and parity inputs in Xilinx RAM have different input ports. 
In Altera RAM, parity and data inputs have the same ports. To 
account for this difference, the following modification was made to 
the code.

assign data_in_a ={DIPA, DIA}
assign data_in_b ={DIPB, DIB} 
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■ The data and parity outputs from the Xilinx RAM have different 
output ports (DOA, DOPA). For Altera RAM, the most significant 
bits of the q_a/b ports correspond to the parity bits. To account for 
this difference, the following modification was made to the code.

assign DOA = data_out_a[31:0];
assign DOPA = data_out_a[35:32];
assign DOB = data_out_b[31:0];
assign DOPB = data_out_a[35:32]; 

■ The ramb16_s36_s36_altera module was created from the 
altsyncram megafunction using the MegaWizard Plug-In 
Manager. The MegaWizard Plug-In Manager generates a 
RAM16_s36_s36_altera.vhd file that should be included with the 
512x36dualport module during compilation. 

This portion of the code replaces the RAMB16_S36_S36 module in the 
original code. Everything else remains the same.

wire [36:0] data_in_a, data_in_b, data_out_a, data_out_b;
assign data_in_a = {DIPA, DIA};
assign data_in_b = {DIPB, DIB};

ramb16_s36_s36_alteraramb16_s36_s36_altera_inst (
data_a ( data_in_a ),
wren_a ( WEA ),
address_a ( ADDRA ),
data_b ( data_in_b ),
address_b ( ADDRB ),
wren_b ( WEB ),
clock_a ( CLKA ),
enable_a ( ENA ),
clock_b ( CLKB ),
enable_b ( ENB ),
q_a ( data_out_a ),
q_b ( data_out_b ) );

assign DOA = data_out_a[31:0];
assign DOPA = data_out_a[35:32];
assign DOB = data_out_b[31:0];
assign DOPB = data_out_b[35:32];

DCM and DLL 
Conversion

To increase device and board-level performance, some Altera and Xilinx 
FPGA device families offer support for phase-locked loops (PLLs) and 
digital clock managers (DLL / DCM) respectively. These specialized 
blocks allow you to minimize clock skew and clock delay and provide 
support for clock synthesis.
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Architectural Description

In place of the DLLs / DCMs provided for clock skew, frequency 
synthesis, and phase shifting in the Xilinx Spartan-IIE, Virtex-II and 
Virtex-II Pro families (see Figure 24), Altera Stratix devices contain two 
types of PLLs: enhanced PLLs and fast PLLs. The enhanced PLLs provide 
you with complete control over clocks and system timing. The fast PLLs 
provide general-purpose clocking with multiplication and phase shifting 
as well as high-speed output for high-speed differential I/O support.

Figure 24. Virtex-II DCM

Enhanced PLLs

The enhanced PLLs available in Stratix devices are highly versatile and 
robust PLLs that support the following features:

■ Clock multiplication and division 
■ Clock switchover
■ Phase and delay shifting
■ Clock feedback
■ PLL reconfiguration
■ Programmable bandwidth
■ External clock outputs
■ Spread-spectrum clocking
■ Lock detect and programmable gated lock
■ Programmable duty cycle
■ Advanced clear and enable control 
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This section will briefly cover clock multiplication and division, clock 
switchover, phase and delay shifting, and clock feedback. Figure 25 
shows a block diagram of the signals used by an enhanced PLL.

Figure 25. Enhanced PLL Signals

f For more detailed information on Stratix enhanced PLLs, refer to the 
General-Purpose PLLs in Stratix & Stratix GX Devices chapter in volume 2 
of the Stratix Device Handbook.

Clock Multiplication and Division

Enhanced PLLs perform clock multiplication and division using 
m / (n × post-scale counter) as scaling factors for the output of the PLL. 
The input clock is divided by a pre-scaler divider, n, and is then 
multiplied by the m feedback factor. This ability allows you to customize 
each output of the enhanced PLL to the requirements of your design.

Virtex-II DCM limits you to 3 customizable output ports; CLKDV, CLKFX, 
and CLKFX180 for clock multiplication and division. The output port 
CLKDV supports clock division in the form of (1/n) × CLK0. CLKFX 
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provides clock multiplication in the form of (CLKFX_MULTIPLY_value 
/ CLKFX_DIVIDE_value) × CLK0. CLKFX180 is limited to the same 
frequency multiplication as CLKFX except with a 180° shift.

Clock Switchover

Stratix-enhanced PLLs offer a flexible clock switchover capability 
unavailable in the Virtex-II Pro DCM. This configurable capability in 
Stratix devices provides an effective means of developing high-reliability 
systems which must contain multiple clocks to provide redundancy. 
Clock-sense circuitry automatically switches from the PLL reference 
primary clock to the secondary clock when the primary clock signal is not 
present.

