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Abstract— In this paper, we propose a novel approach for the
construction of observability gramian for nonlinear systems.
For linear systems observability gramian is obtained as a
solution of matrix Lyapunov equation, for nonlinear systems
we show that the observability gramian information can be
obtained from the solution of Lyapunov measure equation.
Lyapunov measure equation is introduced in [1] to provide
necessary and sufficient condition for almost every where
stability of an invariant set in nonlinear systems. Gramian result
for the linear systems forms a special case of the proposed
observability gramian approach using transfer operator. For
system with output measurement we use set oriented numerical
methods are used for the finite dimensional approximation of
the gramian.

I. INTRODUCTION

This paper is concerned with the construction of observabil-

ity gramian for nonlinear system with output measurement.

Observability and controllability gramian were introduced

in [2] in the context of linear control systems and play

a very important role in control theory. One important

application of gramian is in the Hankel norm based model

reduction of linear control systems. The basic idea behind

this model reduction procedure is that the states which are

less observable and controllable are not important from the

input-output point of view and hence can be removed in the

model reduction procedure.

In this paper, we propose linear transfer operators (Perron-

Frobenius and Koopman) based approach for the construction

of observability gramian for nonlinear systems. For a given

dynamical system one can associate a linear transfer operator,

while dynamical systems is used to study the evolution of

initial conditions or points in the state space, their associated

transfer operators are used to propagate sets (measure sup-

ported on sets) or densities on the state space. In dynamical

systems community there is an increased research interest

in the use of the transfer operators to study global transport

properties of dynamical systems. In particular transfer oper-

ators and their finite dimensional approximation are used for

approximate representation, comparison, and visualization of

complex dynamics [3], [4], [5], [6], [7]. In our recent work

we have proposed the use of transfer operator in particular

Perron-Frobenius operator for stability verification, controller

design and optimal control of nonlinear control [1], [8], [9],

[10] systems.

The work presented in this paper is the continuation of the

research theme on the application of transfer operators in

nonlinear control. The ultimate goal of the work reported

in this paper is to propose a systematic procedure for the
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gramian based model reduction of nonlinear control systems.

Extension of observability and controllability gramian from

linear systems to nonlinear systems have been studied in

[11], [12], [13] towards the goal of application to model

reduction of nonlinear systems. Linear transfer operator

based approach provides a natural way of extending the

gramian results from linear systems to nonlinear systems.

In particular in this paper we show that the information

about the observability gramian for nonlinear systems can

be obtained from the Lyapunov measure equation just like

gramian for linear systems are obtained as a solution of

matrix Lyapunov equation. The Lyapunov measure equa-

tion is introduced in [1] for stability analysis of nonlinear

systems. Lyapunov measure equation is a linear operator

equation. Positive solution of Lyapunov measure equation,

called as Lyapunov measure, provides necessary and suffi-

cient condition for almost everywhere stability of nonlinear

systems. Hence Lyapunov measure equation forms an infinite

dimensional linear counterpart of finite dimensional matrix

Lyapunov equation. We show that the observability gramian

information for nonlinear systems can be obtained from the

Lyapunov measure equation and the observability gramian

results for the linear systems can be obtained as a special case

of the proposed observability gramian using transfer opera-

tor. Although observability and controllability gramian can

together be used for the model reduction of nonlinear control

systems, information obtained from observability gramian

can itself be used for building reduced order observers and

estimators and for deciding the physical locations of sensors.

These are some of the potential applications of the research

in this paper.

This paper is organized as follows. In section II, we present

some basic preliminaries on transfer operators and stochastic

theory of dynamical systems. In section III, we review some

key results from [1] on application of Lyapunov measure

equation for stability analysis. In section IV, we present the

main result of this paper on the construction of observability

gramian for nonlinear systems. Set oriented methods for the

finite dimensional approximation are discussed in section V

followed by conclusion in section VI.

II. PRELIMINARIES

Consider the following discrete time dynamical system T :

X → X with output measurement G : X → Y .

xn+1 = T (xn), yn = G(xn) (1)

where xn ∈ X ⊂ R
n and yn ∈ Y ⊂ R

m are the state and

output measurement respectively. X and Y are assumed to

be compact and T and G are assumed to be continuous. We
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assume that there exists an invariant set A for the dynamical

system T . Let B(X) denotes the Borel σ− algebra on X

and M (X) be the vector space of real value measure. The

mapping T is said to be nonsingular with respect to Lebesgue

measure m, i.e., if m(T−1(B)) = 0 for all set B ∈ B(X)
such that m(B) = 0. We next introduce some notations and

preliminaries for the stochastic theory of dynamical systems

for more details refer [14], [4].

