<u>Jar Test</u>

When 1 mole of alum (Al₂(SO₄)₃·18H₂O) is added into water that contains adequate alkalinity, 6 mole of HCO₃⁻ (alkalinity) is consumed and produced 6 mole of CO₂ as shown in equation (1)

 $Al_{2}(SO_{4})_{3} \cdot 18H_{2}O + 6HCO_{3}^{-} = 2Al(OH)_{3}(s) + 3SO_{4}^{2} + 18H_{2}O + 6CO_{2}$ (1)

As we know that CO_2 in water is the same as H_2CO_3 (carbonic acid). Therefore, the reaction in equation (1) shifts the carbonate equilibrium and pH changes slightly because H_2CO_3 is a weak acid.

If water contains no alkalinity, the pH changes dramatically because sulfuric acid is produced instead of CO_2 as express in equation (2). Sulfuric acid is a strong acid that dissociate 100 % to proton, or H⁺.

 $Al_{2}(SO_{4})_{3} \cdot 18H_{2}O + 6H_{2}O == 2Al(OH)_{3}(s) + 3H_{2}SO_{4} + 18H_{2}O$ (2)

Calculation for alkalinity change

<u>MW</u>: Al₂(SO₄)₃·18H₂O = 666 g/mol; Al³⁺ = 2(27) = 54 g/mol

In the lab, the concentration of alum solution was prepared in mg/L as Al^{3+} (not as $Al_2(SO_4)_3 \cdot 18H_2O$), so we have to convert Al^{3+} to alum ($Al_2(SO_4)_3 \cdot 18H_2O$):

Assume: we get 10 mg/L (beaker # 2) of Al^{3+} as the optimum dosage (the lowest turbidity).

Since 1 mol/L (or 666 g/L) of $Al_2(SO_4)_3 \cdot 18H_2O$ contains 2(27) = 54 g/L of Al^{3+}

Therefore, 54 g/L of Al³⁺ comes from = 666 g/L of Al₂(SO₄)₃·18H₂O 10 mg/L, or 10(10⁻³) g/L of Al³⁺ comes from = $(\underline{666}) \times 10(10^{-3})$ g/L of Al₂(SO₄)₃·18H₂O Change ($\underline{666} \times 10(10^{-3})$ g/L of Al₂(SO₄)₃·18H₂O to unit of mol/L Successful to the set of the set

Theoretical alkalinity depleted = 55.55 mg/L as CaCO₃.

From the lab as shown in the below Table, the alkalinity was changed = 240 - 180 = 60 mg/L as CaCO₃. The results do not show much difference between the alkalinity change in theory and practice.

Note:

- 1) Adding alum into water decreases the pH, but
- 2) If water contains some alkalinity (HCO₃⁻, the major specie at neutral pH), the pH does not be dramatically reduced (compared to the condition when the alkalinity is not present).

 $CO_{2 (g)}$ elaboration indicates formation of carbonic acid $[H^+ + HCO_3^- \leftrightarrow H_2CO_3^* \leftrightarrow H_2O + CO_{2(g)}] \leftrightarrow CO_{2(g)}]$

Beaker #	RAW	1	2	3	4	5	6
Dosage mg/L of Alum as Al ³⁺	0	5	10	20	30	40	50
Turbidity NTU of all samples	12	10	1.0	2.0	3.0	4.0	5.3
pH of all samples	8.29	8.16	7.30	6.90	6.46	6.09	5.06
Alkalinity mg/L as CaCO ₃ of RAW and one of beakers with lowest turbidity	240		180				