Phase and Delay Shifting

Phase shifting is implemented in the Stratix enhanced PLLs by specifying 
a phase shift (in degrees or time units) for each PLL clock output port or 
for all outputs together. In addition to the phase-shift feature, the fine 
tune clock delay shift feature provides advanced time delay shift control 
on each of the four PLL outputs. Each PLL output shifts in 250-ps 
increments for a range of +/-3.0 ns between any two outputs using 
discrete delay elements.

Phase shifting is also supported by Virtex-II Pro DCM defined attributes 
associated with the DCM instantiation.

Clock Feedback

Stratix enhanced PLLs support the following clock feedback modes:

■ Zero delay buffer: The external clock output pin is phase-aligned 
with the clock input pin for zero delay.

■ External feedback: The external feedback input pin, FBIN, is 
phase-aligned with the clock input, CLK, pin. Aligning these clocks 
allows the designer to remove clock delay and skew between 
devices. 

■ Normal mode: If an internal clock is used in this mode, it is 
phase-aligned to the input clock pin. The external clock output pin 
will have a phase delay relative to the clock input pin if connected in 
this mode.

Fast PLLs

To complement the enhanced PLLs, Stratix devices also provide fast PLLs 
with high-speed differential I/O interface ability and general-purpose 
features. The fast PLLs support the following features:
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■ Clock multiplication and division
■ External clock inputs
■ External clock outputs
■ Phase shifting
■ Control signals

This section will briefly cover clock multiplication and division and 
external clock inputs.

f For more detailed information on Stratix enhanced PLLs, refer to the 
General-Purpose PLLs in Stratix & Stratix GX Devices chapter in volume 2 
of the Stratix Device Handbook.

Clock Multiplication and Division

Fast PLLs provide clock synthesis for PLL output ports using m / (post 
scaler) scaling factors. The input clock is multiplied by the m feedback 
factor. Each output port has a unique post scale counter to divide down 
the high-frequency VCO. 

In the case of a high-speed differential interface, you can set the output 
counter to 1 to allow the high-speed VCO frequency to drive the dedicated 
serializer/deserializer (SERDES) circuitry.

External Clock Inputs

Each fast PLL supports single-ended or differential inputs for 
source-synchronous transmitters or for general-purpose use. 
Source-synchronous receivers support differential clock inputs. 

Converting DLLs / DCMs

You can easily convert DCMs that target a Xilinx device into PLLs in an 
Altera device using the MegaWizard Plug-In Manager. Unlike the 
Virtex-II DCM, which requires specific input buffers to feed into the 
source clock port of the DCM, e.g., IBUF, IBUFG, or BUFGMUX, PLLs in 
Altera devices do not require input buffers.

When converting DCMs, you can use the altpll megafunction. This 
megafunction will allow you to create and customize your PLLs targeting 
Stratix, Stratix GX, or Cyclone device families. 
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Table 15 summarizes the port mapping between the DCM and the 
altpll megafunction.

As shown in Table 15, all outputs of altpll can be configured to support 
any of the clock synthesis ports of the DCM. This allows you to combine 
multiple DCMs into one instance of the altpll megafunction. For 
example, to implement a multiplication factor of 2/3 and 6/5, you would 
require two CLKFX ports in a Xilinx device. However, one altpll 
instance can achieve the same functionality by applying the 
multiplication factor of 2/3 to clock c0 and applying 6/5 to clock c1 or 
vice versa.

Implementing Altera PLLs Using the MegaWizard Plug-In 
Manager

The altpll megafunction allows you to configure either the enhanced 
or fast PLL in Stratix or Stratix GX devices. This megafunction will also 
allow you to configure PLLs in Cyclone devices. This section is a brief 
description of altpll megafunction creation using the MegaWizard.

The third page of the altpll megafunction in the MegaWizard Plug-In 
Manager allows you to customize the general settings of the PLL, such as 
the PLL type to be used (enhanced or fast), clock frequency into the PLL, 
and the creation of optional ports. Figure 26 shows the first page of the 
altpll megafunction.

Table 15. Port Mapping Comparison of DCM and altpll.

Xilinx Port Altera Port Comment

CLKIN inclk0

CLKFB fbin

RST areset

PSINCDEC Not Supported

PSEN Not Supported

PSCLK Not Supported

PSDONE Not Supported

CLK0, CLK90, CLK180, 
CLK270, CLK2X, 
CLK2X180, CLKDV, 
CLKFX, CLKFX180 

Supported by all outputs 
of ALTPLL

Set the output of the PLL 
to correspond to that of 
the output of the DCM

LOCKED locked

STATUS[7:0] Not Supported
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Figure 26. Page 3 of the altpll Megafunction in the MegaWizard Plug-In Manager

Page 4 allow you to set parameters for the scan and lock, bandwidth and 
spread spectrum, and clock switchover capabilities of the PLL.