Definition 1 (Perron-Frobenius operator): The Perron-

Frobenius operator (P-F) PT : M (X) → M (X)
corresponding to the dynamical system T : X → X is

defined as follows

PT µ(B) =
∫

X
δT (x)(A)dµ(x) =

∫

X
χAdµ(x) (2)

where χB(x) is the indicator function for the set B and

T−1(B) is the pre-image set T−1(B) := {x ∈ X : T (x) ∈ B}
Definition 2 (Koopman operator): The Koopman operator

UT : C0(X)→C0(X) corresponding to the dynamical system

T is defined as

U f (x) = f (T (x)) (3)

Definition 3 (Invariant measure): A measure 0 6=
µ ∈ M (X) is said to be T invariant measure if

µ(B) = µ(T−1(B)) for all set B ∈ B(X).
Definition 4 (Ergodic measure): A T invariant measure µ 6=
0 with support in X is called an ergodic measure if for T

invariant set A ⊂ X either µ(A) = 0 or µ(A) = µ(X) i.e., µ
is concentrated in only one invariant subset.

Assumption 5: We assume that the invariant set A has a

ergodic measure µ∗ supported on it.

For f ∈C0(X) and µ ∈ M (X ), define the inner product as

〈 f ,µ〉X =
∫

X
f dµ(x)

With respect to this inner product, the Koopman operator is

dual to the P-F operator where the duality is expressed as

〈UT f ,µ〉X =
∫

X
UT f dµ(x) =

∫

X
f (x)dPµ(x)〈 f ,PT µ〉X (4)

The evolution of sets or the measure supported on the sets

under the system dynamics (1) with output measurement can

be defined using the P-F operator as follows

µn+1 = µn ◦T−1 =: PT µn

Yn =
∫

X
G(x)dµn(x) =: 〈G(x),µn〉 (5)

III. LYAPUNOV MEASURE AND LYAPUNOV MEASURE

EQUATION

In this section we give a brief overview of some of the key

results from [1], [8]. In [1], we proved a theorem providing

necessary and sufficient condition for almost everywhere

uniform stability of invariant set for the dynamical system

T . The notion of almost everywhere stability is defined as

follows.

Definition 6 (Almost everywhere uniform stability): An in-

variant set A is said to be almost everywhere unifromly stable

with respect to measure m, if for any ε > 0, there exists an

N(ε) such that
∞

∑
N

m(Bn) < ε

for every set B ⊂ X \Bδ , where Uδ is the δ neighborhood of

an invariant set A for any fixed δ > 0.

Throught this paper, we will assume that Uδ is the δ neigh-

borhood of A for any fixed δ > 0. The stability property of an

invariant set in definition (6) is stated in terms of the transient

behavior of the system on the complement of an invariant

set Ac, hence we define sub-stochastic Markov operator as

a restriction of the P-F operator on the complement of the

invariant set as follows:

P
1
T [µ](B) :=

∫

Ac
χB(T (x))dµ(x) (6)

for any set B ∈ B(Ac) and µ ∈ M (Ac). Similarly the

restriction of Koopman operator on the complement of the

invariant set can also be defined as

(U1
T f )(x) = f (T (x))

for all continuous f : Ac → R. The duality between the

restriction of the two linear operators is expressed as in (4).

Necessary and sufficient condition for almost everywhere

uniform stability of an invariant set A with respect to meausre

m were obtained in the form of existence of the positive

solution, Lyapunov measure µ̄ , to the following Lyapunov

measure equation were stated in the form

P
1
T µ̄(B)− µ̄(B) = −m(B) (7)

The precise theorem for stability as proved in [1] is as

follows

Theorem 7: An invariant set A for the dynamical system T :

X →X is almost everywhere uniformly stable with respect to

Lebesgue measure m if and only if there exists a measure µ̄
which is equivalent to measure m and is finite on B(X \Uδ )
and satisfies

P
1
T µ̄(B)− µ̄(B) = −m(B)

for any set B ⊂ X \Uδ , where Uδ is the δ neighborhood of

the invariant set A.

Almost everywhere uniform stability with respect to

Lebesgue measure initial conditions starting from any given

set B ⊂ X \Uδ can be studied using the following corollary

from [1].

