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Abstract—Hyperparameters are critical in machine learn-
ing, as different hyperparameters often result in models with
significantly different performance. Hyperparameters may be
deemed confidential because of their commercial value and the
confidentiality of the proprietary algorithms that the learner uses
to learn them. In this work, we propose attacks on stealing the
hyperparameters that are learnt by a learner. We call our attacks
hyperparameter stealing attacks. Our attacks are applicable to a
variety of popular machine learning algorithms such as ridge
regression, logistic regression, support vector machine, and neural
network. We evaluate the effectiveness of our attacks both
theoretically and empirically. For instance, we evaluate our
attacks on Amazon Machine Learning. Our results demonstrate
that our attacks can accurately steal hyperparameters. We also
study countermeasures. Our results highlight the need for new
defenses against our hyperparameter stealing attacks for certain
machine learning algorithms.

I. INTRODUCTION

Many popular supervised machine learning (ML)
algorithms–such as ridge regression (RR) [19] , logistic
regression (LR) [20], support vector machine (SVM) [13],
and neural network (NN) [16]–learn the parameters in a
model via minimizing an objective function, which is often
in the form of loss function + λ × regularization term.
Loss function characterizes how well the model performs
over the training dataset, regularization term is used to
prevent overfitting [7], and λ balances between the two.
Conventionally, λ is called hyperparameter. Note that there
could be multiple hyperparameters if the ML algorithm adopts
multiple regularization terms. Different ML algorithms use
different loss functions and/or regularization terms.

Hyperparameters are critical for ML algorithms. For the
same training dataset, with different hyperparameters, an ML
algorithm might learn models that have significantly different
performance on the testing dataset, e.g., see our experimental
results about the impact of hyperparameters on different ML
classifiers in Figure 16 in the Appendix. Moreover, hyperpa-
rameters are often learnt through a computationally expensive
cross-validation process, which may be implemented by pro-
prietary algorithms that could vary across learners. Therefore,
hyperparameters may be deemed confidential.

Our work: In this work, we formulate the research problem of
stealing hyperparameters in machine learning, and we provide
the first systematic study on hyperparameter stealing attacks
as well as their defenses.

Hyperparameter stealing attacks. We adopt a threat
model in which an attacker knows the training dataset, the
ML algorithm (characterized by an objective function), and
(optionally) the learnt model parameters. Our threat model
is motivated by the emerging machine-learning-as-a-service

(MLaaS) cloud platforms, e.g., Amazon Machine Learning [1]
and Microsoft Azure Machine Learning [25], in which the
attacker could be a user of an MLaaS platform. When the
model parameters are unknown, the attacker can use model
parameter stealing attacks [54] to learn them. As a first step
towards studying the security of hyperparameters, we focus
on hyperparameters that are used to balance between the loss
function and the regularization terms in the objective function.
Many popular ML algorithms–such as ridge regression, logistic
regression, and SVM (please refer to Table I for more ML
algorithms)–rely on such hyperparameters. It would be an in-
teresting future work to study the security of hyperparameters
for other ML algorithms, e.g., the hyperparameter K for KNN,
as well as network architecture, dropout rate [49], and mini-
batch size for deep neural networks. However, as we will
demonstrate in our experiments, an attacker (e.g., user of an
MLaaS platform) can already significantly financially benefit
from stealing the hyperparameters in the objective function.

We make a key observation that the model parameters
learnt by an ML algorithm are often minima of the corre-
sponding objective function. Roughly speaking, a data point is
a minimum of an objective function if the objective function
has larger values at the nearby data points. This implies that
the gradient of the objective function at the model parameters
is close to 0 (0 is a vector whose entries are all 0). Our attacks
are based on this key observation. First, we propose a general
attack framework to steal hyperparameters. Specifically, in our
framework, we compute the gradient of the objective function
at the model parameters and set it to 0, which gives us a
system of linear equations about the hyperparameters. This
linear system is overdetermined since the number of equa-
tions (i.e., the number of model parameters) is usually larger
than the number of unknown variables (i.e., hyperparameters).
Therefore, we leverage the linear least square method [30],
a widely used method to derive an approximate solution of
an overdetermined system, to estimate the hyperparameters.
Second, we demonstrate how we can apply our framework to
steal hyperparameters for a variety of ML algorithms.

Theoretical and empirical evaluations. We evaluate our
attacks both theoretically and empirically. Theoretically, we
show that 1) when the learnt model parameters are an exact
minimum of the objective function, our attacks can obtain
the exact hyperparameters; and 2) when the model parameters
deviate from their closest minimum of the objective function
with a small difference, then our estimation error is a lin-
ear function of the difference. Empirically, we evaluate the
effectiveness of our attacks using six real-world datasets. Our
results demonstrate that our attacks can accurately estimate the
hyperparameters on all datasets for various ML algorithms.
For instance, for various regression algorithms, the relative
estimation errors are less than 10−4 on the datasets.



Moreover, via simulations and evaluations on Amazon Ma-
chine Learning, we show that a user can use our attacks to learn
a model via MLaaS with much less economical costs, while
not sacrificing the model’s testing performance. Specifically,
the user samples a small fraction of the training dataset, learns
model parameters via MLaaS, steals the hyperparameters using
our attacks, and re-learns model parameters using the entire
training dataset and the stolen hyperparameters via MLaaS.

Rounding as a defense. One natural defense against our
attacks is to round model parameters, so attackers obtain
obfuscated model parameters. We note that rounding was
proposed to obfuscate confidence scores of model predictions
to mitigate model inversion attacks [14] and model stealing
attacks [54]. We evaluate the effectiveness of rounding using
the six real-world datasets.

First, our results show that rounding increases the relative
estimation errors of our attacks, which is consistent with our
theoretical evaluation. However, for some ML algorithms, our
attacks are still effective. For instance, for LASSO (a popular
regression algorithm) [53], the relative estimation errors are
still less than around 10−3 even if we round the model
parameters to one decimal. Our results highlight the need
to develop new countermeasures for hyperparameter stealing
attacks. Second, since different ML algorithms use different
regularization terms, one natural question is which regulariza-
tion term has better security property. Our results demonstrate
that L2 regularization term can more effectively defend against
our attacks than L1 regularization term using rounding. This
implies that an ML algorithm should use L2 regularization
in terms of security against hyperparameter stealing attacks.
Third, we also compare different loss functions in terms of
their security property, and we observe that cross entropy loss
and square hinge loss can more effectively defend against our
attacks than regular hinge loss using rounding. The cross-
entropy loss function is adopted by logistic regression [20],
while square and regular hinge loss functions are adopted by
support vector machine and its variants [21].

In summary, our contributions are as follows:

• We provide the first study on hyperparameter stealing attacks
to machine learning. We propose a general attack framework
to steal the hyperparameters in the objective functions.

• We evaluate our attacks both theoretically and empirically.
Our empirical evaluations on several real-world datasets
demonstrate that our attacks can accurately estimate hyper-
parameters for various ML algorithms. We also show the
success of our attacks on Amazon Machine Learning.

• We evaluate rounding model parameters as a defense against
our attacks. Our empirical evaluation results show that
our attacks are still effective for certain ML algorithms,
highlighting the need for new countermeasures. We also
compare different regularization terms and different loss
functions in terms of their security against our attacks.

II. RELATED WORK

Existing attacks to ML can be roughly classified into
four categories: poisoning attacks, evasion attacks, model
inversion attacks, and model extraction attacks. Poisoning
attacks and evasion attacks are also called causative attacks

and exploratory attacks [2], respectively. Our hyperparameter
stealing attacks are orthogonal to these attacks.

Poisoning attacks: In poisoning attacks, an attacker aims to
pollute the training dataset such that the learner produces a bad
classifier, which would mislabel malicious content or activities
generated by the attacker at testing time. In particular, the
attacker could insert new instances, edit existing instances, or
remove existing instances in the training dataset [38]. Existing
studies have demonstrated poisoning attacks to worm signature
generators [34], [41], [35], spam filters [31], [32], anomaly
detectors [43], [24], SVMs [5], face recognition methods [4],
as well as recommender systems [27], [57].

Evasion attacks: In these attacks [33], [22], [3], [51], [52],
[17], [26], [23], [37], [56], [9], [44], [28], [36], an attacker aims
to inject carefully crafted noise into a testing instance (e.g., an
email spam, a social spam, a malware, or a face image) such
that the classifier predicts a different label for the instance.
The injected noise often preserves the semantics of the original
instance (e.g., a malware with injected noise preserves its ma-
licious behavior) [51], [56], is human imperceptible [52], [17],
[37], [28], or is physically realizable [9], [44]. For instance,
Xu et al. [56] proposed a general evasion attack to search
for a malware variant that preserves the malicious behavior of
the malware but is classified as benign by the classifier (e.g.,
PDFrate [47] or Hidost [50]). Szegedy et al. [52] observed
that deep neural networks would misclassify an image after we
inject a small amount of noise that is imperceptible to human.
Sharif et al. [44] showed that an attacker can inject human-
imperceptible noise to a face image to evade recognition or
impersonate another individual, and the noise can be physically
realized by the attacker wearing a pair of customized eyeglass
frames. Moreover, evasion attacks can be even black-box, i.e.,
when the attacker does not know the classification model. This
is because an adversarial example optimized for one model is
highly likely to be effective for other models, which is known
as transferability [52], [28], [36].

