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Robust Locally Weighted Regression and Smoothing 
Scatterplots 

WILLIAM S. CLEVELAND* 

The visual information on a scatterplot can be greatly enhanced, 
with little additional cost, by computing and plotting smoothed 
points. Robust locally weighted regression is a method for smoothing 
a scatterplot, (xi, yi), i = 1, .. ., n, in which the fitted value at xk 
is the value of a polynomial fit to the data using weighted least 
squares, where the weight for (xi, yi) is large if xi is close to xk and 
small if it is not. A robust fitting procedure is used that guards 
against deviant points distorting the smoothed points. Visual, 
computational, and statistical issues of robust locally weighted 
regression are discussed. Several examples, including data on lead 
intoxication, are used to illustrate the methodology. 

KEY WORDS: Graphics; Scatterplots; Nonparametric regression; 
Smoothing; Robust estimation. 

1. INTRODUCTION 

Figure A shows a scatterplot of points (xi, yi), for 
i = 1, ..., n, where n = 50. In Figure B the same scatter- 
plot is summarized by another set of points (xX, y), 
for i = 1, .. ., n, which are plotted by joining successive 
values by straight lines. The point (xi, Ai) portrays the 
location of the distribution of the variable on the vertical 
axis, Y, given the value of the variable on the horizontal 
axis, X = xi. The formation of the new points will be 
referred to as smoothing the scatterplot. The point 
(xi, 'i) is called the smoothed point at xi and Ai is called 
the fitted value at xi. The example in Figure A was 
generated by taking xi = i, and 

yi = .02xi + ei 

where ei is a random sample from a normal distribution 
with mean 0 and variance 1. The linear effect is not easily 
perceived from the scatterplot alone, but is revealed 
when the smoothed points are superimposed. 

In this article we shall discuss a method for smoothing 
scatterplots called robust locally weighted regression. 
Local fitting of polynomials has been used for many 
decades to smooth time series plots in which the xi are 
equally spaced (Macauley 1931). Locally weighted re- 
gression is an extension of this technique to more general 
configurations of the xi. In addition, a robust fitting 
procedure is used that guards against deviant points 
distorting the smoothed points. The procedure is an 
adaptation of iterated weighted least squares, a recent 
technique of robust estimation (Beaton and Tukey 
1974; Andrews 1974). Thus, robust locally weighted 
regression is a combination of old ideas for smoothing 
and new ideas for robust estimation. 

* William S. Cleveland is Member, Technical Staff, Bell Telephone 
Laboratories, Murray Hill, NJ 07974. The author wishes to thank 
Richard A. Becker, Roberta Guarino, Colin L. Mallows, and 
Christine Waternaux for many helDful suggestions. 

An early example of smoothing scatterplots is given 
by Ezekiel (1941, p. 51). The points are grouped accord- 
ing to xi, and for each group the mean of the yi is plotted 
against the mean of the xi. More recently, Stone (1977) 
proves the consistency of a wide class of nonparametric 
regression estimates under very general conditions and 
presents a discussion and bibliography of methods that 
have appeared in the literature. Another method, which 
appeared after Stone's review, is that of Clark (1977), 
who proposes a technique for smoothing scatterplots in 
which the plot is interpolated by joining successive 
points with straight lines and is then smoothed by con- 
volution with a weight function. 

In the remainder of this article we shall first describe 
the details of robust locally weighted regression. Then, 
we shall use examples to show how the methodology can 
be put to use in practice and give guidelines for choosing 
certain parameters that are needed for carrying out the 
procedure. An algorithm is given that allows efficient 
computation of smoothed points. Various statistical 
topics, including the sampling distributions of fitted 
values, an estimate of the error variance, and the equiva- 
lent number of parameters, are presented. Finally, the 
interplay between bias and variance is discussed and 
conditions are given that ensure that increasing a param- 
eter that controls the amount of smoothing will decrease 
the variance of the fitted values. 

