Jar Test

When 1 mole of alum $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}\right)$ is added into water that contains adequate alkalinity, 6 mole of $\mathrm{HCO}_{3}{ }^{-}$(alkalinity) is consumed and produced 6 mole of CO_{2} as shown in equation (1)

$$
\begin{equation*}
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{HCO}_{3}{ }^{-}==2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{SO}_{4}{ }^{2-}+18 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2} \tag{1}
\end{equation*}
$$

As we know that CO_{2} in water is the same as $\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid). Therefore, the reaction in equation (1) shifts the carbonate equilibrium and pH changes slightly because $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a weak acid.

If water contains no alkalinity, the pH changes dramatically because sulfuric acid is produced instead of CO_{2} as express in equation (2). Sulfuric acid is a strong acid that dissociate 100% to proton, or H^{+}.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}==2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}+18 \mathrm{H}_{2} \mathrm{O}$

Calculation for alkalinity change

MW: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}=666 \mathrm{~g} / \mathrm{mol} ; \mathrm{Al}^{3+}=2(27)=54 \mathrm{~g} / \mathrm{mol}$
In the lab, the concentration of alum solution was prepared in $\mathbf{m g} / \mathbf{L}$ as $\mathbf{A l}^{\mathbf{3 +}}$ (not as $\left.\mathrm{Al}_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{1 8} \mathrm{H}_{2} \mathrm{O}\right)$, so we have to convert Al^{3+} to alum $\left(\mathrm{Al}_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{1 8} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right)$:

Assume: we get $10 \mathrm{mg} / \mathrm{L}$ (beaker \# 2) of Al^{3+} as the optimum dosage (the lowest turbidity).
Since $1 \mathrm{~mol} / \mathrm{L}\left(\right.$ or $666 \mathrm{~g} / \mathrm{L}$) of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ contains $2(27)=54 \mathrm{~g} / \mathrm{L}$ of Al^{3+}
Therefore, $54 \mathrm{~g} / \mathrm{L}$ of Al^{3+} comes from $\quad=666 \quad \mathrm{~g} / \mathrm{L}$ of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{mg} / \mathrm{L}$, or $10\left(10^{-3}\right) \mathrm{g} / \mathrm{L}$ of Al^{3+} comes from $=(\underline{666}) \times 10\left(10^{-3}\right) \quad \mathrm{g} / \mathrm{L}^{5}$ of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$
Change (666) $\times 10\left(10^{-3}\right) \mathrm{g} / \mathrm{L}$ of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ to unit of $\mathrm{mol} / \mathrm{L}$
54
We get: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}=\left(\frac{666}{54}\right) \times 10\left(10^{-3}\right) \mathrm{g} / \mathrm{L}(\underline{1 \mathrm{~mol}})=\frac{10}{666 \mathrm{~g}}\left(10^{-3}\right) \mathrm{mol} / \mathrm{L}$
Since 1 mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ is equal to 6 mol of $\mathrm{HCO}_{3}{ }^{-}$from the above equation (1)
Therefore, $\left[\mathrm{HCO}_{3}^{-}\right]=6 \times \frac{10}{54}\left(10^{-3}\right) \mathrm{mol} / \mathrm{L}$
Then change the unit into mg / L as CaCO_{3}

$$
\left[\mathrm{HCO}_{3}^{-}\right]=6 \times \frac{10}{54}\left(10^{-3}\right) \mathrm{mol} / \mathrm{L} \times 61 \mathrm{~g} / \mathrm{mol} \times 10^{3} \mathrm{mg} / \mathrm{g} \times\left(\frac{50}{61}\right)=55.55 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
$$

Theoretical alkalinity depleted $=55.55 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}.
From the lab as shown in the below Table, the alkalinity was changed $=240-180=60 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}.
The results do not show much difference between the alkalinity change in theory and practice.

Note:

1) Adding alum into water decreases the pH , but
2) If water contains some alkalinity $\left(\mathrm{HCO}_{3}{ }^{-}\right.$, the major specie at neutral pH$)$, the pH does not be dramatically reduced (compared to the condition when the alkalinity is not present).
$\mathrm{CO}_{2(\mathrm{~g})}$ e elaboration indicates formation of carbonic acid $\left[\mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*} \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2(\mathrm{ag})}\right.$ $\left.\leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}\right]$

Beaker \#	RAW	1	2	3	4	5	6
Dosage mg/L of Alum as Al^{3+}	0	5	10	20	30	40	50
Turbidity nтu of all samples	12	10	1.0	2.0	3.0	4.0	5.3
pH of all samples	8.29	8.16	7.30	6.90	6.46	6.09	5.06
Alkalinity mg / L as CaCO_{3} of RAW and one of beakers with lowest turbidity	240		180				