Pages 5 through 7 allow you to customize the outputs of the PLL feeding 
into the core of the device such as multiplication factor, division factor, 
and phase shifts.

Page 8 allows you to check or uncheck files that are created by the 
MegaWizard Plug-In Manager.

f For more information on the altpll Megafunction, refer to the altpll 
Megafunction User Guide.

Multiplier 
Conversion

The basic building blocks of all Digital Signal Processing (DSP) 
applications are high-performance multiply-adders and 
multiply-accumulators. To address this requirement in FPGA devices, 
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Altera’s Stratix devices offer dedicated DSP blocks, combining five 
arithmetic operations—multiplication, addition, subtraction, 
accumulation, and summation—into a single block. Xilinx’s Virtex II Pro 
devices are limited to offering only embedded multipliers to perform 
multiplications only.

Architectural Description

You can configure a single Stratix DSP block to perform any of the 
following functions:

■ Simple multiply
■ Multiply accumulate
■ Multiply add

The dedicated multipliers in Virtex-II are known as Embedded 
Multipliers. These multipliers provide a dedicated 18 × 18 multiplication 
function in either combinatorial or pipelined form.

Simple Multiplier Mode

In simple multiplier mode, the Stratix DSP block performs individual 
multiplication operations. This mode allows you to configure a single 
DSP block to perform one of the following operations:

■ Eight 9 × 9 bit multiplications
■ Four 18 × 18 bit multiplications
■ One 36 × 36 bit multiplication

The multiplier operands can accept signed integers, unsigned integers, or 
a combination as determined by the signa and signb signals. Figure 27 
shows the simple multiplier mode.
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Figure 27. Stratix DSP Block in Simple Multiplier Mode

You can implement various independent multipliers or a single large 
multiplier using a single DSP block. This preserves valuable logic 
resources when creating simple multipliers. 

Multiply Accumulate Mode

In multiply accumulate mode, the output of the multiplier stage feeds the 
adder/output block, which is configured as an accumulator or 
subtractor. You can implement up to two independent 18-bit multiply 
accumulators in one DSP block. Figure 28 shows multiply accumulate 
mode.
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Figure 28. Stratix DSP Block in Multiply Accumulate Mode

Virtex-II Embedded multipliers require additional logic resources to 
carry out the same multiply accumulator mode.

1 In multiply accumulator mode, Stratix DSP blocks are also 
capable of implementing adder and accumulator functionality 
previously implemented in the slices of Xilinx devices.

Multiply Add Modes

There are two multiply add modes: two-multiplier adder and 
four-multiplier adder.

Two-Multiplier Adder
In this mode, the DSP block outputs two sums or differences for 
multipliers up to 18 bits, or four sums or differences for 9-bit or smaller 
multipliers. A single DSP block can implement one 18 × 18-bit complex 
multiplier or two 9 × 9-bit complex multipliers. 

A complex multiplication can be written as:

(a + jb) × (c + jd) = (a × c - b × d) + j × (a × d + b × c)
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In this mode, a single DSP block calculates the real part (a × c - b × d) 
using one adder/subtractor/accumulator and the imaginary part (a × d 
+ b × c) using another adder/subtractor/accumulator for data up to 18 
bits. Figure 29 shows an 18-bit complex multiplication. 

Figure 29. Complex Multiplier Implemented Using Two-Multiplier Adder Mode

1 The multiply add modes of Stratix DSP blocks are also capable 
of implementing adder and accumulator functionality 
previously implemented in the slices of Xilinx devices.

Four-Multiplier Adder Mode
In the four-multiplier adder mode, which you can use for 1-dimensional 
and 2-dimensional filtering applications, the DSP block adds the results 
of two adder/subtractor/accumulators in a final stage. Figure 30 shows 
four-multiplier adder mode.

Virtex-II embedded multipliers require additional logic resources to 
carry out the same multiplier adder modes.
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Figure 30. Stratix DSP Block in Four-Multiplier Adder Mode

f For more detailed information on Stratix’s DSP blocks, refer to the Using 
the DSP Blocks in Stratix & Stratix GX Devices chapter in volume 2 of the 
Stratix Device Handbook.
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Table 16 summarizes the resource comparison of implementing 
multipliers with Stratix’s DSP blocks to multipliers in Virtex-II Pro 
Embedded Multipliers.

f For more information on logic comparison, refer to the white paper An 
Analytical Review of FPGA Logic Efficiency in Stratix, Virtex-II & Virtex-II 
Pro.