2. LOCALLY WEIGHTED REGRESSION AND ROBUST 
LOCALLY WEIGHTED REGRESSION 

We shall first attempt to give the rough idea of the 
smoothing procedure before giving the precise details. 
Let W be a weight function with the following properties: 

1. W(x)>Oforlxt <1; 
2. W(-x) = W(x); (2.1) 
3. W(x) is a nonincreasing function for x ) 0; 
4. W(x) =0 forI x I 1. 

Let 0 < f G 1 and let r be fn rounded to the nearest 
integer. Roughly, the procedure is the following. For each 
xi, weights, Wk(xi), are defined for all Xk, k = 1, ..., n, 
using the weight function W. This is done by centering 
W at xi and scaling it so that the point at which W first 
becomes zero is at the rth nearest neighbor of xi. The 
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A. Scatterplot of Artificially Generated Data 
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neighbor of xi. That is, hi is the rth smallest number 
among lxi - xj, for j = 1, ..., n. For k = 1, ..., n, 
let 

Wk(Xi) = WY(hi-l(Xk - Xi)) 

Locally weighted regression and robust locally weighted 
regression are defined by the following sequence of opera- 
tions: 

1. For each i compute the estimates, ,1(xi), j = 0, .... 
d, of the parameters in a polynomial regression of degree 
d of Yk on Xk, which is fit by weighted least squares with 
weight wk(Xi) for (X k, Yk). Thus the ,j (xi) are the values 
of f,j that minimize 

n 

E Wk(Xi) (Yk - 10 - IlXk - 1 . dXkd )2 
k=1 

The smoothed point at x, using locally weighted regres- 
sion of degree d is (xi, Ai), where Ai is the fitted value of 
the regression at xi. Thus 

d 

i= Z Aj(Xi)Xii = rk(Xi)Yk 
j=O k=1 

where rk(xi) does not depend on yj, j = 1, ..., n. We 
have used the notation "rk(xi)" to remind us that these 
are the coefficients for the yk that arise from the 
regression. 

2. Let B be the bisquare weight function that is de- 

B. Scatterplot of Artificially Generated Data and 
Robust Smoothed Values With f =.5 
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fined by 

B(x) = (1 -X2)2, for lxl < I 
= 0, for Ixl > 1 

Let 
et = y, - Yi 

be the residuals from the current fitted values. Let s be 
the median of the leil. Define robustness weights by 

=k = B (ek/6s) 

3. Compute new 'i for each i by fitting a dth degree 
polynomial using weighted least squares with weight 
akWk(Xi) at (Xk, Yk). 

4. Repeatedly carry out steps 2 and 3 a total of t 
times. The final yi are robust locally weighted regression 
fitted values. 

For the smoothed points in Figure B, f = .5, d = 1, 
t = 2, and the weight function is "tricube," 

W(x) = (1- xj3)3 , for lxl < 1 
= 0, for xj I 1. 

In Figure C, f has been decreased to .2 with the result 
that the smoothed points are "rougher" than those in 
Figure B. Section 4 contains guidelines and methods for 
choosing f, d, t, and W in practice. 

The iterative fitting in steps 2 to 4 is carried out to 
achieve robust smoothed points in which a small frac- 
tion of outliers does not distort the results. The outliers, 
which can be thought of as arising when et has a long- 

C. Scatterplot of Artificially Generated Data and 
Robust Smoothed Values With f =.2 
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D. Scatterplot of Abrasion Loss Regression Resid- 
uals, Nonrobust Smoothed Values (Connected by 
Dotted Lines), and Robust Smoothed Values (Con- 
nected by Solid Lines) 
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tailed distribution, tend to have small robustness weights, 
ak, and therefore do not play a large role in the deter- 
mination of the smoothed points. The bisquare function 
is used because other investigations have shown it to 
perform well for robust estimation of location (Gross 
1976) and for robust regression (Gross 1977). 

Once the robustness weights ak have been determined, 
the fitted value at x (not necessarily equal to some xi) 
can be computed by fitting a polynomial using the 
weights ak Wk(x). Thus the fitted values could, for ex- 
ample, be computed and plotted at an equally spaced 
set of points on the horizontal axis. 