We note that Papernot et al. [39] proposed a distillation
technique to defend against evasion attacks to deep neural
networks. However, Carlini and Wagner [10] demonstrated
that this distillation technique is not as secure to new evasion
attacks as we thought. Cao and Gong [8] found that adversarial
examples, especially those generated by the attacks proposed
by Carlini and Wagner, are close to the classification boundary.
Based on the observation, they proposed region-based classi-
fication, which ensembles information in the neighborhoods
around a testing example (normal or adversarial) to predict
its label. Specifically, for a testing example, they sample
some examples around the testing example in the input space
and take a majority vote among the labels of the sampled
examples as the label of the testing example. Such region-
based classification significantly enhances the robustness of
deep neural networks against various evasion attacks, without
sacrificing classification accuracy on normal examples at all. In
particular, an evasion attack needs to add much larger noise in
order to construct adversarial examples that successfully evade
region-based classifiers.

Model inversion attacks: In these attacks [15], [14], an
attacker aims to leverage model predictions to compromise
user privacy. For instance, Fredrikson et al. [15] demonstrated



that model inversion attacks can infer an individual’s private
genotype information. Furthermore, via considering confidence
scores of model predictions [14], model inversion attacks can
estimate whether a respondent in a lifestyle survey admitted to
cheating on its significant other and can recover recognizable
images of people’s faces given their name and access to the
model. Several studies [45], [48], [42] demonstrated even
stronger attacks, i.e., an attacker can infer whether a particular
instance was in the training dataset or not.

Model extraction attacks: These attacks aim to steal param-
eters of an ML model. Stealing model parameters compro-
mises the intellectual property and algorithm confidentiality of
the learner, and also enables an attacker to perform evasion
attacks or model inversion attacks subsequently [54]. Lowd
and Meek [29] presented efficient algorithms to steal model
parameters of linear classifiers when the attacker can issue
membership queries to the model through an API. Tramèr
et al. [54] demonstrated that model parameters can be more
accurately and efficiently extracted when the API also produces
confidence scores for the class labels.

III. BACKGROUND AND PROBLEM DEFINITION

A. Key Concepts in Machine Learning

We introduce some key concepts in machine learning (ML).
In particular, we discuss supervised learning, which is the focus
of this work. We will represent vectors and matrices as bold
lowercase and uppercase symbols, respectively. For instance,
x is a vector while X is a matrix. xi denotes the ith element
of the vector x. We assume all vectors are column vectors in
this paper. xT (or XT ) is the transpose of x (or X).

Decision function: Supervised ML aims to learn a decision
function f , which takes an instance as input and produces label
of the instance. The instance is represented by a feature vector;
the label can be continuous value (i.e., regression problem) or
categorical value (i.e., classification problem). The decision
function is characterized by certain parameters, which we
call model parameters. For instance, for a linear regression
problem, the decision function is f(x)=wTx, where x is the
instance and w is the model parameters. For kernel regression
problem, the decision function is f(x)=wTφ(x), where φ is
a kernel mapping function that maps an instance to a point in
a high-dimensional space. Kernel methods are often used to
make a linear model nonlinear.

Learning model parameters in a decision function: An
ML algorithm is a computational procedure to determine the
model parameters in a decision function from a given training
dataset. Popular ML algorithms include ridge regression [19],
logistic regression [20], SVM [13], and neural network [16].

Training dataset. Suppose the learner is given n instances
X = {xi}ni=1 ∈ Rm×n. For each instance xi, we have a
label yi, where i = 1, 2, · · · , n. yi takes continuous value
for regression problems and categorical value for classification
problems. For convenience, we denote y = {yi}ni=1. X and y
form the training dataset.

Objective function. Many ML algorithms determine the
model parameters via minimizing a certain objective function

TABLE I: Loss functions and regularization terms of various
ML algorithms we study in this paper.

Category ML Algorithm Loss Function Regularization

Regression

RR Least Square L2

LASSO Least Square L1

ENet Least Square L2 + L1

KRR Least Square L2

Logistic Regression

L2-LR Cross Entropy L2

L1-LR Cross Entropy L1

L2-KLR Cross Entropy L2

L1-BKLR Cross Entropy L1

SVM

SVM-RHL Regular Hinge Loss L2

SVM-SHL Square Hinge Loss L2

KSVM-RHL Regular Hinge Loss L2

KSVM-SHL Square Hinge Loss L2

Neural Network Regression Least Square L2

Classification Cross Entropy L2

over the training dataset. An objective function often has the
following forms:

Non-kernel algorithms: L(w) = L(X,y,w) + λR(w)

Kernel algorithms: L(w) = L(φ(X),y,w) + λR(w),

where L is called loss function, R is called regularization term,
φ is a kernel mapping function (i.e., φ(X) = {φ(xi)}ni=1),
and λ > 0 is called hyperparameter, which is used to
balance between the loss function and the regularization term.
Non-kernel algorithms include linear algorithms and nonlinear
neural network algorithms. In ML theory, the regularization
term is used to prevent overfitting. Popular regularization terms
include L1 regularization (i.e., R(w)=||w||1 =

∑
i |wi|) and

L2 regularization (i.e., R(w)=||w||22 =
∑
i w

2
i ). We note that,

some ML algorithms use more than one regularization terms
and thus have multiple hyperparameters. Although we focus
on ML algorithms with one hyperparameter in the main text
of this paper for conciseness, our attacks are applicable to
more than one hyperparameter and we show an example in
Appendix B.

An ML algorithm minimizes the above objective function
for a given training dataset and a given hyperparameter, to
get the model parameters w, i.e., w = argminL(w). The
learnt model parameters are a minimum of the objective
function. w is a minimum if the objective function has larger
values at the points near w. Different ML algorithms adopt
different loss functions and different regularization terms. For
instance, ridge regression uses least-square loss function and
L2 regularization term. Table I lists the loss function and
regularization term used by popular ML algorithms that we
consider in this work. As we will demonstrate, these different
loss functions and regularization terms have different security
properties against our hyperparameter stealing attacks.

For kernel algorithms, the model parameters are in the form
w =

∑n
i=1 αiφ(xi). In other words, the model parameters are

a linear combination of the kernel mapping of the training
instances. Equivalently, we can represent model parameters
using the parameters α = {αi}ni=1 for kernel algorithms.

Learning hyperparameters via cross-validation: Hyper-
parameter is a key parameter in machine learning systems;
a good hyperparameter makes it possible to learn a model
that has good generalization performance on testing dataset.
In practice, hyperparameters are often determined via cross-
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Fig. 1: Key concepts of a machine learning system.

validation [21]. A popular cross-validation method is called K-
fold cross-validation. Specifically, we can divide the training
dataset into K folds. Suppose we are given a hyperparameter.
For each fold, we learn the model parameters using the
remaining K−1 folds as a training dataset and tests the model
performance on the fold. Then, we average the performance
over the K folds. The hyperparameter is determined in a
search process such that the average performance in the cross-
validation is maximized. Learning hyperparameters is much
more computationally expensive than learning model parame-
ters with a given hyperparameter because the former involves
many trials of learning model parameters. Figure 1 illustrates
the process to learn hyperparameters and model parameters.

Testing performance of the decision function: We often
use a testing dataset to measure performance of the learnt
model parameters. Suppose the testing dataset consists of
{xtesti }ntest

i=1 , whose labels are {ytesti }ntest

i=1 , respectively. For
regression, the performance is often measured by mean square
error (MSE), which is defined as MSE = 1

ntest

∑ntest

i=1 (ytesti −
f(xtesti ))2. For classification, the performance is often mea-
sured by accuracy (ACC), which is defined as ACC =

1
ntest

∑ntest

i=1 I(ytesti = f(xtesti )), where I is 1 if ytesti =
f(xtesti ), otherwise it is 0. A smaller MSE or a higher ACC
implies better model parameters.

B. Problem Definition

Threat model: We assume the attacker knows the train-
ing dataset, the ML algorithm, and (optionally) the learnt
model parameters. Our threat model is motivated by machine-
learning-as-a-service (MLaaS) [6], [1], [18], [25]. MLaaS is an
emerging technology to aid users, who have limited computing
power and machine learning expertise, to learn an ML model
over large datasets. Specifically, a user uploads the training
dataset to an MLaaS platform and specifies an ML algorithm.
The MLaaS platform uses proprietary algorithms to learn the
hyperparameters, then learns the model parameters, and finally
certain MLaaS platforms (e.g., BigML [6]) allow the user to
download the model parameters to use them locally. Attackers
could be such users. We stress that when the model parameters
are unknown, our attacks are still applicable as we demonstrate
in Section V-B3. Specifically, the attacker can first use model
parameter stealing attacks [54] to learn them and then perform
our attacks. We note that various MLaaS platforms–such as
Amazon Machine Learning and Microsoft Azure Machine
Learning–make the ML algorithm public. Moreover, for black-
box MLaaS platforms such as Amazon Machine Learning and
Microsoft Azure Machine Learning, prior model parameter
stealing attacks [54] are applicable.

