
Abstract

Many algorithms rely on floating point arithmetic
for the dynamic range of representations and require mil-
lions of calculations per second. Such computationally
intensive algorithms are candidates for acceleration using
custom computing machines (CCMs) being tailored for the
application. Unfortunately, floating point operators
require excessive area (or time) for conventional imple-
mentations. Instead, custom formats, derived for individ-
ual applications, are feasible on CCMs, and can be
implemented on a fraction of a single FPGA. Using
higher-level languages, like VHDL, facilitates the devel-
opment of custom operators without significantly impact-
ing operator performance or area. Properties, including
area consumption and speed of working arithmetic opera-
tor units used in real-time applications, are discussed.

1.0 Introduction

Until recently, any meaningful floating point arith-
metic has been virtually impossible to implement on
FPGA based systems due to the limited density and speed
of older FPGAs. In addition, mapping difficulties
occurred due to the inherent complexity of floating point
arithmetic. With the introduction of high level languages
such as VHDL, rapid prototyping of floating point units
has become possible. Elaborate simulation and synthesis
tools at a higher design level aid the designer for a more
controllable and maintainable product. Although low
level design specifications were alternately possible, the
strategy used in the work presented here was to specify
every aspect of the design in VHDL and rely on automated
synthesis to generate the FPGA mapping.

Image and digital signal processing applications
typically require high calculation throughput [2,6]. The
arithmetic operators presented here were implemented for
real-time signal processing on the Splash-2 CCM, which
include a 2-D fast Fourier transform (FFT) and a systolic
array implementation of a FIR filter. Such signal process-
ing techniques necessitate a large dynamic range of num-
bers. The use of floating point helps to alleviate the
underflow and overflow problems often seen in fixed point
formats. An advantage of using a CCM for floating point
implementation is the ability to customize the format and
algorithm data flow to suit the application’s needs.

This paper examines the implementations of vari-
ous arithmetic operators using two floating point formats
similar to the IEEE 754 standard [5]. Eighteen and sixteen
bit floating point adders/subtracters, multipliers, and
dividers have been synthesized for Xilinx 4010 FPGAs
[8]. The floating formats used are discussed in Section 2.
Sections 3, 4, and 5 present the algorithms, implementa-
tions, and optimizations used for the different operators.
Finally a summary, in terms of size and speed, of the dif-
ferent floating point units is given Section 6.

2.0 Floating Point Format Representation

The format which was used is similar to the IEEE
754 standard used to store floating point numbers. For
comparison purposes, single precision floating point uses
the 32 bit IEEE 754 format shown in Figure 1.

Quantitative Analysis of Floating Point Arithmetic on FPGA Based Custom
Computing Machines

Nabeel Shirazi, Al Walters, and Peter Athanas

Virginia Polytechnic Institute and State University
Department of Electrical Engineering

Blacksburg, Virginia 24061-0111

shirazi@pequod.ee.vt.edu

s e f

Figure 1: 32 Bit Floating Point Format.

Bit #: 31 30 23 22 0

Presented at theIEEE Symposium on FPGAs for Custom Computing Machines

Napa Valley, California, April 1995

The floating point value (v) is computed by:

In Figure 1, the sign field, s, is bit 31 and is used to spec-
ify the sign of the number. Bits 30 down to 23 are the
exponent field. This 8 bit quantity is a signed number rep-
resented by using a bias of 127. Bits 22 down to 0 are
used to store the binary representation of the floating point
number. The leading one in the mantissa, 1.f, does not
appear in the representation, therefore the leading one is
implicit. For example, -3.625 (dec) or -11.101 (binary) is
stored in the following way:

 v = -11 2(128-127)1.1101
 where:

s = 1, e = 128 (dec) 80 (hex), and f = 680000 (hex).
Therefore -3.625 is stored as: C0680000 (hex).

The 18-bit floating point format was developed, in
the same manner, for the 2-D FFT application[6]. The for-
mat was chosen to accommodate two specific require-
ments: (1) the dynamic range of the format needed to be
quite large in order to represent very large and small, posi-
tive and negative real numbers accurately, and (2) the data
path width into one of the Xilinx 4010 processors of
Splash-2 is 36 bits wide and two operands were needed to
be input on every clock cycle. Based on these require-
ments the format in Figure 2 was used.