The smoothed points can be plotted by joining suc- 
cessive points by straight lines as in Figure B or by sym- 
bols at the points (xi, 'j). When the smoothed points 
are superimposed on the scatterplot, the first method 
provides greater visual discrimination with the points 
of the scatterplot. But using lines raises the danger of an 
inappropriate interpolation. One possible approach is to 
use symbols initially when the data are being analyzed; 
then if a particular plot is needed for further use, such 
as presentation to others, the lines can be used if the 
initial plot indicates that linear interpolation would not 
lead to a distortion of the results. Another method is 
to plot the smoothed points separately with the same 
scales as the original scatterplot. This is particularly 
attractive for low-resolution plots such as printer plots. 

The method of summarizing the scatterplot described 
here is appropriate when Y is the response or dependent 
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variable and X is the explanatory variable. In cases in 
which neither variable can be designated as the response, 
the scatterplot can be summarized by plotting the 
smoothed points of Y given X and the smoothed points 
of X given Y. 

The smoothed points (xi, Ai) portray the location of 
the distribution of Y given X = xi. It is often useful to 
have, in addition, a summary of the scale. This can be 
done by plotting lY-i il versus xi and computing and 
plotting smoothed points for this scatterplot. 

3. EXAMPLES 
3.1 Abrasion Loss Data 

The importance of the robust procedure is illustrated 
in Figure D. The data are from a linear regression 
analysis (Box et al. 1957, p. 210) that related the abrasion 
losses of 30 rubber specimens to their hardnesses and 
tensile strengths. In Figure D the residuals from regres- 
sing abrasion loss on hardness are plotted against the 
residuals from regressing tensile strength on hardness. 
Superimposed on the plot are the smoothed points using 
locally weighted regression and robust locally weighted 
regression with t = 2. In both cases, f = .5, d = 1, and 
the weight function is tricube. The outlier in the lower 
left of the plot has substantially distorted the nonrobust 
smoothed points, while the robust smoothed points 
appear quite adequate. The smoothed points in this 
example show a substantial nonlinear effect; thus a 
regression model that is linear in the explanatory vari- 
ables is not appropriate. 

E. Scatterplot of Residuals Against Fitted Values 
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3.2 Residuals vs. Fitted Values 
It has long been argued that plotting residuals against 

fitted values from a regression analysis is useful for, 
among other things, detecting a dependence of the scale 
of the errors on the level of the fitted values (Daniel 
and Wood 1971; Draper and Smith 1966). Such a plot 
has been made in Figure E for artifically generated data. 
The informal visual test is to look at the scale of the 
ordinates of the plot and determine if it is changing (e.g., 
increasing) with changing (e.g., increasing) values of the 
abscissa. The reader is invited to do this for Figure E. 

In fact, such an informal procedure is often confusing 
and too frequently misleading. For example, we might 
conclude from Figure E that the scale increases with 
increasing fitted values. In fact, the scale is constant. The 
misleading effect arises because the density of the points 
increases in going from left to right on the plot so that the 
ranges of the residuals tend to increase. Our visual assess- 
ment of scale is heavily dominated by our perception of 
the range, which of course does not properly measure 
scale because of the changing density. 

A far better procedure for assessing the scale is to 
plot the absolute values of the residuals against the fitted 
values, superimpose smoothed points, and look for a 
consistent change. This has been done in Figure F for 
the same data plotted in Figure E. The plot correctly 
shows a constant scale since there is little change in the 
smoothed points. 

F. Scatterplot of Absolute Values of Residuals 
Against Fitted Values and Robust Smoothed Values 
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3.3 Lead Intoxication 

Robust locally weighted regression has been used 
(Moody and Tukey 1979) in the investigation of the lead 
exposure of 158 workers in lead-smelting plants. The data 
involve two different screening methods for determining 
lead intoxication. The first is the traditional method in 
which lead levels in a blood sample are measured by 
atomic absorption spectrophotometry. The second, which 
is both newer and considerably simpler, is a hemato- 
fluorameter measurement of zinc protoporphyrin (ZPP), 
an enzyme released into the blood stream as a result of 
lead intoxication. 