Converting Multipliers

You can easily convert CoreGen Multipliers that target a Xilinx device 
into multipliers for an Altera device using the Quartus II MegaWizard 
Plug-In Manager. Similar to CoreGen multipliers, the Quartus II 
MegaWizard Plug In Manager multipliers can use either logic elements 
or the dedicated multiplier blocks in the device. 

When converting CoreGen multipliers, you can use either the lpm_mult 
or altmult_add megafunction. With both of these megafunctions, you 
can create multipliers that use logic elements or dedicated multipliers 
using Stratix or Stratix GX DSP blocks. 

Table 16. Resource Comparison of Implementing Multipliers with Stratix DSP Blocks vs. Implementing 
Multipliers In Virtex-II Pro Embedded Multipliers

Multiplier Size Stratix DSP Block 
Resources

Stratix Logic 
Element Resources

Virtex-II 18 × 18 
Multiplier Block 

Resources

Virtex II Logic 
Element Resources 

(3)

Signed 9x9 1/8 (1) 0 [0] (2) 1 0 [36] (2)

Signed 18x18 1/4 (1) 0 [0] (2) 1 0 [72] (2)

Signed 36x36 1 0 [0] (2) 4 326 [397] (2)

18 x 18 Multiply 
Accumulate

1/2 0 [0] (2) 1 49 [134] (2)

18 x 18 Complex 
Multiplication

1 0 [0] (2) 4 76 [153] (2)

Notes to Table 16:
(1) One DSP block can be configured as 8 independent 9 × 9 multipliers, 4 independent 18x18 multipliers, or 1 36 × 36 

multiplier.
(2) The numeric value in brackets [] indicates the number of LEs needed when both input and output signals are 

registered.
(3) This is the number of LE-equivalent elements.
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Use the following guidelines with the lpm_mult megafunction when 
replacing CoreGen multipliers.

■ Port B can either be a constant or dynamic value
■ Both input ports must be of the same sign

If your design does not meet these requirements, you can use the 
altmult_add megafunction to replace CoreGen multipliers.

The required options for the lpm_mult megafunction to operate in a 
similar manner as the CoreGen multiplier function are:

■ Disable the ‘sum’ input port option
■ Specify the sign of the multiplier
■ If a constant value is used for port B, specify this value
■ Specify a pipeline of 2 to register both inputs and outputs. Specify a 

pipeline of 1 to register only inputs. This value should match the 
output latency for the CoreGen multiplier.

Figure 31 shows the lpm_mult megafunction.

Figure 31. lpm_mult Megafunction

Table 17 summarizes the port mapping between the CoreGen multiplier 
and lpm_mult.

Table 17. CoreGen Multiplier and lpm_mult Port Mapping Comparison (Part 
1 of 2)

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE clken Clock Enable

CLK clock Clock Port

ACLR aclr Asynchronous Clear Port

dataa[7..0]

datab[7..0]

lpm_mult

result[15..0]

Unsigned
multiplication
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You can also use the altmult_add megafunction (Figure 32) to replace 
the CoreGen multiplier function if your design does not meet the 
requirements for the lpm_mult megafunction. You can register inputs 
and outputs with the altmult_add megafunction; the sign of port A can 
be dynamic, and the signs of the input ports can be different.

Q result with registered outputs set

O result Without registered outputs set

A_SIGNED N/A lpm_mult allows both ports to be either signed 
or unsigned

LOADB Not 
Supported

SWAPB Not 
Supported

SCLR Not 
Supported

LOAD_DONE Not 
Supported

RDY Not 
Supported

Hand Shaking Signal

RFD Not 
Supported

Hand Shaking Signal

ND Not 
Supported

Hand Shaking Signal

Table 17. CoreGen Multiplier and lpm_mult Port Mapping Comparison (Part 
2 of 2)

Xilinx Port Altera Port Comment
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Figure 32. altmult_add Megafunction

Table 18 summarizes the port mapping between CoreGen’s multiplier 
and the altmult_add megafunction.

Table 18. CoreGen multiplier and altmult_add Port Mapping Comparison

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE ena0 Clock Enable

CLK clock0

ACLR aclr3

Q result With registered outputs 
set

O result Without registered 
outputs set

A_SIGNED signa No Registering of port 
required

LOADB Not Supported

SWAPB Not Supported

SCLR Not Supported

LOAD_DONE Not Supported

RDY Not Supported Hand Shaking Signal

RFD Not Supported Hand Shaking Signal

ND Not Supported Hand Shaking Signal

dataa_0[15..0]

datab_0[15..0]

clock

altmult_add

result[15..0]

CD

CD

CD CD

MULT0
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Conversion of Virtex-II Pro’s MULT18 × 18 can also be converted using 
either the lpm_mult or altmult_add megafunction.