We define hyperparameter stealing attacks as follows:

Definition 1 (Hyperparameter Stealing Attacks): Suppose
an ML algorithm learns model parameters via minimizing
an objective function that is in the form of loss function
+ λ × regularization term. Given the ML algorithm,
the training dataset, and (optionally) the learnt model
parameters, hyperparameter stealing attacks aim to estimate
the hyperparameter value in the objective function.

Application scenario: One application of our hyperparameter
stealing attacks is that a user can use our attacks to learn a
model via MLaaS with much less computations (thus much
less economical costs), while not sacrificing the model’s testing
performance. Specifically, the user can sample a small fraction
of the training dataset, learns the model parameters through
MLaaS, steals the hyperparameter using our attacks, and re-
learns the model parameters via MLaaS using the entire train-
ing dataset and the stolen hyperparameter. We will demonstrate
this application scenario in Section V-B via simulations and
Amazon Machine Learning.

IV. HYPERPARAMETER STEALING ATTACKS

We first introduce our general attack framework. Second,
we use several regression and classification algorithms as
examples to illustrate how we can use our framework to steal
hyperparameters for specific ML algorithms, and we show
results of more algorithms in Appendix A.

A. Our Attack Framework

Our goal is to steal the hyperparameters in an objective
function. For an ML algorithm that uses such hyperparameters,
the learnt model parameters are often a minimum of the objec-
tive function (see the background knowledge in Section III-A).
Therefore, the gradient of the objective function at the learnt
model parameters should be 0, which encodes the relationships
between the learnt model parameters and the hyperparameters.
We leverage this key observation to steal hyperparameters.

Non-kernel algorithms: We compute the gradient of the
objective function at the model parameters w and set it to
be 0. Then, we have

∂L(w)

∂w
= b + λa = 0, (1)

where vectors b and a are defined as follows:

b =


∂L(X,y,w)

∂w1
∂L(X,y,w)

∂w2

...
∂L(X,y,w)
∂wm

 , a =


∂R(w)
∂w1
∂R(w)
∂w2

...
∂R(w)
∂wm

 . (2)

First, Eqn. 1 is a system of linear equations about the
hyperparameter λ. Second, in this system, the number of
equations is more than the number of unknown variables
(i.e., hyperparameter in our case). Such system is called an
overdetermined system in statistics and mathematics. We adopt
the linear least square method [30], a popular method to find
an approximate solution to an overdetermined system, to solve



the hyperparameter in Eqn. 1. More specifically, we estimate
the hyperparameter as follows:

λ̂ = −(aTa)−1aTb. (3)

Kernel algorithms: Recall that, for kernel algorithms, the
model parameters are a linear combination of the kernel
mapping of the training instances, i.e., w =

∑n
i=1 αiφ(xi).

Therefore, the model parameters can be equivalently repre-
sented by the parameters α = {αi}ni=1. We replace the variable
w with

∑n
i=1 αiφ(xi) in the objective function, compute the

gradient of the objective function with respect to α, and set the
gradient to 0. Then, we will obtain an overdetermined system.
After solving the system with linear least square method,
we again estimate the hyperparameter using Eqn. 3 with the
vectors b and a re-defined as follows:

b =


∂L(φ(X),y,w)

∂α1
∂L(φ(X),y,w)

∂α2

...
∂L(φ(X),y,w)

∂αn

 , a =


∂R(w)
∂α1
∂R(w)
∂α2

...
∂R(w)
∂αn

 . (4)

Addressing non-differentiability: Using Eqn. 3 still faces
two more challenges: 1) the objective function might not be
differentiable at certain dimensions of the model parameters w
(or α), and 2) the objective function might not be differentiable
at certain training instances for the learnt model parameters.
For instance, objective functions with L1 regularization are
not differentiable at the dimensions where the learnt model
parameters are 0, while the objective functions in SVMs might
not be differentiable for certain training instances. We address
the challenges via constructing the vectors a and b using
the dimensions and training instances at which the objective
function is differentiable. Note that using less dimensions of
the model parameters is equivalent to using less equations in
the overdetermined system shown in Eqn. 1. Once we have at
least one dimension of the model parameters and one training
instance at which the objective function is differentiable, we
can estimate the hyperparameter.

Attack procedure: We summarize our hyperparameter steal-
ing attacks in the following two steps:

• Step I. The attacker computes the vectors a and b for a
given training dataset, a given ML algorithm, and the learnt
model parameters.

• Step II. The attacker estimates the hyperparameter using
Eqn. 3.

More than one hyperparameter: We note that, for concise-
ness, we focus on ML algorithms whose objective functions
have a single hyperparameter in the main text of this paper.
However, our attack framework is applicable and can be easily
extended to ML algorithms that use more than one hyperpa-
rameter. Specifically, we can still estimate the hyperparameters
using Eqn. 3 with the vector a expanded to be a matrix, where
each column corresponds to the gradient of a regularization
term with respect to the model parameters. We use an example
ML algorithm, i.e., Elastic Net [58], with two hyperparameters
to illustrate our attacks in Appendix B.

Next, we use various popular regression and classification
algorithms to illustrate our attacks. In particular, we will

discuss how we can compute the vectors a and b. We will
focus on linear and kernel ML algorithms for simplicity, and
we will show results on neural networks in Appendix C. We
note that the ML algorithms we study are widely deployed by
MLaaS. For instance, logistic regression is deployed by Ama-
zon Machine Learning, Microsoft Azure Machine Learning,
BigML, etc.; SVM is employed by Microsoft Azure Machine
Learning, Google Cloud Platform, and PredictionIO.

B. Attacks to Regression Algorithms

1) Linear Regression Algorithms: We demonstrate our at-
tacks to popular linear regression algorithms including Ridge
Regression (RR) [19] and LASSO [53]. Both algorithms use
least square loss function, and their regularization terms
are L2 and L1, respectively. Due to the limited space, we
show attack details for RR, and the details for LASSO are
shown in Appendix A. The objective function of RR is
L(w) = ‖y − XTw‖22 + λ‖w‖22. We compute the gradient
of the objective function with respect to w, and we have
∂L(w)
∂w = −2Xy + 2XXTw + 2λw. By setting the gradient

to be 0, we can estimate λ using Eqn. 3 with a = w and
b = X(XTw − y).

2) Kernel Regression Algorithms: We use kernel ridge
regression (KRR) [55] as an example to illustrate our attacks.
Similar to linear RR, KRR uses least square loss function and
L2 regularization. After we represent the model parameters
w using α, the objective function of KRR is L(α) = ‖y −
Kα‖22 + λαTKα, where matrix K = φ(X)Tφ(X), whose
(i, j)th entry is φ(xi)

Tφ(xj). In machine learning, K is called
gram matrix and is positive definite. By computing the gradient
of the objective function with respect to α and setting it to
be 0, we have K(λα + Kα − y) = 0. K is invertible as
it is positive definite. Therefore, we multiply both sides of
the above equation with K−1. Then, we can estimate λ using
Eqn. 3 with a = α and b = Kα−y. Our attacks are applicable
to any kernel function. In our experiments, we will adopt the
widely used Gaussian kernel.

C. Attacks to Classification Algorithms

1) Linear Classification Algorithms: We demonstrate our
attacks to four popular linear classification algorithms: support
vector machine with regular hinge loss function (SVM-RHL),
support vector machine with squared hinge loss function
(SVM-SHL), L1-regularized logistic regression (L1-LR), and
L2-regularized logistic regression (L2-LR). These four algo-
rithms enable us to compare different regularization terms
and different loss functions. For simplicity, we show attack
details for L1-LR, and defer details for other algorithms to
Appendix A. L1-LR enables us to illustrate how we address
the challenge where the objective function is not differentiable
at certain dimensions of the model parameters.

We focus on binary classification, since multi-class classi-
fication is often transformed to multiple binary classification
problems via the one-vs-all paradigm. However, our attacks
are also applicable to multi-class classification algorithms
such as multi-class support vector machine [11] and multi-
class logistic regression [11] that use hyperparameters in their
objective functions. For binary classification, each training
instance has a label yi ∈ {1, 0}.



The objective function of L1-LR is L(w) = L(X,y,w) +
λ‖w‖1, where L(X,y,w)=−∑n

i=1(yi log hw(xi) + (1− yi)
log(1 − hw(xi))) is called cross entropy loss function and
hw(x) is defined to be 1

1+exp (−wTx)
. The gradient of the

objective function is ∂L(w)
∂w = X(hw(X) − y) + λsign(w),

where hw(X) = [hw(x1);hw(x2); · · · ;hw(xn))] and the ith
entry sign(wi) of the vector sign(w) is defined as follows:

sign(wi) =
∂|wi|
∂wi

=


−1 if wi < 0

0 if wi = 0

1 if wi > 0

(5)

|wi| is not differentiable when wi = 0, so we define the
derivative at wi = 0 as 0, which means that we do not use the
model parameters that are 0 to estimate the hyperparameter.
Via setting the gradient to be 0, we can estimate λ using Eqn. 3
with a = sign(w) and b = X(hw(X)− y).