Figure G is a scatterplot of the blood lead versus ZPP 
level for the 158 workers. Superimposed on the plot are 
robust locally weighted regression smoothed values with 
d = 1, f - .49, the tricube weight function, and t = 2. 
The value of f was selected by using the cross-validation 
procedure described in Section 4.4. The purpose of com- 
puting the fitted values, yi, is to provide a typical blood 
lead value given the value of a ZPP measurement. The 
curve has a quadraticlike behavior for ZPP in the range 
0 to 400 Ag/dl and is constant for ZPP above 400 ,ug/dl. 

For these data we are not in a situation in which there 
is a theoretical model to explain the dependence of blood 
lead on ZPP. Such a model would require a considera- 
tion of many physiological variables and a level of 
knowledge that does not now exist. Thus a summary of 
blood lead given ZPP must be determined empirically. 
It is clear that a single low-order polynomial would not 

G. Scatterplot of Blood Lead Against ZPP and 
Robust Smoothed Values (Units on both axes are 
,xgldl.) 
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adequately describe the entire curve in Figure G. We 
could attempt, of course, to find some other parametric 
family of curves to fit the data, but this would seem to 
require more effort than the relatively simple robust 
locally weighted regression. 

4. CHOOSING d, W, t, AND f 
There are four items that the user must select in order 

to carry out robust locally weighted regression: d, the 
order of the polynomial that is locally fit to each point 
on the scatterplot; W, the function used to determine the 
weights; t, the number of iterations of the robust fitting 
procedure; and f, the parameter used to determine the 
amount of smoothing. For the first three of these items 
certain preselected choices should serve almost all situa- 
tions. Only f needs to be chosen on the basis of the 
properties of the data on the scatterplot. 

4.1 Choosing d 

Choosing d to be 1 appears to strike a good balance 
between computational ease and the need for flexibility 
to reproduce patterns in the data. The case d = 0 is the 
simplest, computationally, but in the practical situation 
an assumption of local linearity seems to serve far 
better than an assumption of local constancy because 
the tendency is to plot variables that are related to one 
another. For d = 2, however, computational considera- 
tions begin to override the need for having flexibility. 
Taking d = 1 should almost always provide adequate 
smoothed points and computational ease. 

4.2 Choosing W 
In (2.1) four requirements for W were described for 

the following reasons: (a) is necessary, of course, since 
negative weights do not make sense; (b) is required since 
there is no reason to treat points to the left of xi dif- 
ferently from those to the right; (c) is required for it 
seems unreasonable to allow a particular point to have 
less weight than one that is further from xi; (d) is re- 
quired for computational reasons that are described in 
Section 5. 

In addition it seems desirable that W(x) decrease 
smoothly to 0 as x goes from 0 to 1. Such a weight func- 
tion produces smoothed points that have a smooth 
appearance. That is, using time series terminology, the 
smoothed points have relatively small power at high 
frequencies. Among the weight functions that decrease 
to 0, tricube has been chosen since, as will be discussed 
in Section 6, it enhances a chi-squared distributional 
approximation of an estimate of the error variance. 
Tricube should provide an adequate smooth in almost 
all situations. 

4.3 Choosing t 
One procedure for carrying out the robust iterations 

would be to define a convergence criterion and iterate 
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until the criterion is satisfied. This seems needlessly 
complicated. Experimentation with a large number of 
real and artificial data sets indicates that two iterations 
should be adequate for almost all situations. 

4.4 Choosing f 

As stated earlier, increasing f tends to increase the 
smoothness of the smoothed points (xi, 'j). The goal in 
the choice of f is to pick a value as large as possible to 
minimize the variability in the smoothed points without 
distorting the pattern in the data. In situations such as 
Figures B, C, D, and F where the sole purpose of the 
smooth is just to enhance the visual perception of patterns 
in the plot, the choice of f is not so critical since the eyes 
can partially correct for a less than optimal choice of f. 
For example, in Figure C the noisy smooth with f = .2 
still provides a clear description of the increasing overall 
trend. In such situations choosing f in the range .2 to .8 
should serve most purposes; in situations in which there 
is no clear idea of what is needed, taking f = .5 is a 
reasonable starting value. 