Implementing Altera DSP Blocks Using the MegaWizard Plug-In 
Manager

The MegaWizard Plug-In Manager provides you with three 
megafunctions to ease the integration and allow you to take full 
advantage of the DSP blocks in Stratix devices in your design. These 
megafunctions are lpm_mult, altmult_accum, and altmult_add.

The lpm_mult megafunction creates simple multipliers. The 
altmult_accum megafunction creates a single multiplier feeding an 
accumulator. The altmult_add megafunction creates one or more 
multipliers feeding a parallel adder.

This section shows how to create an altmult_add instance using the 
MegaWizard Plug-In Manager.

The altmult_add megafunction configures the DSP block into 
multiply add mode. The third page of the altmult_add megafunction 
in the MegaWizard Plug-In Manager configures the bus width and sign 
representation of the operands (see Figure 33).
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Figure 33. Page 3 of altmult_add MegaWizard Plug-In Manager

Page 4 of the altmult_add megafunction (Figure 34) creates optional 
ports, types of adder operation, and selects the type of device 
implementation to be used.
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Figure 34. Page 4 of the altmult_add in the MegaWizard Plug-In Manager

Page 5 (Figure 35) allows you to further customize the altmult_add 
megafunction by providing the ability to register the input and output 
ports.
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Figure 35. Page 5 of the altmult_add in the MegaWizard Plug-In Manager

f Third-party synthesis tools can infer Stratix DSP blocks in either VHDL 
or Verilog HDL. For more information on using the Synplify and 
Precision RTL tools in conjunction with the Quartus II software, refer to 
the Synplicity Synplify & Synplify Pro Support and Mentor Graphics 
Precision RTL Synthesis Support chapters in volume 1 of the Quartus II 
Handbook.

Examples

Figure 36 shows a generic multiplier block that has been created using the 
MegaWizard Plug-In Manager’s lpm_mult and CoreGen’s multiplier 
module. Figure 37 shows a functional simulation (using ModelSim®) of 
CoreGen’s 16 × 16 multiplier implemented in a Virtex-II Embedded 
Multiplier. Figure 38 shows the converted 16 × 16 multiplier using the 
lpm_mult implemented in a Stratix DSP block simulated in the 
Quartus II Simulator.
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Figure 36. Generic Multiplier Block

Figure 37. CoreGen 16 x 16 Embedded Multiplier with ModelSim XE

Figure 38. Simulation of a 16 x 16 Multiplier in a Stratix DSP Block Using Native Quartus II Simulation

The conversion of CoreGen multipliers with the altmult_add is similar 
to that of lpm_mult.
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You can also use the altmult_add megafunction, shown in Figure 39, to 
replace the CoreGen multiplier function if your design does not meet the 
requirements for the lpm_mult megafunction. You can register inputs 
and outputs with the altmult_add megafunction, the sign of port A can 
by dynamic, and the sign of the input ports can be different.

Figure 39. altmult_add Megafunction

Table 19 summaries the port mapping between CoreGen’s multiplier and 
altmult_add megafunction.

Table 19. CoreGen Multiplier and altmult_add Port Mapping Summary (Part 
1 of 2)

Xilinx Port Altera Port Comment

A dataa Data Input Port

B datab Data Input Port

CE ena0 Clock Enable

CLK clock0

ACLR aclr3

Q result With registered outputs set

O result Without registered outputs set

A_SIGNED signa No Registering of port required

LOADB N/A

SWAPB N/A

SCLR N/A

LOAD_DONE N/A

A

LOADB

SWAPB

RFD

RDY

O

Q

LOAD_DONE

A_SIGNED

B

CLK

ND

CE

SCLRACLR
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Double-Data 
Rate (DDR) I/O 
Conversion

This section contains information on the conversion of the dedicated 
DDR I/O function and architecture differences between Xilinx devices 
(Virtex-II, Virtex-II PRO and Spartan-3) and the Altera Stratix and 
Stratix GX product families.

Architectural Description

Stratix and Stratix GX devices have a dedicated DDR circuit in each of 
their I/O elements that streams serial data on both the rising and falling 
edges of the clock, effectively doubling the data rate. Xilinx Virtex-II, 
Virtex-II PRO and Spartan-3 also have a dedicated DDR function in their 
I/O blocks that handles timing somewhat differently.

f For more information, refer to the Altera Double Data Rate Megafunctions 
User Guide.

Figure 40 shows a functional block diagram of the Stratix and Stratix GX 
input DDR path.