Corollary 8: An invariant set A for the dynamical system

T : X →X is almost everywhere uniformly stable with respect

to Lebesgue measure initial condition starting from the set

D ⊂ X \Uδ if and only if there exists a non-negative measure

µ̄D which is finite on B(X \Uδ ) and satisfies

P
1
T µ̄D(B)− µ̄D(B) = −mD(B)

for any set B ⊂ X \Uδ , where mD is the Lebesgue measure

supported on set D and Uδ is the δ neighborhood of the

invariant set A.
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IV. OBSERVABILITY GRAMIAN

In this section we prove the main result of this paper on the

construction of observability gramian for nonlinear systems.

First we show how Lyapunov measure and Lyapunov mea-

sure equation can be used to decompose the state space into

fast and slow time zones. To do this we need a definition of

residence time and is defined as follows

Definition 9: Let B1,B2 be any two subset of X \Uδ . The

residence time of set B1 in set B2 denoted by tB1,B2
is the

amount of time system trajectory starting from set B1 will

spend in set B2 and is given by following formula

tB1,B2
=

∫

Ac

∞

∑
n=0

χB2
(T n(x))dmB1

(x) (8)

where mB1
is the Lebesgue measure supported on set B1 and

χB2
is the indicator function supported on set B2.

The summation inside the integral in above equation is well

defined and is finite under the assumption that the system T

has an invariant set A, which is almost everywhere uniformly

stable. For the special case of B2 = X \Uδ =: X1, we get tB1,X1

and this gives us the information about the time it requires

for the system trajectory starting from the initial set B1 to

enter the δ neighborhood of the invariant set and hence can

be used to characterize faster and slower dynamics of the

system. Larger the value of tB1,X1
compared to tB2,X1

longer

it takes for the system trajectories starting from the initial

set B1 than B2 to enter the X1 and hence slower dynamics of

B1 compared to B2. Hence the residence time can be used to

partition the state space into fast and slow time regions. Now

we state a theorem which shows how the Lyapunov measure

and Lyapunov measure equation can be used to calculate the

residence time.

Theorem 10: Let the invariant set A be a.e. uniformly stable

for the dynamical system T : X → X and let µ̄D be the

solution of following Lyapunov measure equation

P1µ̄D(B)− µ̄D(B) = −mD(B)

where mD is the Lebesgue measure supported on the set D,

we have

tD,B = µ̄D(B) (9)

for any set D,B ⊂ X \Bδ .

Proof: From definition (9) and the duality between the

Koopman and P-F operator in equation (4) along with the

result from corollary (8) we have

tD,B =
∫

Ac

∞

∑
n=0

χB(T n(x))dmD(x) =
∞

∑
n=0

〈

(U1
T )nχB,mD

〉

Ac

=
∞

∑
n=0

〈χB,Pn
1mD〉 =

〈

χB,
∞

∑
n=0

P
n
1mD

〉

= 〈χB, µ̄D〉 = µ̄D(B) (10)

The construction of observability gramian that we propose

in this paper is motivated from the gramian construction

in linear systems. For a stable linear system with output

measurement

xn+1 = Sxn yn = Cxn (11)

where xn ∈ R
n and yn ∈ R

m, the observability gramian O is

a mapping from R
n to R

n and is given by

O = Φ∗Φ =
∞

∑
n=0

(CSn)TCSn (12)

where Φ : R
n → ℓ2[0,∞) and Φ∗ : ℓ2[0,∞) → R

n and Φ∗ is

adjoint to Φ. The amount of energy in the output starting

from any initial state x0 ∈ R
n can now be obtained using the

observability gramian and is given as follows.

‖ y ‖2= xT
0 Ox0 (13)

Note that the observability gramian can be obtained as a

solution of following matrix Lyapunov equation

ST
OS−O = −CTC

The information about the relative degree of observability of

different states in the state space can be obtained from the

eigenvalues and eigenvectors of the observability gramian, in

particular the states corresponding to eigenvectors with larger

eigenvalues are more observable compared to the states with

eigenvector with smaller eigenvalues. For more details on

observability gramian and its construction for linear systems

refer to [15].

Unlike linear systems where observability gramian is used

to characterize the degree of observability of the states in

the phase space, in our proposed approach we characterize

degree of observability of a set in the phase space. Consider

a discrete time dynamical system with output measurement

xn+1 = T (xn) yn = G(xn) (14)

We assume that there exists an invariant set A with ergodic

measure µ∗ supported on the set. Furthermore set A is

assumed to be almost everywhere uniformly stable as per

definition (6). The evolution of the system in measure space

is described by following equation

µn+1(B) = PT µn(B)

Y i
n =

∫

X gi(x)dµn(x) = 〈gi(x),µn〉 i = 1, ...,m (15)

where G = (g1, ...,gm)T and set B ∈ B(X). Since the in-

variant set A is assumed to be almost everywhere uniformly

stable we know from theorem (7), that there exists a finite

Lyapunov measure µ̄ on X \Uδ which solves the Lyapunov

measure equation (7). We now make following assumption

regarding the integrability of the output measurement G with

respect to Lyapunov measure µ̄ .