In situations such as Figure G, where the smoothed 
values (xi, 'h) are to be used as a regression function of 
yi on xi and might be communicated without the plot, 
more care in choosing f seems warranted. In such cases 
the PRESS procedure of Allen (1974), used ordinarily 
for choosing a subset of the independent variables in a 
regression, can be tailored to robust locally weighted 
regression to choose f. As in Section 2, the procedure be- 
gins with locally weighted regression (without the robust 
fitting) and iterates. Let i,(f) be the locally weighted 
regression-fitted value of xi for a given value of f with 
yi not included in the computation. Then an initial value, 
fo, of f is chosen by minimizing 

n 
EI (Yk - Yk (f))2 
k=1 

Now let ak be the robustness weights for the residuals 
from the locally weighted regression fit with f = fo (as 
computed in step 2 in Section 2). Let Ai(f) be the fitted 
value at xi for a given value of f with yi not included in 
the computation and using the robustness weights bk 

(as in step 3 in Section 2). The next value of f is chosen 
by minimizing 

n 

k (8Yk - Yk (f))2 
k=1 

The procedure can then be repeated several times to pro- 
duce a final value of f. For the blood-lead example de- 
scribed in Section 3.3 the successive values of f were 
fo = .48, fi = .49, f2 = .49. 

5. COMPUTATIONS 

5.1 Reducing the Computations 

Suppose the xt are ordered from smallest to largest and 
let Xa(i), ..., Xb(i) be the ordered r nearest neighbors of 
x,> The values of a(i + 1) and b(i + 1) can be foulnd from 

a (i) and b(i) by using the following scheme: 

1. Let A = a (i) and B =b (i). 
2. Let dA = Xi+i - XA and dB = XB+1 -Xi+l 

3. If dA < dB, then a(i + 1) = A and b(i + 1) = B. 
If dA > dB replace A by A + 1 and B by B + 1 and 
return to step 2. 

4. hi+, is the maximum of xi+1 - XA and xB - x+l. 
Thus this scheme can be used to save computations by 
computing the fitted values at xi, then x2, and so on. 
Only Xa(i) . .. , Xb(j) need be considered in the weighted 
least squares computation of yi since W(x) = 0 for 
I x I > 1. This saving would not be achieved by using a 
weight function that becomes small but not zero for 
large x, such as the full normal probability density. 

Portable FORTRAN programs that incorporate these 
savings are available from the author on request. 

5.2 Grouping 
The computations for the nearest-neighbor algorithm 

are approximately of the order fn2. For scatterplots with 
fewer than 100 points, the computations present no 
problems. For plots with more points, computations can 
be saved simply by grouping the xi. The saving results 
from the fact that if xi+, xi then gi+l = Yi. 

6. ESTIMATION AND SAMPLING DISTRIBUTIONS 
FOR LOCALLY WEIGHTED REGRESSION 

In this section we shall suppose, as is generally done in 
ordinary least squares regression, that the Ei are inde- 
pendent and identically distributed. 

6.1 Estimation of the Error Variance and the Standard 
Errors of Fitted Values for Normal ei 

Let us further suppose that the ci are normally distri- 
buted with variance A2. For such an error structure we 
would be content to smooth by locally weighted regres- 
sion and not employ the robust fitting algorithm. Thus 
we shall suppose the fitted values yi are the result of 
step 1 in Section 2. 

Let R be the matrix whose (i, k)th element is rk(x,). 
Let ei = - Yi be the residuals. The fitted values and 
residuals have multivariate normal distributions with 
covariance matrices u21R' and o2C, respectively, where I 
is the identity matrix and C = (I - R) (I - R)'. Let 
t, = trCs. If we suppose the bias in the fitted values is 
negligible, then Eyt = g (xi) and 

n 
a2 = t l1 E e 2 

i=l 

is an unbiased estimate of i2. Thus the standard error of 
yi may be estimated by 