The 18 bit floating point value (v) is computed by:

The range of real numbers that this format can represent is

 x 1019 to x 10-19.
The second floating point format investigated was a

16-bit representation used by the FIR filter application [7].
Like the FFT application, since multiple arithmetic opera-
tions needed to be done on a single chip, we chose a 16-bit
format for two reasons: (1) local, 16-bit wide memories
were used in pipelined calculations allowing single read
cycles only, and (2) more logic was necessary to imple-
ment the FIR taps in addition to the two arithmetic units.
which do complex number operations. The format was
designed as a compromise between data width and a large

enough dynamic number range. The 16-bit format is
shown in Figure 3.

The 16 bit floating point value (v) is computed by:

The range of real numbers that this 16 bit format can rep-

resent is x 109 to x 10-10.

3.0 Floating-Point Addition and Subtraction

The aim in developing a floating point adder/sub-
tracter routine was to pipeline the unit in order to produce
a result every clock cycle. By pipelining the adder, the
speed increased, however, the area increased as well. Dif-
ferent coding structures were tried in the VHDL code used
to program the Xilinx chips in order to minimize size.

3.1 Algorithm

The floating-point addition and subtraction algorithm
studied here is similar to what is done in most traditional
processors, however, the computation is performed in
three stages and is presented in this section. The notation
si, ei and fi are used to represent the sign, exponent and
mantissa fields of the floating point number, vi. A block
diagram of the three-stage adder is shown in Figure 4. The
computations required for each stage are as follows:

Stage 1:

• If the absolute value of v1 is less than the absolute
value of v2 then swap v1 and v2. The absolute value is
checked by comparing the exponent and mantissa of
each value.

• Subtract e2 from e1 in order to calculate the number of
positions to shift f2 to the right so that the decimal
points are aligned before addition or subtraction in
Stage 2.

s e f

v = -1s 2(e - 63)(1.f)

s e f

v = -1s 2(e - 31)(1.f)

1.626±3.6875±

8.5815± 6.985±

Figure 2: 18 Bit Floating Point Format.

Figure 3: 16 Bit Floating Point Format.

Bit#: 17 16 10 9 0

Bit#: 15 14 9 8 0

v = -1s 2(e - 127)(1.f)

Stage 2:

• Shift 1.f2 to the right (e2 - e1) places calculated in the
previous stage.

• Add 1.f1 to 1.f2 if s1 equals s2, else subtract 1.f2 from
1.f1.

• Set the sign and the exponent of the final result, v3, to
the sign and the exponent of the greater value v1.

Stage 3:

• Normalization of f3 is done by shifting it to the left
until the high order bit is a one.

• Adjusting exponent of the result, e3, is done by sub-
tracting it by the number of positions that f3 was
shifted left.

3.2 Eighteen Bit Floating Point Addition Example

To demonstrate an 18 bit, 3 stage floating point
adder we add v1 + v2 = v3, where v1 = 24.046875
and v2 = -25.40625. Therefore v3 should equal -1.359375.

Therefore: s1 = 0 e1 = 1000011 1.f1 = 1.1000000011

s2 = 1 e2 = 1000011 1.f2 = 1.1001011010

Stage 1:

• Swap v1 and v2 since e1= e2 and f2 > f1
Now: s1 = 1 e1 = 1000011 1.f1 = 1.1001011010

s2 = 0 e2 = 1000011 1.f2 = 1.1000000011

• Since e1 - e2 = 0, 1.f2 does not need to be shifted in
the next stage.

Stage 2:

• Since s1 does not equal s2, 1.f3 = 1.f1 - 1.f2.

• Also, s3 = f1 and e3 = e1 since they are the sign and
exponent of the greater value.
After stage 2: s3 = 1 e3 = 1000011 1.f3 = 0.0001010111

Stage 3:

• Normalize f3 by shifting it 5 places to the left.