Assumption 11: Assume that each of the function g2
i for i =

1, ...,m is integrable with respect to Lyapunov measure µ̄ on

Ac i.e.,
∫

Ac
g2

i (x)dµ̄(x) ≤ K < ∞ i = 1, ...,m. (16)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThB03.3

3359



We now define a observability map Ψ as a mapping from all

sets B ⊂ X \Uδ to the sequence of real numbers Ψ : B(X \
Uδ ) → ℓ1[0,∞) as follows:

B →

{

On := 〈 f (T n(x)),mB〉Ac for n ≥ 0

0 otherwise
(17)

where f (x) := (GT G)(x) and mB is the Lebesgue measure

supported on the set B. Note that On ≥ 0 and On ∈ ℓ1[0,∞)
(for proof refer to theorem (13)). The degree of observability

of a set B is now defined using the observability map as

follows.

Definition 12 (Degree of Observability): The degree of ob-

servability for the any set B ⊂ X \Uδ is a mapping O :

B(X) → R and is defined as follows

O(B) =
∞

∑
n=0

On for B ∈ B(X \Uδ ) (18)

O(B) =
∫

B
f (x)dµ∗(x) for B ∈ B(A)) (19)

where f (x) = (GT G)(x) and µ∗ is the ergodic measure

supported on the invariant set A.

In the next theorem we show that the observability map is

well defined i.e., On ∈ ℓ1[0,∞) and that Lyapunov measure

µ̄ can be used to characterize the degree of observability for

a set B as defined above.

Theorem 13: Let the invariant set A be almost everywhere

uniformly stable for the dynamical system T : X → X with

output measurement G : X →Y ⊂ R
m satisfying the assump-

tion (11). The degree of observability for any set B ⊂ X \Uδ

is given by

O(B) = 〈 f (x), µ̄B〉 (20)

where f (x) := (GT G)(x) and µ̄B is the solution of the

following Lyapunov measure equation (21).

P1µ̄B − µ̄B = −mB (21)

where mB is the Lebesgue measure supported on set B. For

the special case of stable linear dynamical system xn+1 = Sxn

with output yn = Cxn, the expression (20) reduces to

O(B) =
∫

Ac
xT PxdmB(x) (22)

where P is the solution of Lyapunov equation

ST PS−P = −CTC

Proof: Using the duality relation (4) between the P-F

and the Koopman operator and the definition of observability

map (17) we get

On =
∫

Ac
f (T n(x))dmB(x) =

∫

Ac
f (y)dmB(T−n(y))

=
∫

Ac
f (y)dmB(T−n(y)∩Ac) = 〈 f ,Pn

1mB〉Ac (23)

Now using the result from the corollary (8), we get

O(B) =
∞

∑
n=0

On =
∞

∑
n=0

〈 f (x),Pn
1mB〉Ac = 〈 f (x), µ̄B〉Ac (24)

From the almost everywhere stability assumption of the

invariant set A and from assumption (11), we have

〈 f (x), µ̄B〉Ac ≤ K < ∞

and hence On ∈ ℓ1[0,∞).
For the special case of linear system f (x) = xTCTCx, we

have

O(B) =
∞

∑
n=0

On =
∞

∑
n=0

〈Un
S f ,mB〉Ac

=
∫

Ac

∞

∑
n=0

Un
S f dmB(x) =

∫

Ac

∞

∑
n=0

xT (ST )nCTCSnxdmB(x)

where the last equality is know to be equal to
∫

Ac xT PxdmB(x)
where P is the solution of the following Lyapunov equation.