Figure 40. Stratix and Stratix GX Input DDR Path

RDY N/A Hand Shaking Signal

RFD N/A Hand Shaking Signal

ND N/A Hand Shaking Signal

Table 19. CoreGen Multiplier and altmult_add Port Mapping Summary (Part 
2 of 2)

Xilinx Port Altera Port Comment
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Figure 41 shows a functional block diagram of the Stratix and Stratix GX 
output DDR I/O path configuration.

Figure 41. Stratix and Stratix GX Output DDR I/O Path Configuration

Figure 42 shows a functional block diagram of the Stratix and Stratix GX 
bidirectional DDR path.
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Figure 42. Stratix and Stratix GX Bidirectional DDR Path

DQ

DFF

I

DQ

LATCH

ENA

DQ

DFF

Input Reg A

Input Reg BLatch C

D Q

DFF

D Q

DFF

0
1

Output Reg Ao

Output Reg Bo

D Q

DFF

D Q

DFF

OR2

TRI I/O Pin

OE Reg B (3)OE

OE Reg AOE

Logic Array

Latch

dataout_l

dataout_h

outclock

datain_h

datain_l

oe

inclock

neg_reg_out

II

0
(2)

(1)

combout

1

(4)
Altera Corporation  75
Preliminary



Altera Design Flow for Xilinx Users Double-Data Rate (DDR) I/O Conversion
The Stratix and Stratix GX DDR input path has an extra latch to delay the 
low data by half a clock cycle. Consequently, high and low data appear in 
the LE at the same rising clock edge. The output path has a local clock 
inverter element on the low data register to optimize for performance and 
produce a 50% duty cycle.

The differences between Xilinx and Altera DDR I/O configurations are:

■ The high and low data in the input path appear at the FPGA LE at the 
same rising clock edge in Stratix and Stratix GX devices. In Xilinx 
devices, the high data appears at the rising edge and the low data at 
the falling edge.

■ The DCM is required to clock the DDR registers in Xilinx devices. 
Xilinx recommends that the 180º phase shift output is used as a 
second global clock network to feed the low data registers. Stratix 
and Stratix GX devices do not require the use of a second clock signal 
since the inversion is done locally.

■ Quartus II DDR megafunctions do not have synchronous set/reset. 
Also, the asynchronous set and reset signals cannot be used at the 
same time.

Because of these differences, timing discrepancies will occur after device 
programming when migrating DDR functionality to a design targeting 
Altera devices. Designers must take this into consideration and adjust the 
interfacing logic accordingly.

Converting DDR I/O

Xilinx ISE has several DDR primitives for input or output DDR 
configurations:

■ IFDDRCPE: Input DDR with asynchronous clear and preset and 
clock enable

■ IFDDRRSE: Input DDR with synchronous reset and set and clock 
enable

■ OFDDRCPE: Output DDR with asynchronous clear and preset and 
clock enable

■ OFDDRRSE: Output DDR with synchronous reset and set and clock 
enable

■ OFDDRTCPE: Output DDR with tristate, asynchronous clear and 
preset and clock enable

■ OFDDRTRSE: Output DDR with tristate, synchronous reset and set 
and clock enable

The Quartus II software includes 3 DDR megafunctions, available from 
the MegaWizard Plug-In Manager:
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■ altddio_in: for DDR input
■ altddio_out: for DDR output
■ altddio_bidir: for DDR bidirectional input/output

DDR Input Conversion

Table 20 lists the mapping of IFDDRCPE and IFDDRRSE Xilinx 
primitives to the Altera altddio_in megafunction.

Only the C0 port (data high clock signal) of the IFDDRCPE and 
IFDDRRSE primitives needs to be connected to the inclock port of the 
altddio_in megafunction. The C1 port (data low clock signal), which is 
normally connected to the output of the 180º output of the DCM or the 
inverted C0 signal, is not used during the mapping. The altddio_in 
megafunction automatically negotiates the relationship between the data 
high and the data low signals.

Since the appearance of the high and low data between Altera and Xilinx 
DDR functions are 180º apart, the FPGA logic interfacing with the 
incoming data may need to be adjusted accordingly.

Table 20. Mapping of IFDDRCPE and IFDDRRSE Xilinx primitives to the 
Altera altddio_in Megafunction

Xilinx Port Altera Port Comment

PRE / S aset altddio_in only supports 
asynchronous preset

D data_in[] Can combine multiple signals into a bus

CE inclocken

C0 inclock

C1 Not Applicable The negative clock edge signal is taken 
care of automatically by altddio_in

CLR / R aclr altddio_in only supports 
asynchronous clear

Q0 dataout_h[] Can combine multiple signals into a bus

Q1 dataout_l[] Can combine multiple signals into a bus
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DDR Output Conversion

Table 21 lists the mapping of IFDDRCPE and IFDDRRSE Xilinx 
primitives to Altera altddio_out megafunction.