2) Kernel Classification Algorithms: We demonstrate our
attacks to the kernel version of the above four linear classi-
fication algorithms: kernel support vector machine with reg-
ular hinge loss function (KSVM-RHL), kernel support vector
machine with squared hinge loss function (KSVM-SHL), L1-
regularized kernel LR (L1-KLR), and L2-regularized kernel LR
(L2-KLR). We show attack details for KSVM-RHL, and defer
details for the other algorithms in Appendix A. KSVM-RHL
enables us to illustrate how we can address the challenge where
the objective function is non-differentiable for certain training
instances. Again, we focus on binary classification.

The objective function of KSVM-RHL is L(α) =∑n
i=1 L(φ(xi), yi,α) + λαTKα, where L(φ(xi), yi,α) =

max(0, 1 − yiαTki) is called regular hinge loss function. ki
is the ith column of the gram matrix K = φ(X)Tφ(X). The
gradient of the loss function with respect to α is:

∂L(φ(xi), yi,α)

∂α
=

{
−yiki if yiαTki < 1

0 if yiαTki > 1,
(6)

where L(φ(xi), yi,α) is non-differentiable when ki satisfies
yiα

Tki = 1. We estimate λ using ki that satisfy yiαTki < 1.
Specifically, via setting the gradient of the objective function
to be 0, we estimate λ using Eqn. 3 with a = 2Kα and
b =

∑n
i=1−yiki1yiαTki<1, where 1yiαTki<1 is an indicator

function with value 1 if yiαTki < 1 and 0 otherwise.

V. EVALUATIONS

A. Theoretical Evaluations

We aim to evaluate the effectiveness of our hyperparameter
stealing attacks theoretically. In particular, we show that 1)
when the learnt model parameters are an exact minimum of the
objective function, our attacks can obtain the exact hyperpa-
rameter value, and 2) when the model parameters deviate from
their closest minimum of the objective function with a small
difference, then the estimation error of our attacks is a linear
function of the small difference. Specifically, our theoretical
analysis can be summarized in the following theorems.

Theorem 1: Suppose an ML algorithm learns model pa-
rameters via minimizing an objective function which is in the
form of loss function + λ × regularization term, λ is the
true hyperparameter value, and the learnt model parameters
w (or α for kernel algorithms) are an exact minimum of the

TABLE II: Datasets.

Dataset #Instances #Features Type
Diabetes 442 10

RegressionGeoOrig 1059 68
UJIIndoor 19937 529

Iris 100 4
ClassificationMadelon 4400 500

Bank 45210 16

objective function. Then, our attacks can obtain the exact true
hyperparameter value, i.e., λ̂ = λ.

Proof: See Appendix D.

Theorem 2: Suppose an ML algorithm learns model pa-
rameters via minimizing an objective function which is in the
form of loss function + λ × regularization term, λ is the true
hyperparameter value, the learnt model parameters are w (or
α for kernel algorithms), and w? (or α?) is the minimum of
the objective function that is closest to w (or α). We denote
∆w = w−w? and ∆α = α−α?. Then, when ∆w→ 0 or
∆α→ 0, the difference between the estimated hyperparameter
λ̂ and the true hyperparameter can be bounded as follows:

Non-kernel algorithms:
∆λ̂ = λ̂− λ = ∆wT∇λ̂(w?) +O(‖∆w‖22) (7)
Kernel algorithms:
∆λ̂ = λ̂− λ = ∆αT∇λ̂(α?) +O(‖∆α‖22), (8)

where ∇λ̂(w?) is the gradient of λ̂ at w? and ∇λ̂(α?) is the
gradient of λ̂ at α?.

Proof: See Appendix E.

B. Empirical Evaluations

1) Experimental Setup: We use several real-world datasets
to evaluate the effectiveness of our hyperparameter steal-
ing attacks on the machine learning algorithms we studied.
We obtained these datasets from the UCI Machine Learning
Repository,1 and their statistics are summarized in Table II.
We note that our datasets have significantly different number
of instances and features, which represent different application
scenarios. We use each dataset as a training dataset.

Implementation: We use the scikit-learn package [40],
which implements various machine learning algorithms, to
learn model parameters. All experiments are conducted on a
laptop with a 2.7GHz CPU and 8GB memory. We predefine
a set of hyperparameters which span over a wide range, i.e.,
10−3, 10−2, 10−1, 100, 101, 102, 103, in order to evaluate the
effectiveness of our attacks for a wide range of hyperparame-
ters. Note that λ > 0, so we do not explore negative values for
λ. For each hyperparameter and for each learning algorithm,
we learn the corresponding model parameters using the scikit-
learn package. For kernel algorithms, we use the Gaussian
kernel, where the parameter σ in the kernel is set to be 10.
We implemented our attacks in Python.

Evaluation metric: We evaluate the effectiveness of our
attacks using relative estimation error, which is formally

1https://archive.ics.uci.edu/ml/datasets.html
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Fig. 2: Effectiveness of our hyperparameter stealing attacks for regression algorithms.
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Fig. 3: Effectiveness of our hyperparameter stealing attacks for logistic regression classification algorithms.
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Fig. 4: Effectiveness of our hyperparameter stealing attacks for SVM classification algorithms.

defined as follows:

Relative estimation error: ε =
|λ̂− λ|
λ

, (9)

where λ̂ and λ are the estimated hyperparameter and true
hyperparameter, respectively.

2) Experimental Results for Known Model Parameters:
We first show results for the scenario where an attacker
knows the training dataset, the learning algorithm, and the
model parameters. Figure 2 shows the relative estimation errors
for different regression algorithms on the regression datasets.
Figure 3 shows the results for logistic regression algorithms
on the classification datasets. Figure 4 shows the results for
SVM algorithms on the classification datasets. Figure 5 shows
the results for three-layer neural networks for regression and
classification. In each figure, x-axis represents the true hyper-

parameter in a particular algorithm, and the y-axis represents
the relative estimation error of our attacks at stealing the
hyperparameter. For better illustration, we set the relative
estimation errors to be 10−10 when they are smaller than
10−10. Note that learning algorithms with L1 regularization
require the hyperparameter to be smaller than a maximum
value λmax in order to learn meaningful model parameters
(please refer to Appendix A for more details). Therefore, in
the figures, the data points are missing for such algorithms
when the hyperparameter gets larger than λmax, which is
different for different training datasets and algorithms. We
didn’t show results on kernel LASSO because it is not widely
used. Moreover, we didn’t find open-source implementations
to learn model parameters in kernel LASSO, and implementing
kernel LASSO is out of the scope of this work. However, our
attacks are applicable to kernel LASSO.
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Fig. 5: Effectiveness of our hyperparameter stealing attacks for
a) a three-layer neural network regression algorithm and b) a
three-layer neural network classification algorithm.
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Fig. 6: Effectiveness of our hyperparameter stealing attacks for
RR when the model parameters deviate from the optimal ones.

We have two key observations. First, our attacks can accu-
rately estimate the hyperparameter for all learning algorithms
we studied and for a wide range of hyperparameter values. Sec-
ond, we observe that our attacks can more accurately estimate
the hyperparameter for Ridge Regression (RR) and Kernel
Ridge Regression (KRR) than for other learning algorithms.
This is because RR and KRR have analytical solutions for
model parameters, and thus the learnt model parameters are
the exact minima of the objective functions. In contrast, other
learning algorithms we studied do not have analytical solutions
for model parameters, and their learnt model parameters are
relatively further away from the corresponding minima of
the objective functions. Therefore, our attacks have larger
estimation errors for these learning algorithms.

In practice, a learner may use approximate solutions for
RR and KRR because computing the exact optimal solutions
may be computationally expensive. We evaluate the impact of
such approximate solutions on the accuracy of hyperparameter
stealing attacks, and compare the results with those predicted
by our Theorem 2. Specifically, we use the RR algorithm,
adopt the Diabetes dataset, and set the true hyperparameter to
be 1. We first compute the optimal model parameters for RR.
Then, we modify a model parameter by ∆w and estimate the
hyperparameter by our attack. Figure 6 shows the estimation
error ∆λ̂ as a function of ∆w (we show the absolute estimation
error instead of relative estimation error in order to compare
the results with Theorem 2). We observe that when ∆w is very
small, the estimation error ∆λ̂ is a linear function of ∆w. As
∆w becomes larger, ∆λ̂ increases quadratically with ∆w. Our
observation is consistent with Theorem 2, which shows that the
estimation error is linear to the difference between the learnt
model parameters and the minimum closest to them when the
difference is very small.
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Fig. 7: Effectiveness of our hyperparameter stealing attacks
when model parameters are unknown but stolen by model pa-
rameter stealing attacks. (a) Regression algorithms on Diabetes
and (b) Classification algorithms on Iris.

3) Experimental Results for Unknown Model Parameters:
Our hyperparameter stealing attacks are still applicable when
the model parameters are unknown to an attacker, e.g., for
black-box MLaaS platforms such as Amazon Machine Learn-
ing. Specifically, the attacker can first use the equation-solving-
based model parameter stealing attacks proposed in [54] to
learn the model parameters and then perform our hyperparam-
eter stealing attacks. Our Theorem 2 bounds the estimation
error of hyperparameters with respect to the difference between
the stolen model parameters and the closest minimum of the
objective function of the ML algorithm.