6(, rk2(Xi))A 
k=l 

62 is a quadratic form in normal variables. A standard 
procedure for approximating the distribution of such a 
quadratic form (Box 1953) is to use a constant times a 
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chi-squared distribution whose first two moments match 
those of the quadratic form. Thus 

tl't2 l'a 2y 

may be approximated by a chi-squared distribution with 
degrees of freedom equal to t12t2-1 rounded to the nearest 
integer. The chi-squared approximation will be enhanced 
if, in addition, we can make the third cumulants of the 
actual and the approximating distributions as close as 
possible by the proper choice of the weight function W. 
Straightforward calculations (Cleveland 1977) show that 
the tricube weight function provides such a third- 
moment match. 

The quantity 
n 

X = n - E 2 
n=1 

= n -t 

n n 

-2 E ri(x)- E rk2(x) 
i=1 i,k=l 

can be used to assist in judging the relative amounts of 
smoothing for different values of f. If the ei were the 
residuals from a linear least squares fit with q parameters, 
then X would be equal to q. Thus, for locally weighted 
regression, X can be interpreted as an equivalent number 
of parameters. 

X is not necessarily an integer, as in ordinary regression, 
but it is always nonnegative. To see this note that since 
rk(xi), for k = 1, ..., n, result from a weighted least 
squares regression we have 

rk (Xi) = bik 
Wk 

(X) 
5 

where, for fixed i, [b3k] is an idempotent matrix with n 
rows and n columns. Since W has its maximum at 0, 
wi(xi) ) Wk(xi). Thus 

n n 

E rk2 (X) = E bik2Wk (xi)W i1 (xi) 
k=1 k=1 

n 

< E: bik 2 

k=1 

= bi 

Thus = ri(xi) 
n 

2r (xi ) E rk 2(X,) 
k=1 

and X ) 0. 
Straightforward approximations (Cleveland 1977) 

show that for d = 1 and for the tricube weight function 
the quantity 2(1 + f-1) provides a good approximation 
of X. 

6.2 Estimating the Standard Error of the Fitted Values 
for More Generally Distributed (, 

If we do not assume normality as in Section 6.1, then 
generally it will be wise to use the robust fitting pro- 

cedure described in Section 2. Let Uk = (Yk - yk)/6s 
and let Ok = 1 if I k > 0 and let Ok be 0 otherwise. 
Following Huber's (1973) suggestion for estimating 
standard errors in robust regression we might try esti- 
mating the standard error of Ai by 

n 

a(E rk'(Xi))'2 

where k=1 

n2 n 
= [~~ 6~2(y~~ - Yk)2] 2 = ~~E sE k (Yk Yk) 
n- X k=1 

n 

*[E Ok(1 - Uk2) (1 -5Uk2)]-2 
k=1 

M\lore experimentation (e.g., Monte Carlo) with this 
estimate is needed in order to understand its properties. 

7. VARIANCE, BIAS, AND MEAN SQUARED ERROR 
FOR LOCALLY WEIGHTED REGRESSION 

OF DEGREE ZERO 
Suppose the yi satisfy the model in (2.2) but with the 

additional assumption that the ej are independent with 
common finite variance a2. Let A be the fitted value at x 
(not necessarily equal to an xi). The variance and bias 
of y are related to the mean squared error by 

E ( - g(x))2 = (Ey - g(x))2 + var A 

Let h be the distance of x to its rth nearest neighbor. 
Increasing the value of h tends to decrease the contribu- 
tion of the variance term to the mean squared error, but 
runs the risk of increasing the bias. For locally weighted 
regression the variance of A, 

v(h) = a2 E rk2(x) 
k=1 

is generally (but not always) a nonincreasing function of 
h, since increasing h generally pools more information 
from the data. To illustrate this the behavior of v (h) 
for the special case d = 0 will be investigated. 

We shall begin with a lemma whose proof is from 
Colin L. Mallows. (In the lemma and the theorem to 
follow all summations run from 1 to n.) 

Lemma: Let ak and bk for k = 1, ..., n be two se- 
quences of numbers with the following properties: 

1. ak > 0 and bk , 0, 
2. ak, bk, and bk/ak are nonincreasing sequences, 
3. L ak = E bk = 1. 