• Adjust the Exponent, e3, by subtracting 5 from it.
After final stage: s3 = 1 e3 = 0111111 1.f3 = 1.0101110000

The result, v3, after addition is shown as follows:

3.3 Optimization

The circuits produced by contemporary VHDL syn-
thesis tools are, unfortunately, highly sensitive to the man-
ner in which the original behavioral or structural
description is expressed. When designing the floating
point adder/subtracter, using different VHDL constructs to
describe the same behavior resulted in a faster and smaller
design.

Decimal Binary 18 Bit Format

v1 24.046875 1.1000000011 x 24 0 1000011 1000000011

v2 -25.40625 1.1001011010 x 24 1 1000011 1001011010

Decimal Binary 18 Bit Format

v3 -1.359375 1.010111 x 20 0 0111111 0101110000

Stage 1:

Stage 2:

Stage 3:

Figure 4: Three stage 18-bit Floating Point Adder.

+/-

s1 s2 e1 e2

Sign Exponent

 R7

f1 f2

1 R11 R11

Mantissa

Bottom 12

R12

Normalize

R10

 R7

 R7

R1

R1

R1

Rx = x-Bit Register

 R7

If necessary, swap v1 & v2 to make v1 > v2.

1

-

Exponent
Adjust

Shift RightShift Value

The parts of the adder which caused the bottleneck
were the exponent subtracter, the mantissa adder/sub-
tracter and the normalization unit. An 8-bit and a 16-bit
Xilinx hard-macro adder/subtractor[8] was used in place
of VHDL code written for the exponent and mantissa
computation. This increased the overall speed of the
design even though a smaller 12-bit adder/subtracter was
replaced with a 16-bit adder/subtracter hard macro. The
first cut at the normalization unit resulted in a very slow
and large design. VHDLfor loops were used for the shift
left and for the code that finds the most significant bit dur-
ing normalization. In order to decrease the size and
increase the speed of the design, thefor loops were
unrolled andif statements used instead.

The first method used for shifting the mantissa of the
second operand, f2, a variable number of places was origi-
nally coded in VHDL the following way:

-- Shift f2 right ediff places
e_diff_var := e_diff;
f2_var := f2(10 downto 0);

for i in 1 to 11 loop
if (e_diff_var > zero_8) then

f2_var(9 downto 0) := f2_var(10 downto 1);
f2_var(10) := ‘0’;
e_diff_var := e_diff_var - 1;

end if;
end loop;

f2_result(10 downto 0) <= f2_var;

The second method usedif statements to check each
individual bit of the shift value and shift f2 accordingly.

-- Shift f2 right ediff places
if ((e_diff(7) = ‘1’) or (e_diff(6) = ‘1’) or

(e_diff(5) = ‘1’) or (e_diff(4) = ‘1’)) then
e_diff_var(3 downto 0) := “1111”;

else
e_diff_var(3 downto 0) := e_diff(3 downto 0);

end if;

-- Sequential Code for shifting f2_var
f2_var := f2(10 downto 0);
if (e_diff_var(0) = ‘1’) then

f2_var(9 downto 0) := f2_var(10 downto 1);
f2_var(10) := ‘0’;

end if;
if (e_diff_var(1) = ‘1’) then

f2_var(8 downto 0) := f2_var(10 downto 2);
f2_var(10 downto 9) := “00”;

end if;
if (e_diff_var(2) = ‘1’) then

f2_var(6 downto 0) := f2_var(10 downto 4);
f2_var(10 downto 7) := “0000”;

end if;
if (e_diff_var(3) = ‘1’) then

f2_var(2 downto 0) := f2_var(10 downto 8);
f2_var(10 downto 3) := “00000000”;

end if;

f2_result(10 downto 0) <= f2_var;

The result of using the second method is shown in
Table 1. The variable 11-bit shifter became two times
smaller and three times faster.

The code used to normalize the result after addition
or subtraction of f1 and f2 was also initially written using
for loops in VHDL.