We also empirically evaluate the effectiveness of our at-
tacks when model parameters are unknown. For instance, Fig-
ure 7 shows the relative estimation errors of hyperparameters
for regression algorithms and classification algorithms, when
the model parameters are unknown but stolen by the model
parameter stealing attacks [54]. For simplicity, we only show
results on the Diabetes dataset for regression algorithms and
on the Iris dataset for classification algorithms, but results
on other datasets are similar. Note that LASSO requires the
hyperparameter to be smaller than a certain threshold as
we discussed in the above, and thus some data points are
missing for LASSO. We find that we can still accurately steal
the hyperparameters. The reason is that the model parameter
stealing attacks can accurately steal the model parameters.

4) Summary: Via empirical evaluations, we have the fol-
lowing observations. First, our attacks can accurately estimate
the hyperparameter for all ML algorithms we studied. Second,
our attacks can more accurately estimate the hyperparameter
for ML algorithms that have analytical solutions of the model
parameters. Third, via combining with model parameter steal-
ing attacks, our attacks can accurately estimate the hyperpa-
rameter even if the model parameters are unknown.

C. Implications for MLaaS

We show that a user can use our hyperparamter stealing
attacks to learn an accurate model through a machine-learning-
as-a-service (MLaaS) platform with much less costs. While
different MLaaS platforms have different paradigms, we con-
sider an MLaaS platform (e.g., Amazon Machine Learning [1],
Microsoft Azure Machine Learning [25]) that charges a user
according to the amount of computation that the MLaaS
platform performed to learn the model, and supports two



protocols for a user to learn a model. In the first protocol
(denoted as Protocol I), the user uploads a training dataset to
the MLaaS platform and specifies a learning algorithm; the
MLaaS platform learns the hyperparameter using proprietary
algorithms and learns the model parameters with the learnt
hyperparameter; and then (optionally) the model parameters
are sent back to the user. When the model parameters are
not sent back to the user, the MLaaS is called black-box.
The MLaaS platform (e.g., a black-box platform) does not
share the learnt hyperparameter value with the user considering
intellectual property and algorithm confidentiality.

In Protocol I, learning the hyperparameter is often the
most time-consuming and costly part, because it more or less
involves cross-validation. In practice, some users might already
have appropriate hyperparameters through domain knowledge.
Therefore, the MLaaS platform provides a second protocol
(denoted as Protocol II), in which the user uploads a training
dataset to the MLaaS platform, defines a hyperparameter value,
and specifies a learning algorithm, and then the MLaaS plat-
form produces the model parameters for the given hyperparam-
eter. Protocol II helps users learn models with less economical
costs when they already have good hyperparameters. We note
that Amazon Machine Learning and Microsoft Azure Machine
Learning support the two protocols.

1) Learning an Accurate Model with Less Costs: We
demonstrate that a user can use our hyperparameter stealing
attacks to learn a model through MLaaS with much less
economical costs without sacrificing model performance. In
particular, we assume the user does not have a good hyperpa-
rameter yet. We compare the following three methods to learn
a model through MLaaS. By default, we assume the MLaaS
shares the model parameters with the user. If not, the user can
use model parameter stealing attacks [54] to steal them.

Method 1 (M1): The user leverages Protocol I supported
by the MLaaS platform to learn the model. Specifically, the
user uploads the training dataset to the MLaaS platform and
specifies a learning algorithm. The MLaaS platform learns the
hyperparameter and then learns the model parameters using
the learnt hyperparameter. The user then downloads the model
parameters.

Method 2 (M2): In order to save economical costs, the
user samples p% of the training dataset uniformly at random
and then uses Protocol I to learn a model over the sampled
subset of the training dataset. We expect that this method is
less computationally expensive than M1, but it may sacrifice
performance of the learnt model.

Method 3 (M3): In this method, the user uses our hyperpa-
rameter stealing attacks. Specifically, the user first samples q%
of the training dataset uniformly at random. Second, the user
learns a model over the sampled training dataset through the
MLaaS via Protocol I. We note that, for big data, even a very
small fraction (e.g., 1%) of the training dataset could be too
large for the user to process locally, so we consider the user
uses the MLaaS. Third, the user estimates the hyperparamter
learnt by the MLaaS using our hyperparameter stealing attacks.
Fourth, the user re-learns a model over the entire training
dataset through the MLaaS via Protocol II. We call this strategy
“Train-Steal-Retrain”.

2) Comparing the Three Methods Empirically: We first
show simulation results of the three methods. For these simu-
lation results, we assume model parameters are known to the
user. In the next subsection, we compare the three methods on
Amazon Machine Learning, a real-world MLaaS platform.

Setup: For each dataset in Table II, we randomly split it
into two halves, which are used as the training dataset and the
testing dataset, respectively. We consider the MLaaS learns the
hyperparameter through 5-fold cross-validation on the training
dataset. We measure the performance of the learnt model
through mean square error (MSE) (for regression models) or
accuracy (ACC) (for classification models). MSE and ACC
are formally defined in Section II. Specifically, we use M1
as a baseline; then we measure the relative MSE (or ACC)
error of M2 and M3 over M1. For example, the relative MSE
error of M3 is defined as |MSEM3−MSEM1|

MSEM1
. Moreover, we also

measure the speedup of M2 and M3 over M1 with respect to
the overall amount of computation required to learn the model.
Note that we also include the computation required to steal the
hyperparameter for M3.

M3 vs. M1: Figure 8 compares M3 with M1 with respect
to model performance (measured by relative performance of
M3 over M1) and speedup as we sample a larger fraction
of training dataset (i.e., q gets larger), where the regression
algorithm is RR and the classification algorithm is SVM-SHL.
Other learning algorithms and datasets have similar results, so
we omit them for conciseness.

We observe that M3 can learn a model that is as accurate as
the model learnt by M1, while saving a significant amount of
computation. Specifically, for RR on the dataset UJIndoorLoc,
when we sample 3% of training dataset, M3 learns a model
that has almost 0 relative MSE error over M1, but M3 is around
8 times faster than M1. This means that the user can learn an
accurate model using M3 with much less economic costs, when
the MLaaS platform charges the user according to the amount
of computation. For the SVM-SHL algorithm on the Bank
dataset, M3 can learn a model that has almost 0 relative ACC
error over M1 and is around 15 times faster than M1, when we
sample 1% of training dataset. The reason why M3 and M1
can learn models with similar performances is that learning the
hyperparameter using a subset of the training dataset changes
it slightly and the learning algorithms are relatively robust to
small variations of the hyperparameter.

Moreover, we observe that the speedup of M3 over M1
is more significant when the training dataset becomes larger.
Figure 9 shows the speedup of M3 over M1 on binary-class
training datasets with different sizes, where each class is
synthesized via a Gaussian distribution with 10 dimensions.
Entries of the mean vectors of the two Gaussian distributions
are all 1’s and all -1’s, respectively. Entries of the covariance
matrix of the two Gaussian distributions are generated from the
standard Gaussian distribution. We select the parameter q% in
M3 such that the relative ACC error is smaller than 0.1%, i.e.,
M3 learns a model as accurately as M1. The speedup of M3
over M1 is more significant as the training dataset gets larger.
This is because the process of learning the hyperparameter
has a computational complexity that is higher than linear.
M1 learns the hyperparameter over the entire training dataset,
while M3 learns it on a sampled subset of training dataset.
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Fig. 8: M3 vs. M1. (a) Relative MSE error and speedup of
M3 over M1 for RR on the dataset UJIndoorLoc. (b) Relative
ACC error and speedup of M3 over M1 for SVM-SHL on the
dataset Bank.
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Fig. 9: Speedup of M3 over M1 for SVM-SHL as the training
dataset size gets larger.

As a result, the speedup is more significant for larger training
datasets. This implies that a user can benefit more by using
M3 when the user has a larger training dataset, which is often
the case in the era of big data.

M3 vs. M2: Figure 10 compares M3 with M2 with respect
to their relative performance over M1 as we sample more
training dataset for M2 (i.e., we increase p). For M3, we set
q% such that the relative MSE (or ACC) error of M3 over M1
is smaller than 0.1%. In particular, q% = 3% and q% = 1%
for RR on the UJIndoorLoc dataset and SVM-SHL on the
Bank dataset, respectively. We observe that when M3 and M2
achieve the same speedup over M1, the model learnt by M3
is more accurate than that learnt by M2. For instance, for RR
on the UJIndoorLoc dataset, M2 has the same speedup as M3
when sampling 10% of training dataset, but M2 has around
4% of relative MSE error while M3’s relative MSE error is
almost 0. For SVM-SHL on the Bank dataset, M2 has the same
speedup as M3 when sampling 4% to 5% of training dataset,
but M2’s relative ACC error is much larger than M3’s.

The reason is that M2 learns both the hyperparameter
and the model parameters using a subset of the training
dataset. According to Figure 1, the unrepresentativeness of
the subset is “doubled” because 1) it directly influences the
model parameters, and 2) it influences the hyperparameter,
through which it indirectly influences the model parameters.
In contrast, in M3, such unrepresentativeness only influences
the hyperparameter and the learning algorithms are relatively
robust to small variations of the hyperparameter.
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Fig. 10: M3 vs. M2. (a) Relative MSE error and speedup of
M3 and M2 over M1 for RR on the dataset UJIndoorLoc. (b)
Relative ACC error and speedup of M3 and M2 over M1 for
SVM-SHL on the dataset Bank.