ST PS−P = −CTC

For linear system, use of observability gramian in measure

space to characterize the degree of observability of a set leads

to

O(B) =
∫

Ac
xT PxdmB(x)

Hence for the special case of Dirac-delta measure supported

at x0, we get the familiar result for linear systems on

characterizing the degree of observability of a state i.e.,

O(x0) =
∫

Ac
xT Pxδx0

(x) = xT
0 Px0

In characterizing the degree of observability for a set B ⊂
X \Uδ we made use of two pieces of information. First the

average residence time of set B in the complement of the

invariant set, which is characterize in terms of measure µ̄B

and the second is the value that the output observable G

takes on the set B. Intuition behind characterizing the degree

of observability using µ̄B and observable G is as follows:

Consider the case where the output G = I, then the degree

of observability of any set B is directly proportional to the

resident time of set B in X \Uδ . Longer it takes for the

system trajectories starting from the set B to enter the δ

neighborhood of an invariant set more observable the set

B will be. On the other hand if the residence time of the

two different sets in X \Uδ is same then the degree of

observability of these sets is directly proportional to the value

function GT G takes along the trajectories starting from the

two sets. In the next section we obtain finite dimensional

approximation for the degree of observability for any set B

using set oriented numerical methods.

V. FINITE DIMENSIONAL APPROXIMATION

In this section use set oriented numerical method for the

finite dimensional approximation of the gramian. The first

step towards this goal is to obtain the finite dimensional

approximation of the Perron-Frobenius operator. We provide

a brief overview of the finite dimensional approximation of

P-F operator for more detail refer to [3], [8]. We consider
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the finite dimensional approximation of the phase space X ,

denoted as

X := {D1, · · · ,DL}, (25)

Approximation of the measure µ ∈ M (X) on the finite

partition of the state space X is given by

dµ(x) =
L

∑
i=1

µiκi(x)
dm(x)

m(Di)

Hence the infinite dimensional vector space of measure

is identified with the finite dimensional vector space µ =
(µ1, ...,µL)∈R

L and the finite dimensional approximation of

P-F is identified with a matrix on R
L. The finite dimensional

approximation of the P-F is given by

Pi j =
m(T−1(D j)∩Di)

m(Di)
, (26)

m being the Lebesgue measure. The resulting matrix is non-

negative and because T : Di → X ,∑
L
j=1 Pi j = 1, i.e., P is a

Markov or a row-stochastic matrix. Computationally, several

short term trajectories are used to compute the individual

entries Pi j. The mapping T is used to transport M “initial

conditions” chosen to be uniformly distributed within a set

Di. The entry Pi j is then approximated by the fraction of

initial conditions that are in the box D j after one iterate

of the mapping. The finite dimensional approximation of

P-F operator can be used to obtain the finite dimensional

approximation of the Lyapunov measure equation and Lya-

punov measure. To do this we first need the restriction of P

on the complement of invariant set Ac. Let µ0 be the finite

dimensional approximation of the ergodic measure µ∗ and

is obtained as the left eigenvector with eigenvalue one of the

Markov matrix P i.e.,

µ0P = 1.µ0

We form the partition of the invariant set A and its comple-

ment Ac as follows

X1 = {D1, ...,DK} X0 = {DK+1, ...,DL}

with A⊂X0 =∪L
i=K+1Di and X1 =∪K

i=1Di. The partitions X0

and X1 can be associated with measure space M0
∼= R

L−K

and M1
∼= R

K respectively and with respect to this splitting

the Markov matrix P admits a decomposition into a Markov

matrix P0 : M0 → M0 and sub-Markov matrix P1 : M1 → M1.

For more details on the finite dimensional decomposition of

the P-F operator refer to [8].

The following theorem from [8] guarantee the transient

nature of sub Markov matrix P1 under the assumption that

the invariant set A is almost everywhere stable. P1 is defined

to be transient if limn → ∞[Pn
1 ]i j = 0 for i, j = 1, ...,K.

Theorem 14: Let the invariant set A ⊂ X0 ⊂ X be almost ev-

erywhere uniformly stable (definition (6)) with approximate

invariant measure supported on finite partition X0 of X0. P1

is its finite-dimensional sub-Markov matrix approximation

obtained with respect to the partition X1 of the complement

set X1 = X \X0. For this

1) Suppose there exists a measure µ̄ such that

P
1
T µ̄(B)− µ̄(B) = −m(B) (27)

for all B ⊂ B(X1), and additionally µ̄ is equivalent to

the Lebesgue measure m. Then the finite-dimensional

approximation P1 is transient.

2) Suppose P1 is transient then A is coarse stable with

respect to the initial conditions in X1.

Proof: Refer to [8] for the proof.

For more details on the coarse stability refer to [8]. Since

P1 is transient it implies that ρ(P1) ≤ α < 1 and hence the

infinite series I + P1 + P2
1 + P3

1 + ... converges to (I −P1)
−1

and [(I−P1)
−1]i j is finite for i, j = 1, ...,K. The sub Markov

matrix P1 can now be used for approximating the average

residence time of the set Di to D j and from Di to complement

of the invariant set X1 as follows.