-- Shift f_result left until msb = 1
msb := f(10);
f_result_var := f;
e_result_var := e;

for i in 1 to 11 loop
if (msb = ‘0’) then
f_result_var(10 downto 1) := f_result_var(9 downto 0);
f_result_var(0) := ‘0’;
e_result_var := e_result_var - 1;
msb := f_result_var(10);

end if;
end loop;

f_result <= f_result_var(9 downto 0);
e_result <= e_result_var;

The second method calculates the number of places to
shift the mantissa to the left in order to position the most
significant bit (msb) in the high order location. A series of
if statements are used to check all possible bit position
locations for the msb in order to calculate the shift value.
After the shift value is calculated, a procedure similar to
the second method for performing a variable shift to the
right is used to shift the un-normalized value the correct
number of positions to the left in order to normalize it.
Due to the size of the VHDL source code it is not listed
here for this method.

By using the second method, the normalization unit
became 2.9 times smaller and 2.6 times faster. A summary
of the result of optimizing the normalization unit is shown
in Table 2.

Method 1 Method 2 Advantage

FG Function
Generators
(used/available)

85/800 10% 44/800 5% 2x smaller

Flip Flops 6% 6% same

Speed 6.5 MHz 19.0 MHz 2.9x faster

TABLE 1. Optimizations for Variable 11-Bit Barrel
Shifter.

The overall size and speed of the 16 and 18-bit
floating point adders are given in Section 6.

4.0 Floating Point Multiplication

Floating point multiplication is much like integer
multiplication. Because floating-point numbers are stored
in sign-magnitude form, the multiplier needs only to deal
with unsigned integer numbers and normalization. Like
the architecture of the floating point adder, the floating
point multiplier unit is a three stage pipeline that produces
a result on every clock cycle. The bottleneck of this design
was the integer multiplier. Four different methods were
used to optimize the integer multiplier in order to meet
speed and size requirements.

Method 1 Method 2 Advantage

FG Function
Generators

167/800 20% 58/800 7% 2.9x
smaller

Flip Flops 6% 6% same

Speed 5.1 MHz 13.4MHz 2.6x faster

TABLE 2. Optimizations for Normalization Unit.

4.1 Algorithm

The block diagram for the three stage 18 bit float-
ing point multiplier is shown in Figure 5. The algorithm
for each stage is as follows:

Stage 1:

• The exponents, e1 and e2 are added and the result
along with the carry bit is stored in an 8-bit register.
If the addition of two negative exponents results in a
value smaller than the minimum exponent that can be
represented, i.e. -63, underflow occurs. In this case
the floating point number is set to zero. If overflow
occurs, the result is set to the maximum number the
format can represent.

• If the floating point number is not zero, the implied
one is concatenated to the left side of the f1 and f2
terms.

• The sign bits are only registered in this stage.

Stage 2:

• Integer multiplication of the two 11-bit quantities, 1.f2

and 1.f1, is performed. The top 12 bits of the 22-bit
result is stored in a register.

• The exponent is adjusted depending on the high order
bit of the multiplication result.

• The sign bits of the two operands are compared. If
they are equal to each other the result is assigned a
positive sign, and if they differ the result is negative.

Stage 3:

• Normalization of the resulting mantissa is performed.
• The resulting sign, exponent and mantissa fields

placed into an 18-bit floating point word.

4.2 Optimization

Four different methods were used to optimize the
11-bit integer multiplier. The first method used the integer
multiply available in the Synopsys 3.0a VHDL compiler.
The second method was a simple array multiplier com-
posed of ten 11-bit carry-save adders [3]. The last two
methods involved pipelining the multiplier in order to
increase the speed of the design. The multiplication of the
two 11-bit quantities were broken up and multiplied in the
following way:

Stage 1:

Stage 2:

Stage 3:

Figure 5: Three stage 18 bit Floating Point Multiplier.

*

+

11

Sign Exponent

 R8

“1”“1”

R11 R11

Mantissa

Top 12

R12

Normalize

R10

 R7

 R7

Exponent
 Adjust

R1

R1

R1

R1

Rx = x-Bit Register

s1 s2 e1 e2 f1 f2

 X6 X5
* Y6 Y5

 X5Y5
 X6Y5
 X5Y6

+ X6Y6
 22 Bit Result

In the third method, the first stage of the multiplier was the
multiplication of the four terms X5Y5, X6Y5, X5Y6, and
X6 Y6. The second stage involved adding the results of
the four multiplications. In method 4, two stages were
used to sum the multiplication terms.