3) Attacking Amazon Machine Learning: We also evaluate
the three methods using Amazon Machine Learning [1]. Ama-
zon Machine Learning is a black-box MLaaS platform, i.e.,
it does not disclose model parameters nor hyperparameters to
users. However, the ML algorithm is known to users, e.g., the
default algorithm is logistic regression. In our experiments, we
use Amazon Machine Learning to learn a logistic regression
model (with L2 regularization) for the Bank dataset. We
leverage the SigOpt API [46], a hyperparameter tuning service
for Amazon Machine Learning, to learn the hyperparameter.
We obtained a free API token from SigOpt.

We split the Bank dataset into two halves; one for training
and the other for testing. For M2 and M3, we sampled 15%
and 3% of the training dataset, respectively, i.e., p%=15%
and q%=3% (we selected these settings such that M2 and M3
have around the same overall training costs). Since Amazon
Machine Learning is black-box, we use the model parameter
stealing attack [54] to steal model parameters in our M3.
Specifically, in M3, we first used 3% of the training dataset
to learn a logistic regression model. Amazon discloses the
prediction API of the learnt model. Second, we queried the
prediction API for 200 testing examples and used the equation-
solving-based attack [54] to steal the model parameters. Third,
we used our hyperparameter stealing attack to estimate the
hyperparameter. Fourth, we used the entire training dataset
and the stolen hyperparameter to re-train a logistic regression
model. We also evaluated the accuracy of the three models
learnt by the three methods on the testing data via their
prediction APIs.

The overall training costs for M1, M2, and M3 (including
the cost of querying the prediction API for stealing model
parameters) are $1.02, $0.15, and $0.16, respectively. The cost
per query of the prediction API is $0.0001. The relative ACC
error of M2 over M1 is 5.1%, while the relative ACC error of
M3 over M1 is 0.92%. Therefore, compared to M1, M3 saves
training costs significantly with little accuracy loss. When M2
and M3 have around the same training costs, M3 is much more
accurate than M2.

4) Summary: Through empirical evaluations, we have the
following key observations. First, M3 (i.e., the Train-Steal-
Retrain strategy) can learn a model that is as accurate as that



learnt by M1 with much less computational costs. This implies
that, for the considered MLaaS platforms, a user can use our
attacks to learn an accurate model while saving a large amount
of economic costs. Second, M3 has bigger speedup over M1
when the training dataset is larger. Third, M3 is more accurate
than M2 when having the same speedup over M1.

VI. ROUNDING AS A DEFENSE

According to our Theorem 2, the estimation error of
the hyperparameter is linear to the difference between the
learnt model parameters and the minimum of the objective
function that is closest to them. This theorem implies that
we could defend against our hyperparameter stealing attacks
via increasing such difference. Therefore, we propose that the
learner rounds the learnt model parameters before sharing them
with the end user. For instance, suppose a model parameter is
0.8675342, rounding the model parameter to one decimal and
two decimals results in 0.9 and 0.87, respectively. We note
that this rounding technique was also used by Fredrikson et
al. [14] and Tramèr et al. [54] to obfuscate confidence scores
of model predictions to defend against model inversion attacks
and model stealing attacks, respectively.

Next, we perform experiments to empirically evaluate the
effectiveness of the rounding technique at defending against
our hyperparameter stealing attacks.

A. Evaluations

1) Setup: We use the datasets listed in Table II. Specifi-
cally, for each dataset, we first randomly split the dataset into
a training dataset and a testing dataset with an equal size.
Second, for each ML algorithm we considered, we learn a
hyperparameter using the training dataset via 5-fold cross-
validation, and learn the model parameters via the learnt
hyperparameter and the training dataset. Third, we round
each model parameter to a certain number of decimals (we
explored from 1 decimal to 5 decimals). Fourth, we estimate
the hyperparameter using the rounded model parameters.

Evaluation metrics: Similar to evaluating the effectiveness of
our attacks, the first metric we adopt is the relative estimation
error of the hyperparameter value, which is formally defined
in Eqn. 9. We say rounding is an effective defense for an
ML algorithm if rounding makes the relative estimation error
larger. Moreover, we say one ML algorithm can more effec-
tively defend against our attacks than another ML algorithm
using rounding, if the relative estimation error of the former
algorithm increases more than that of the latter one.

However, relative estimation error alone is insufficient
because it only measures security, while ignoring the testing
performance of the rounded model parameters. Specifically,
severely rounding the model parameters could make the ML
algorithm secure against our hyperparameter stealing attacks,
but the testing performance of the rounded model parameters
might also be affected significantly. Therefore, we also con-
sider a metric to measure the testing-performance loss that
is resulted from rounding model parameters. In particular,
suppose the unrounded model parameters have a testing MSE
(or ACC for classification algorithms), and the rounded model
parameters have a testing MSEr (or ACCr) on the same testing
dataset. Then, we define the relative MSE error and relative

ACC error as |MSE−MSEr|
MSE and |ACC−ACCr|

ACC , respectively. Note
that the relative MSE error and the relative ACC error used in
this section are different from those used in Section V-C. A
larger relative estimation error and a smaller relative MSE (or
ACC) error indicate a better defense strategy.

2) Results: Figure 11, 12, 13, and 14 illustrate defense
results for regression, logistic regression, SVM, and three-layer
neural networks, respectively. Since we use log scale in the
figures, we set the relative MSE (or ACC) errors to be 10−10

when they are 0.

Rounding is not effective enough for certain ML algo-
rithms: Rounding has small impact on the testing performance
of the models. For instance, when we keep one decimal, all
ML algorithms have relative MSE (or ACC) errors smaller
than 2%. Moreover, rounding model parameters increases the
relative estimation errors of our attacks for all ML algorithms.
However, for certain ML algorithms, the relative estimation
errors are still very small when significantly rounding the
model parameters, implying that our attacks are still very
effective. For instance, for LASSO, our attacks have relative
estimation errors that are consistently smaller than around
10−3 across the datasets, even if we round the model parame-
ters to one decimal. These results highlight the needs for new
countermeasures for certain ML algorithms.

Comparing regularization terms: L2 regularization is more
effective than L1 regularization: Different ML algorithms
could use different regularization terms, so one natural ques-
tion is which regularization term can more effectively defend
against our attacks using rounding. All the SVM classifica-
tion algorithms that we studied use L2 regularization term.
Therefore, we use results on regression algorithms and logistic
regression classification algorithms (i.e., Figure 11 and Fig-
ure 12) to compare regularization terms. In particular, we use
three pairs: RR vs. LASSO, L2-LR vs. L1-LR, and L2-KLR
vs. L1-KLR. The two algorithms in each pair have the same
loss function, and use L2 and L1 regularizations, respectively.

We observe that L2 regularization can more effectively de-
fend against our attacks than L1 regularization using rounding.
Specifically, the relative estimation errors of RR (or L2-LR or
L2-KLR) increases faster than those of LASSO (or L1-LR or
L1-KLR), as we round the model parameters to less decimals.
For instance, when we round the model parameters to one
decimal, the relative estimation errors increase by 1011 and
102 for RR and LASSO on the Diabetes dataset, respectively,
compared to those without rounding.

These observations are consistent with our Theorem 2. In
particular, Appendix F shows our approximations to the gradi-
ent ∇λ̂(w?) in Theorem 2 for RR, LASSO, L2-LR, L2-KLR,
L1-LR, and L1-KLR. For an algorithm with L2 regularization,
the magnitude of the gradient at the exact model parameters is
inversely proportional to the L2 norm of the model parameters.
However, if the algorithm has L1 regularization, the magnitude
of the gradient is inversely proportional to the L2 norm of
the sign of the model parameters. For algorithms with L2

regularization, the learnt model parameters are often small
numbers, and thus the L2 norm of the model parameters is
smaller than that of the sign of the model parameters. As a
result, the magnitude of the gradient for an algorithm with
L2 regularization is larger than that for an algorithm with
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Fig. 11: Defense results of the rounding technique for regression algorithms.
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Fig. 12: Defense results of the rounding technique for logistic regression classification algorithms.
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Fig. 13: Defense results of the rounding technique for SVM classification algorithms.
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Fig. 14: Defense results of the rounding technique for a)
neural network regression algorithm and b) neural network
classification algorithm.

L1 regularization. Therefore, according to Theorem 2, when
we round model parameters to less decimals, the estimation

errors of an algorithm with L2 regularization increase more
than those with L1 regularization.

Comparing loss functions: cross entropy and square hinge
loss can more effectively defend against our attacks than
regular hinge loss: We also compare defense effectiveness
of different loss functions. Since all regression algorithms we
studied have the same loss function, we use classification
algorithms to compare loss functions. Specifically, we use
two triples: (L2-LR, SVM-SHL, SVM-RHL) and (L2-KLR,
KSVM-SHL, KSVM-RHL). The three algorithms in each
triple use cross entropy loss, square hinge loss, and regular
hinge loss, respectively, while all using L2 regularization.