Then 

Z ak2 E E bk2 

Equality occurs only if ak = bk for all k. 
Proof: 

c = E akbk - Z ak2 

= Y2(ak + a) ((bk)/ (ak) - 1)ak 

where a is any real number. Since ak + a and bk/ak -1 
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are nonincreasing we may choose a so that the signs of 
these two sequences match. Thus c > 0. This inequality 
together with the Cauchy-Schwarz inequality for ak 

and bk proves the lemma. 

The following theorem gives a necessary and sufficient 
condition that v,(h) be a nonincreasing function of h for 
locally weighted regression of degree 0. 

Theorem: Let 

Vkh) WWI(x- Xk)) 

Vk ~~ (h ?W(n-1 (x - xj) )' 

where W is a weight function as defined in Section 2. 
(Note that for locally weighted regression with d = 0, 
we have rk(x) = vk(h).) Let 

v(h) =2 E Vk2(h) 

and let 
C(z) = log W(ez) 

be defined for all real z such that W(ez) > 0. Then v(h) 
is a nonincreasing function of h for any set of xi and any 
x if and only if C is a concave function. 

Proof: Suppose C(z) is concave. Let ,3 > a > 0, 
ak = Vk(a-1), and bk = Vk (1). For simplicity of nota- 
tion let us suppose ix - Xkl = tk is nondecreasing in k 
so that, since W is nonincreasing, we have ak and bk 
are nonincreasing. Furthermore, ak = 0 implies bk = 0, 
so that with no loss of generality we may suppose ak > 0. 

We shall now show that the sequence bk/ak = Ck is 
nonincreasing. Suppose bk = 0 for k = s + 1, ..., n, 
but b, > O. Then clearly Ck is nonincreasing for k =s, . . . 
n. Now suppose tk =O, for k =1,...,r, but tr+l > 0. 
Then 

Cr+l br+l ar W(O3tr+1) 

cr ar+1 br W (atr+i) 

Since ,B > a and since W is nonincreasing we have 
Cr+l/Cr < 1. Thus Ck is nonincreasing for k = 1, .... 
r +1. It remains to show Ck is nonincreasing for k = r +1, 

s. For k = r + 1, ..., s - 1 

Ck 1 r W (fltk+l) W (atk) 
log = log 

Ck L W(13tk) W(atk+l)J 

= [C(Z4) - C(Z3)] - [C(z2) - C(zl)] 

where Z4 = log (/3tk+l), Z3 = log (f3tk), Z2 = log (atk+l), 

and zi = log (atk). Since Z4 , Z3, Z2 >, Z1, Z2 < Z4, and 
Z4-Z3 = Z2- z and since C is concave we have 
log Ck+liCk < 0. Thus bk/ak is nonincreasing and from 
the lemma, 

Z, ak2 Y , bk2- 

Thus completes the proof of sufficiency. 
To prove necessity suppose C is not concave. Then 

there exists z1 < Z2 < Z3 < Z4 such that Z2-Zl = Z4-Z3 

and 
C(z2) -C(z1) < C(Z4) - C(Z3) . (7.1) 

Let n = 2, x-O , xl-=ezl, x2 = ezl, and ae = ez3-z1. 

Furthermore let 

ak = W(aXk) (E W(axj))-1 
and 

bk = W(xk) (E W(xj))l- 

For the smoothed value at x, 

(a-') = E a.' 

and 
v(1) = L b.2. 

Since log b2 - log bi = C(z2) -C(z1) and log a2 - log a, 
= C(z4) - C(z3) we have, from (7.1), bi/a, > b2/a2. 
Thus, from the lemma, 

L ak2 < E bk2. 

Since a-' < 1 we have proved necessity. 
For the tricube weight function 

C(z) = 3 log (1 - elz) 

for -oo < z < 0, and 
27e'z 

C" t(z) =( (- e3 z)2 

which is negative. Thus C is concave and v (h) is a 
nonincreasing function of h for tricube. 

[Received March 1978. Revised April 1979.] 
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