The results of the four methods are summarized
in Table 3. The advantage in terms of the number of times
faster and the number of times larger than Method 1 is
shown.

Method 1 was used in the floating point multiplier unit
since the size of the unit was too large using methods 3 or
4 to allow an additional floating point unit in the same
chip. The overall size and speed of the 16 and 18-bit float-
ing point multipliers are given in Section 6, Summary and
Conclusions.

5.0 Floating Point Division

A floating-point division technique is presented
here which utilizes the pipelined multiplier discussed ear-
lier. Division can be done by using the reciprocal of the
divisor value so that the equation for division becomes a
multiplication of (A x (1/B) = Q). Independent operations
on the different floating point fields enable the design to be
pipelined easily.

Method
 1

Method
 2

Method
 3

Method
 4

FG Function
Generators

35% 31% 45% 47%

Stages 1 1 2 3

Speed 4.9 MHz 3.7 MHz 6.2 MHz 9.4 MHz

Area
Advantage

1.0 0.90 1.29 1.34

Speed
Advantage

1.0 0.75 1.24 1.92

TABLE 3. Results from Four Methods Used to
Optimize an Integer 11-Bit Multiplier.

5.1 Algorithm

The reciprocal of a floating point value can be
accomplished in two steps: (1) reciprocate the mantissa
value, and (2) negate the power of the base value. Since
the floating point representation already has its fields seg-
regated, the task becomes trivial for a processing element

which is complemented by a memory bank of at least2n x
n bits, wheren is the size of the mantissa’s normalized
binary representation. Local memories to the processing
elements store the reciprocal of each bit combination of
the mantissa.

In order to pipeline the design, three steps prior to
the multiplication are necessary: (1) extract the mantissa
from the input as the memory address and negate the
exponent, (2) provide a delay until the memory data is
valid, and (3) insert the new mantissa. The data word cre-
ated during Stage 3 is passed to the multiplier. The second
stage of the pipeline depends on the system being used
which could result in longer delays before the data is made
available from memory. In this case, a Splash 2 imple-
mentation was used which is shown in Figure 6. Memory
reads require a single cycle after the address is presented
before the data can be acquired from the memory data
buffer.

The k1 value negates the exponent, which still
retains the embedded excess value. Note that since the
reciprocal of the given mantissa value will be less than or
equal 1.0, normalization for the mantissa has to be done,

delay +
e1

delay

new e1

delay

f1 Memory

v1 v2k1

Memory

x

Q

1 / f1

Stage 1

Stage 2

Stage 3-5

Figure 6: Three stage 18 bit Floating Point Divider.

Address

Data

although a special case for 1.0 has to be made. The nor-
malization process is done automatically with k1. Once
the addition is done, the result becomes the new exponent
passed onto Stage 2. The mantissa in Stage 1 directly goes
to the memory address buffer to obtain the new mantissa,
but the old mantissa continues into Stage 2 and is replaced
in Stage 3. Stage 2 of the pipeline waits for the data to
become available from the memory. This occurs at Stage
3. The new mantissa is inserted into the final operand to
be passed to the multiplier. Although three pipeline stages
are shown here, additional stages occur due to the pipe-
lined multiplier to make a total of five stages.

6.0 Summary and Conclusions

The aim in designing the floating point units was to
pipeline each unit a sufficient number of times in order to
maximize speed and to minimize area It is important to
note that once the pipeline is full, a result is output every
clock cycle. A summary of the resulting size and speed of
the 16 bit and 18 bit floating point units is given in Tables
4 and 5 respectively.

The Synopsys Version 3.0a VHDL compiler was
used along with the Xilinx 5.0 tools to compile the VHDL
description of the floating point arithmetic units. The Xil-
inx timing tool,xdelay, was used to estimate the speed of
the designs.

.