We find that cross entropy and square hinge loss have
similar defense effectiveness against our attacks, while they
can more effectively defend against our attacks than regular
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Fig. 15: (a) Effectiveness of the rounding technique for differ-
ent loss functions on the dataset Madelon. (b) Relative ACC
error of M3 over M1 for SVM-SHL on the dataset Bank.

hinge loss using rounding. For instance, Figure 15a compares
the relative estimation errors of the triple (L2-LR, SVM-SHL,
SVM-RHL) on the dataset Madelon when we use rounding.
The relative estimation errors of L2-LR and SVM-SHL in-
crease with a similar speed, but both increase faster than
those of SVM-RHL, as we round the model parameters to less
decimals. For instance, when we round the model parameters
to one decimal, the relative estimation errors increase by 105,
106, and 102 for L2-LR, SVM-SHL, SVM-RHL on the dataset
Madelon, respectively, compared to those without rounding.

B. Implications for MLaaS

Recall that, in Section V-C, we demonstrate that a user can
use M3, i.e., the Train-Steal-Retrain strategy, to learn a model
through an MLaaS platform with much less economical costs,
while not sacrificing the model’s testing performance. We aim
to study whether M3 is still effective if the MLaaS rounds the
model parameters. We follow the same experimental setup as
in Section V-C, except that the MLaaS platform rounds the
model parameters to one decimal before sharing them with
the user. Figure 15b compares M3 with M1 with respect to
relative ACC error of M3 over M1. Note that the speedups
of M3 over M1 are the same with those in Figure 8, so we
do not show them again. We observe that M3 can still save
many economical costs, though rounding makes the saved costs
less. Specifically, when we sample 10% of the training dataset,
the relative ACC error of M3 is less than around 0.1% in
Figure 15b, while M3 is 6 times faster than M1 (see Figure 8).

C. Summary

Through empirical evaluations, we have the following
observations. First, rounding model parameters is not effective
enough to prevent our attacks for certain ML algorithms.
Second, L2 regularization can more effectively defend against
our attacks than L1 regularization. Third, cross entropy and
square hinge loss have similar defense effectiveness. Moreover,
they can more effectively defend against our attacks than
regular hinge loss. Fourth, the Train-Steal-Retrain strategy can
still save lots of costs when MLaaS adopts rounding.

VII. DISCUSSIONS AND LIMITATIONS

Assumptions for our Train-Steal-Retrain strategy: A user
of an MLaaS platform can benefit from our Train-Steal-
Retrain strategy when the following assumptions hold: 1) the
hyperparameters can be accurately learnt using a small fraction

of the training dataset; 2) the user does not have enough
computational resource or ML expertise to learn the hyper-
parameters locally; and 3) training both the hyperparameters
and model parameters using a small fraction of the training
dataset does not lead to an accurate model. The validity of
the first and third assumptions is data-dependent. We note that
Train-Steal-Retrain requires ML expertise, but an attacker can
develop it as a service for non-ML-expert users to use.

ML algorithm is unknown: When the ML algorithm is
unknown, the problem becomes jointly stealing the ML algo-
rithm and the hyperparameters. Our current attack is defeated
in this scenario. In fact, jointly stealing the ML algorithm
and the hyperparameters may be impossible in some cases.
For instance, logistic regression with a hyperparameter A
produces a model MA. On the same training dataset, SVM
with a hyperparameter B produces a model MB . If the model
parameters MA and MB are the same, we cannot distinguish
between the logistic regression with hyperparameter A and the
SVM with a hyperparameter B. It is an interesting future work
to study jointly stealing ML algorithm and hyperparameters,
e.g., show when it is possible and impossible to do so.

Other types of hyperparameters: As a first step towards
stealing hyperparameters in machine learning, our work is
limited to stealing the hyperparameters that are used to balance
between the loss function and the regularization terms in
an objective function. Many ML algorithms (please refer to
Table I) rely on such hyperparameters. We note that some
ML algorithms use other types of hyperparameters. For in-
stance, K is a hyperparameter for K Nearest Neighbor; the
number of trees is a hyperparameter for random forest; and
architecture, dropout rate, learning rate, and mini-batch size
are important hyperparameters for deep convolutional neural
networks. Modern deep convolutional neural networks use
dropout [49] instead of conventional L1/L2 norm to perform
regularization. We believe it is an interesting future work to
study hyperparameter stealing for these hyperparameters.

Other countermeasures: It is an interesting future work to
explore defenses other than rounding model parameters. For
instance, like differentially private ML algorithms [12], we
could add noise to the objective function.

VIII. CONCLUSION AND FUTURE WORK

We demonstrate that various ML algorithms are vulnerable
to hyperparameter stealing attacks. Our attacks encode the
relationships between hyperparameters, model parameters, and
training dataset into a system of linear equations, which is
derived by setting the gradient of the objective function to be
0. Via both theoretical and empirical evaluations, we show that
our attacks can accurately steal hyperparameters. Moreover,
we find that rounding model parameters can increase the
estimation errors of our attacks, with negligible impact on the
testing performance of the model. However, for certain ML al-
gorithms, our attacks still achieve very small estimation errors,
highlighting the needs for new countermeasures. Future work
includes studying security of other types of hyperparameters
and new countermeasures.
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Fig. 16: Testing accuracy vs. hyperparameter (log10 scale) of
classification algorithms on Madelon in Table II.

APPENDIX A
ATTACKS TO OTHER LEARNING ALGORITHMS

LASSO: The objective function of LASSO is:

L(w) = ‖y −XTw‖22 + λ‖w‖1, (10)

whose gradient is:
∂L(w)

∂w
= −2Xy + 2XXTw + λsign(w),

where |wi| is not differentiable when wi = 0, so we define the
derivative at wi = 0 as 0, which means that we do not use the
model parameters that are 0 to estimate the hyperparameter.
By setting the gradient to be 0, we can estimate λ using Eqn. 3
with a = sign(w) and b = −2Xy + 2XXTw.

We note that if λ ≥ λmax = ‖Xy‖∞, then w = 0. In such
cases, we cannot estimate the exact hyperparameter. However,
in practice, λ < λmax must hold in order to learn meaningful
model parameters.

L2-regularized LR (L2-LR): Its objective function is

L(w) = L(X,y,w) + λ‖w‖22, (11)

where L(X,y,w)=−∑n
i=1(yi log hw(xi) + (1− yi) log(1−

hw(xi))), which is called cross entropy loss function. hw(x)
is defined to be 1

1+exp (−wTx)
. The gradient of the objective

function with respect to w is:
∂L(w)

∂w
= X(hw(X)− y) + 2λw,

where hw(X) = [hw(x1);hw(x2); · · · ;hw(xn)] is a vector.
Via setting the gradient to be 0, we can estimate λ using Eqn. 3
with a = 2w and b = X(hw(X)− y).

SVM with regular hinge loss (SVM-RHL): The objective
function of SVM-RHL is:

L(w) =

n∑
i=1

L(xi, yi,w) + λ‖w‖22, (12)

where L(xi, yi,w) = max(0, 1 − yiwTxi) is called regular
hinge loss function. The gradient with respect to w is:

∂L

∂w
=

{
−yixi if yiwTxi < 1

0 if yiwTxi > 1,

where L(xi, yi,w) is non-differentiable at the point where
yiw

Txi = 1. We estimate λ using only training instances xi
that satisfy yiw

Txi < 1. Specifically, we estimate λ using
Eqn. 3 with a = 2w and b =

∑n
i=1−yixi1yiwTxi<1, where

1yiwTxi<1 is an indicator function with value 1 if yiwTxi < 1
and 0 otherwise.

SVM with square hinge loss (SVM-SHL): The objective
function of SVM-SHL is:

L(w) =

n∑
i=1

L(xi, yi,w) + λ‖w‖22, (13)

where L(xi, yi,w) = max(0, 1 − yiwTxi)
2 is called square

hinge loss function. The gradient with respect to w is:

∂L

∂w
=

{
−2yixi(1− yiwTxi) if yiwTxi ≤ 1

0 if yiwTxi > 1.

Therefore, we estimate λ using Eqn. 3 with a = w and
b =

∑n
i=1−yixi(1− yiwTxi)1yiwTxi≤1.

L1-regularized kernel LR (L1-KLR): Its objective function
is:

L(α) = L(X,y,α) + λ‖Kα‖1, (14)

where L(X,y,α) = −∑n
i=1(yi log hα(xi) + (1 − yi)

log(1 − hα(xi))) and hα(x) = 1
1+exp (−

∑n
j=1 αjφ(x)Tφ(xj))

.
The gradient of the objective function with respect to α is:

∂L(α)

∂α
= K(hα(X)− y + λt),

where hα(X) = [hα(x1);hα(x2); · · · ;hα(xn)] and t =
sign(Kα). Via setting the gradient to be 0 and considering
that K is invertible, we can estimate λ using Eqn. 3 with
a = t and b = hα(X)− y.