Only the C0 port (the data high clock signal) of the IFDDRCPE and 
IFDDRRSE primitives must be connected to the outclock port of the 
altddio_out megafunction. The C1 port (data low clock signal), which 
is normally connected to the output of the 180º output of the DCM or the 
inverted C0 signal, is not used during the mapping. The altddio_out 
megafunction automatically negotiates of the relationship between the 
data high and the data low signals.

DDR Bidirectional Conversion

The Xilinx ISE software does not have a bidirectional DDR design 
element. A combination of input and output DDR primitives is used to 
achieve bidirectional DDR functionality. The combination of input and 
output DDR primitives located in the same I/O block must be replaced 
by the altddio_bidir primitive in a design targeting an Altera device. 
See “DDR Input Conversion” on page 77 and “DDR Output Conversion” 
on page 78 for port mapping information.

Table 21. Port Mapping Comparison of Xilinx DDR Output Primitives and the 
Altera altddio_out Megafunction

Xilinx Port Altera Port Comment

PRE / S aset altddio_out only supports 
asynchronous preset

D0 datain_h[] Can combine multiple signals into a bus

D1 datain_l[] Can combine multiple signals into a bus

CE outclocken

C0 outclock

C1 Not Applicable The negative clock edge signal is taken 
care of automatically by altddio_out

CLR / R aclr altddio_out only supports 
asynchronous clear

Q / O dataout[] Can combine multiple signals into a bus

T oe
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Implementing DDR I/O Using the Quartus II MegaWizard Plug-In 
Manager

The 3 DDR I/O megafunctions (altddio_in, altddio_out, and 
altddio_bidir) included with the Quartus II software are all 
parameterizable (Figure 43). (The DDR I/O megafunctions are found in 
the I/O category.) Once a megafunction is selected, the user can 
parameterize the target architecture, the data bus width, the use of clear 
and preset signals, and other parameters.

Figure 43. altddio_bidir Megafunction Parameters

Examples

An input DDR conversion in Verilog is shown below.

module IFDDRCPE (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
endmodule

module DDR_top (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
IFDDRCPE my_ddr (.PRE(PRE), 

.D(D), 
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.CE(CE), 

.C0(C0), 

.C1(C1), 

.CLR(CLR), 

.Q0(Q0), 

.Q1(Q1));
endmodule

After conversion, the code will look like the following:

module my_altddio_in (aset, data_in, inclocken, inclock, aclr,
datain_h, datain_l);

// This is the module created by the MegaWizard
input aset, data_in, inclocken, inclock, aclr;
output datain_h, datain_l;
endmodule

module DDR_top (PRE, D, CE, C0, C1, CLR, Q0, Q1);
input PRE, D, CE, C0, C1, CLR;
output Q0, Q1;
my_altddio_in my_ddr (.aset(PRE),

.data_in(D), 

.inclocken(CE), 

.inclock(C0), // C1 is not connected

.aclr(CLR), 

.datain_h(Q0), 

.datain_l(Q1));
endmodule

Constraints When designing for a Xilinx device, the User Constraint File (.ucf) 
contains the constraints and attributes for the design. This file is similar 
to the Quartus II Settings File (.qsf). The UCF file contains all of the 
design’s constraints and attributes, including timing requirements and 
location assignments. Since ISE does not report unconstrained paths, you 
must provide constraints for two purposes: to constrain the net (or 
instance), and to report the constraint. The Quartus II Timing Analyzer 
analyzes and reports on all paths in a design, therefore, constraints 
provided merely to report a constraint are not required. As a result, many 
constraints in the Xilinx tool are not necessary after converting your 
design into Altera’s Quartus II design environment.

Converting Constraints

Constraints specify what requirements are necessary for the design to 
function correctly. These constraints may include system performance, 
I/O timing requirements, or point-to-point timing requirements. The 
Quartus II Assignment Editor allows you to view, add, and create 
assignments to nodes and entities, such as location assignments, timing 
assignments, options for individual nodes only, options for individual 
entities, parameter, and simulation assignments.
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Table 22 provides typical constraints and attributes found in Xilinx UCF 
and their Altera equivalents.

Table 22. Typical Constraints and Attributes Found in Xilinx UCF and their Altera Equivalents. (Part 1 of 2)

Xilinx 
Constraint Constraint Function Altera Equivalent

DRIVE This constraint controls the 
output pin current value

Current Strength
Current Strength can be found under the Option field in the 
Assignment Editor

FAST This constraint turns on Fast 
Slew Rate Control

Slow Slew Rate
Slew Rate can be found under the Option field in the 
Assignment Editor

IOB This constraint is used to specify 
whether or not a register should 
be placed within the IOB of the 
device

Fast Input Register or Fast Output Register
Both constraints can be found under the Option field in the 
Assignment Editor 

IOBDELAY This constraint is used to specify 
a delay before an input pad feeds 
the IOB, or an external element, 
from the IOB. The input pad can 
either feed the local IOB flip-flop 
or an external element from the 
IOB.