Lemma 15: Let [(I−P1)
−1]i j = P̄i j, for i, j = 1, ...,K then for

any set Di,D j ⊂ X1, tDi,D j
is approximately equal to P̄i j and

the average residence time of set Di ⊂ X1 in the complement

of the invariant set X1 i.e., tDi,X1
is approximately equal to

∑
K
j=1 P̄i j

Proof: From equation (10), we have

tDi,D j
=

〈

χD j
,

∞

∑
n=0

P
n
1mDi

〉

Using the finite dimensional approximation of the P − F

operator on the finite dimensional measure space R
L, we

can approximate tDi,D j
as follows

tDi,D j
≈ (µT

i

∞

∑
n=0

Pn
1 )(ϑ j) = (µT

i (I −P1)
−1)(ϑ j) (28)

where ϑ j,µi ∈ R
k are assumed to be a column vectors and

are finite dimensional approximation of the indicator function

supported on set D j and the Lebesgue measure supported on

the set Di respectively. Vectors ϑ j and µi consists of all

zeros except for ones at jth and ith location respectively.

After substitution, we get

tDi,D j
≈ P̄i j

For the residence time of set Di in the complement of the

invariant set we have

tDi,X1
=

K

∑
j=1

tDi,D j
≈

K

∑
j=1

P̄i j

Theorem 16: The degree of observability of any set Di ⊂ X1

for i = 1, ...,K is approximated given as

O(Di) ≈
K

∑
j=1

P̄i jα j (29)

and the degree of observability for any set Di ⊂ X0 for i =
K +1, ...,L

O(Di) ≈ αiµ0i
(30)
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where α j =
∫

D j
(GT G)(x)dm(x) and µ0 is the finite dimen-

sional approximation of the invariant measure µ∗ supported

on the invariant set A such that µ0i
:= µ0(Di).

Proof: From equation (20), for any set Di ⊂X1 we have

O(Di) =
∫

X
f (x)dµ̄Di

(x) ≈
K

∑
j=1

∫

D j

f (x)dm(x)µ̄Di
(D j)

=
K

∑
j=1

P̄i jα j (31)

where α j =
∫

D j
GT G(x)dm(x). Similarly the degree of ob-

servability for any set Di ⊂ X0 can be approximated as

O(Di) =
∫

Di

f (x)dµ∗(x) ≈
∫

Di

f (x)dm(x)µ0i
= αiµ0i

A. Example

Example 17: Consider the ODE for the Vanderpol oscillator

with scalar output measurement.

ẋ1 = x2

ẋ2 = −x1 +(1− x2
1)x2

y = x1 (32)

The Vanderpol oscillator has a unstable equilibrium point at

the origin and a stable limit cycle. The limit cycle for this

example is almost everywhere uniformly stable. Figure (1)

show the plot for the decomposition of the phase space into

fast slow dynamics. Color code indicates relative amount

of time trajectories starting from each box spends in the

complement of the limit cycle. Larger the value of the color

code on the box more time the system trajectory starting from

that box spends in the complement of the limit cycle. Figure

(2) shows the plot for the finite dimensional approximation

of the relative degree of the observability of different sets as

defined by the formula (29) for y = x1.

Fig. 1. Decomposition of phase space into fast and slow dynamics

Fig. 2. Approximate observability gramian for y = x1

VI. CONCLUSIONS

Using linear transfer operator approach from stochastic the-

ory of dynamical system, we have extended the notion of ob-

servability gramian from linear system to nonlinear systems.

This extended notion of observability gramian captures the

degree of observability of a sets in the phase space. Lyapunov

measure is used to partition the phase space into slow and

fast time region which along with the output measurement

is used in the construction of the gramian.

REFERENCES

[1] U. Vaidya, An converse theorem for almost everywhere stability using

Lyapunov measure. Proceeding of American Control Conference NY,
2007.

[2] B. Moore, “Principal component analysis in linear systems: Control-
lability, observability, and model reduction,” IEEE Transaction on

Automatic Control, vol. 26, no. 1, 1981.
[3] M. Dellnitz and O. Junge, Set oriented numerical methods for dynam-

ical systems. World Scientific, 2000, pp. 221–264.
[4] ——, “On the approximation of complicated dynamical behavior,”

SIAM Journal on Numerical Analysis, vol. 36, pp. 491–515, 1999.
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