L2-regularized kernel LR (L2-KLR): Its objective function
of L1-KLR is:

L(α) = L(X,y,α) + λαTKα, (15)

where L(X,y,α) = −∑n
i=1(yi log hα(xi) + (1 − yi)

log(1−hα(xi))) is a cross entropy loss function and hα(x) =
1

1+exp (−
∑n

j=1 αjφ(x)Tφ(xj))
. The gradient of the objective

function with respect to α is:

∂L(α)

∂α
= K(hα(X)− y + 2λα),

where hα(X) = [hα(x1);hα(x2); · · · ;hα(xn)]. Via setting
the gradient to be 0 and considering that K is invertible, we
can estimate λ using Eqn. 3 with a = 2α and b = hα(X)−y.

Kernel SVM with square hinge loss (KSVM-SHL): The
objective function of KSVM-SHL is:

L(α) =
n∑
i=1

L(xi, yi,α) + λαTKα, (16)

where L(xi, yi,α) = max(0, 1 − yiα
Tki)

2. Following the
same methodology we used for SVM-SHL, we estimate λ
using Eqn. 3 with a = Kα and b =

∑n
i=1−yiki(1 −

yiα
Tki)1yiαTki≤1.
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Fig. 17: Attack and defense results of ENet.

APPENDIX B
MORE THAN ONE HYPERPARAMETER

We use a popular regression algorithm called Elastic Net
(ENet) [58] as an example to illustrate how we can apply
attacks to learning algorithms with more than one hyperpa-
rameter. The objective function of ENet is:

L(w) = ‖y −XTw‖22 + λ1‖w‖1 + λ2‖w‖22, (17)

where the loss function is least square and regularization term
is the combination of L2 regularization and L1 regularization.
We compute the gradient as follows:

∂L(w)

∂w
= −2Xy + 2XXTw + λ1sign(w) + 2λ2w � |sign(w)|,

where w � |sign(w)| = [w1|sign(w1)|; · · · ;wm|sign(wm)|].
Similar to LASSO, we do not use the model parameters that are
0 to estimate the hyperparameters. Via setting the gradient to
0 and using the linear least square to solve the overdetermined
system, we have:

λ̂ = −
(
ATA

)−1

ATb, (18)

where λ̂ = [λ̂1; λ̂2], A = [sign(w); 2w � |sign(w)|], and
b = −2Xy + 2XXTw.

Figure 17 shows the attack and defense results for ENet
on the three regression datasets. We observe that our attacks
are effective for learning algorithms with more than one
hyperparameter, and rounding is also an effective defense.

APPENDIX C
NEURAL NETWORK (NN)

We evaluate attack and defense on a three-layer neural
network (NN) for both regression and classification.

Regression: The objective function of the three-layer NN for
regression is defined as

L(W1,w2) = ‖y − ŷ‖22 + λ
(
‖W1‖2F + ‖w2‖22

)
, (19)

where ŷ = sig
(
XTW1 + b1

)
w2 + b2; sig(A) = 1

1+exp(−A)

is the logistic function; W1 ∈ Rm×d is the weight matrix of
input layer to hidden layer and w2 ∈ Rd is the weight vector
of hidden layer to output layer; d is the number of hidden
units; b1 and b2 are the bias terms of the two layers.

To perform our hyperparameter stealing attack, we can
leverage the gradient of L(W1,w2) with respect to either W1
or w2. For simplicity, we use w2. Specifically, the gradient of
the objective function of w2 is:

∂L(W1,w2)

∂w2
= 2sig

(
XTW1 + b1

)T
(y − ŷ) + 2λw2.

By setting the gradient to be 0, we can estimat λ using Eqn. 3
with a = w2 and b = sig

(
XTW1 + b1

)T
(y − ŷ).

Classification: The objective function of the three-layer NN
for binary classification is defined as

L(W1,w2) = −
n∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi))

+
λ

2

(
‖W1‖2F + ‖w2‖22

)
, (20)

where ŷi = sig
(
wT

2 sig
(
WT

1 xi + b1

)
+ b2

)
. Similarly with

regression, we use w2 to steal the hyperparameter λ. The
gradient of the objective function of w2 is:

∂L(W1,w2)

∂w2
= −

n∑
i=1

(yi − ŷi)sig
(
WT

1 xi + b1

)
+ λw2.

Setting the gradient to be 0, we can estimat λ via Eqn. 3 with
a = w2 and b = −∑n

i=1(yi − ŷi)sig
(
WT

1 xi + b1

)
.

APPENDIX D
PROOF OF THEOREM 5.1

When w is an exact minimum of the objective function,
we have b = −λa. Therefore, we have:

λ̂ = −
(
aTa

)−1
aTb = −

(
aTa

)−1
aT (−λa)

= λ
(
aTa

)−1
aTa = λ.



APPENDIX E
PROOF OF THEOREM 5.2

We prove the theorem for linear learning algorithms, as it is
similar for kernel learning algorithms. We treat our estimated
hyperparameter λ̂ as a function of model parameters. We
expand λ̂(w? + ∆w) at w? using Taylor expansion:

λ̂(w? + ∆w) = λ̂(w?) + ∆wT∇λ̂(w?)

+
1

2
∆wT∇2λ̂(w?)∆w + · · ·

= λ̂(w?) + ∆wT∇λ̂(w?) +O(‖∆w‖22)

= λ+ ∆wT∇λ̂(w?) +O(‖∆w‖22)

Therefore, ∆λ=λ̂(w?+∆w)−λ =∆wT∇λ̂(w?)+O(‖∆w‖22).

APPENDIX F
APPROXIMATIONS OF GRADIENTS

We approximate the gradient ∇λ̂(w?) in Theorem 2 for
RR, LASSO, L2-LR, L2-KLR, L1-LR, and L1-KLR. Accord-
ing to the definition of gradient, we have:

∇λ̂(w?) = lim
∆w→0

λ̂(w? + ∆w)− λ̂(w?)

∆w
,

where the division and limit are component-wise for ∆w.

RR: We approximate the gradient as follows:

∇λ̂RR(w?) = lim
∆w→0

λ̂RR(w? + ∆w)− λ̂RR(w?)

∆w

= lim
∆w→0

1

∆w

( (w? + ∆w)T (Xy −XXT (w? + ∆w))

(w? + ∆w)T (w? + ∆w)

−
(w?)T (Xy −XXTw?)

(w?)Tw?

)
≈ lim

∆w→0

1

∆w

(∆wT (Xy − 2XXTw?)−∆wTXXT∆w

(w?)Tw?

)
≈

X(y − 2XTw?)

‖w?‖22
,

where in the third and fourth equations, we use (w? +
∆w)T (w? + ∆w) ≈ (w?)Tw? and ∆wTXXT∆w ≈ 0 for
sufficiently small ∆w, respectively.

LASSO: We approximate the gradient as follows:

∇λ̂LASSO(w?) = lim
∆w→0

λ̂LASSO(w? + ∆w)− λ̂LASSO(w?)

∆w

= lim
∆w→0

1

∆w

(2sign(w? + ∆w)T (Xy −XXT (w? + ∆w))

sign(w? + ∆w)T sign(w? + ∆w)

−
2sign(w?)T (Xy −XXTw?)

sign(w?)T sign(w?)

)
≈ lim

∆w→0

1

∆w

sign(w?)TXXT∆w

‖sign(w?)‖22

≈ lim
∆w→0

1

∆w

∆wTXXT sign(w?)

‖sign(w?)‖22
≈

XXT sign(w?)

‖sign(w?)‖22
,

where in the third equation, we use sign(w? + ∆w) ≈
sign(w?).

L2-LR: We approximate the gradient as follows:

∇λ̂L2−LR(w?) = lim
∆w→0

λ̂L2−LR(w? + ∆w)− λ̂L2−LR(w?)

∆w

= lim
∆w→0

1

∆w

( (w? + ∆w)T (y − hw?+∆w(X))

(w? + ∆w)T (w? + ∆w)

−
(w?)TX(y − hw? (X))

(w?)Tw?

)
≈ lim

∆w→0

1

∆w

∆(w?)TX(y − hw?+∆w(X))

(w?)Tw?

−
(w?)TX(hw?+∆w(X)− hw? (X))

(w?)Tw?

≈
X(y − hw? (X))

‖w?‖22
,

where in the third and fourth equations, we use (w? +
∆w)T (w? + ∆w) ≈ (w?)Tw? and hw?+∆w(X) ≈ hw?(X)
for sufficiently small ∆w, respectively.

L2-KLR: Similar to L2-LR, we approximate the gradient as:

∇λ̂L2−KLR(α?) ≈
K(y − hα? (K))

‖α?‖22
.

L1-LR: We approximate the gradient as follows:

∇λ̂L1−LR(w?) = lim
∆w→0

λ̂L1−LR(w? + ∆w)− λ̂L1−LR(w?)

∆w

= lim
∆w→0

1

∆w

( sign(w? + ∆w)TX(y − hw?+∆w(X))

sign(w? + ∆w)T sign(w? + ∆w)
−

sign(w?)TX(y − hw? (X))

sign(w?)T sign(w?)

)
≈ lim

∆w→0

(hw?+∆w(X)− hw? (X))T

∆w

XT sign(w?)

‖sign(w?)‖22

≈
∇hw? (X))XT sign(w?)T

‖sign(w?)‖22
.

L1-KLR: Similar to L1-LR, we approximate the gradient as:

∇λ̂L1−KLR(α?) ≈
∇hα? (K))KT sign(α?)T

‖sign(α?)‖22
.