To implement single precision floating point arith-
metic units on the Splash-2 architecture, the size of the
floating point arithmetic units would increase between 2
to 4 times over the 18 bit format. A multiply unit would
require two Xilinx 4010 chips and an adder/subtracter unit

Adder/
Subtracter Multiplier Divider

FG Function
Generators

26 % 36% 38%

Flip Flops 13 % 13% 32%

Stages 3 3 5

Speed 9.3 MHz 6.0 MHz 5.9 MHz

TABLE 4. Summary of 16 bit Floating Point Units.

broken up into four 12-bit multipliers, allocating two per
chip[4]. We found that a 16x16 bit multiplier was the larg-
est parallel integer multiplier that could fit into a Xilinx
4010 chip. When synthesized, this multiplier used 75% of
the chip area

Adder/
Subtracter Multiplier Divider

FG Function
Generators

28% 44% 46%

Flip Flops 14% 14% 34%

Stages 3 3 5

Speed 8.6 MHz 4.9 MHz 4.7 MHz

Tested Speed 10 MHz 10 MHz 10 MHz

TABLE 5. Summary of 18 bit Floating Point Units.

x

P2_Register P3_Register

Input Data Coefficient Data

state mux mux

+

mux

result

Im_register

Re_register S0_register

Partial Convolution Sum

state

state

S2 S3

S3

S0 S1

Figure 7: The diagram shows a single Splash-2

1616

16

16

PE design for an FIR tap to accomplish complex
multiplication. The architecture can achieve two
floating-point calculations per clock cycle.

Each of the floating point arithmetic units has been
incorporated into two applications: a 2-D FFT [6] and a
FIR filter [7]. The FFT application operates at 10 MHz
and the results of the transform are stored in memory on
the Splash-2 array board. These results were checked by
doing the same transform on a SPARC workstation An
FIR tap design using a floating point adder and multiplier
unit is shown in Figure 7. The complex floating point
multiplier used in the 2-D FFT butterfly calculation is
shown in Figure 8.

Acknowledgments

We wish to express our gratitude to Dr. J. T.
McHenry and Dr. D. Buell. We would also like to thank
Professor J. A. DeGroat of The Ohio State University for
technical advice.

This research has been supported in part by the
National Science Foundation (NSF) under grant MIP-
9308390.

References

[1] J.M. Arnold, D.A. Buell and E.G. Davis, “Splash 2,”Pro-
ceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 316-322, June 1992.

[2] J.A. Eldon and C. Robertson, “A Floating Point Format for
Signal Processing,”Proceedings IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, pp.
717-720, 1982.

[3] K. Eshraghian and N.H.E. Weste,Principles of CMOS
VLSI Design, A Systems Perspective, 2nd Edition, Addison-
Wesley Publishing Company, 1993.

[4] B. Fagin and C. Renard, “Field Programmable Gate Arrays
and Floating Point Arithmetic,”IEEE Transactions on
VLSI, Vol. 2, No. 3, pp. 365-367, September 1994.

[5] IEEE Task P754, “A Proposed Standard for Binary Float-
ing-Point Arithmetic,” IEEE Computer, Vol. 14, No. 12, pp.
51-62, March 1981.

[6] N. Shirazi, Implementation of a 2-D Fast Fourier Trans-
form on an FPGA Based Computing Platform, VPI&SU
Masters Thesis in progress.

[7] A. Walters,An Indoor Wireless Communications Channel
Model Implementation on a Custom Computing Platform,
VPI&SU Master Thesis in progress.

[8] Xilinx, Inc., The Programmable Logic Data Book, San Jose,
California, 1993.

Figure 8: A block diagram of a four PE Splash-2 design for a complex
floating point multiplier used in a FFT butterfly operation. Six floating
operations are calculated every clock cycle at 10 MHz.

LUT for Real LUT for Imaginary

PE 1 PE 2 PE 3 PE 4

-

*

*

+

KEY:

Floating Point Multiply
Floating Point Add
Floating Point Subtract

18

18
.

f(x).im

f(x).re

*

*

16 16

..
*

f(x).re18

16

W .im

-

+

.

16

f(x).im

f(x).re

f(x).im

f(x).re * W .im

“1”“1”

16 or 18 Bit Multiplexor

“0”

“0”

18-Bit Delay Register

18

18

Twiddle Factors Twiddle Factors

18

18

k
N

k
N

f(x).im*W .re
k
N

W .rek
N

f(x).im*W .im
k
N

W .rek
N W .imk

N

result.im

result .re

f(x).re*W .re
k
N18