Adjust Input Delay to Input Register
This constraint can be used to adjust the delay of the input 
pin to the input register. This option can be turned to either 
ON or OFF. This constraint can be found under Option in 
the Assignment Editor

IOSTANDARD This constraint is used to specify 
the I/O standard for an I/O pin.

I/O standards are specified in the Assignment Editor This 
constraint can be found under the option “I/O Standard” in 
the Assignment Editor, then selecting the appropriate I/O 
standard from the list.

KEEP The KEEP constraint is used to 
prevent a net from either being 
absorbed by a block, or 
synthesized out. 

You can insert an LCELL between the two nets in 
question. Inserting an LCELL between the two will prevent 
either net from being synthesized out.



DCM and DLL Constraints

Attributes are required to be set when instantiating a either a DCM or 
DLL in a Xilinx design such as CLKDV_DIVIDE and CLKFX_MULTIPLY. 
However, when creating an Altera PLL, these parameters are all specified 

MAXDELAY This constraint is used to specify 
the maximum delay in a net.

Use the Maximum Delay assignment in the Assignment 
Editor to apply this constraint in the Quartus II software. 
This assignment will override any clock settings if the 
assignment is applied a path between two registers. 
However, an fMAX constraint can be used. If the net is 
purely combinatorial, a tPD assignment can be made.

MAXSKEW This constraint is used to specify 
the maximum skew in a net.

Use Maximum Data Arrival Skew or Maximum Clock 
Arrival, depending on the net, in the Assignment Editor to 
apply this constraint in the Quartus II software.

NODELAY This constraint is used to reduce 
setup time at the cost of positive 
hold time.

Specify a Setup time parameter option, tSU, that is 
available in the Assignment Editor. Make a tSU assignment 
using the Assignment Editor

OFFSET This constraint specifies the 
correlation between a global 
clock and its associated data in, 
or data out, pin. This is used to 
specify setup and Clock to Out 
constraints on the data registers.

The Assignment Editor can be used to specify the tCO 
constraint in the Quartus II software. Use the Assignment 
Editor to specify a tSU constraint.

PERIOD This constraint specifies the 
timing relationship of a global 
clock such as an fMAX 
requirement.

fMAX timing requirements can be specified in the Timing 
Settings dialog box. Make individual and global clock 
settings using the Timing Settings dialog box (Project 
menu).

Table 22. Typical Constraints and Attributes Found in Xilinx UCF and their Altera Equivalents. (Part 2 of 2)

Xilinx 
Constraint Constraint Function Altera Equivalent
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using the MegaWizard Plug-In Manager. See “Implementing Altera PLLs 
Using the MegaWizard Plug-In Manager” on page 56 for more 
information.

Xilinx-based placement constraints do not carry over to Altera placement 
constraints. Do not make placement constraints to a design until the 
conversion process involving the Quartus II software is complete.

Xilinx-based placement constraints include the following:

■ LOC
■ RLOC
■ RLOC_ORIGIN
■ RLOC_RANGE
■ MAP

Summary Section one demonstrated that the Quartus II software provides a suite of 
tools similar to those found in the Xilinx ISE software. In addition, the 
cross-probing, SOPC Builder, SignalTap Logic Analysis, and Tcl scripting 
capabilities allow you to increase your productivity when designing for 
Altera devices. Section two provided guidelines to migrate a design 
targeted at a Xilinx device to one that is compatible with an Altera device. 
Section three showed you how to convert your ISE constraints into 
Quartus II constraints.

References For more information, refer to the following documents:

■ Using General-Purpose PLLs in Stratix & Stratix GX Devices chapter in 
volume 2 of the Stratix Device Handbook

■ TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices 
chapter in volume 2 of the Stratix Device Handbook

■ DSP Blocks in Stratix & Stratix GX Devices chapter in volume 2 of the 
Stratix Device Handbook

■ Switching from Xilinx ISE to the Quartus II Software—available on 
www.altera.com/switch

■ Performing Equivalent Timing Analysis Between the Altera Quartus II 
Software and Xilinx ISE—white paper

■ Synplicity Synplify & Synplify Pro Support chapter in volume 1 of the 
Quartus II Handbook

■ Mentor Graphics Precision RTL Synthesis Support chapter in volume 1 
of the Quartus II Handbook

■ Synopsys Design Compiler FPGA Support chapter in volume 1 of the 
Quartus II Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the 
Quartus II Handbook
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■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II 
Handbook
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