
GANG: Detecting Fraudulent Users in Online Social Networks via
Guilt-by-Association on Directed Graphs

Binghui Wang, Neil Zhenqiang Gong
ECE Department, Iowa State University

{binghuiw, neilgong}@iastate.edu

Hao Fu
Microsoft Research Asia, China

fuha@microsoft.com

Abstract—Detecting fraudulent users in online social networks
is a fundamental and urgent research problem as adversaries can
use them to perform various malicious activities. Global social
structure based methods, which are known as guilt-by-association,
have been shown to be promising at detecting fraudulent users.
However, existing guilt-by-association methods either assume
symmetric (i.e., undirected) social links, which oversimplifies the
asymmetric (i.e., directed) social structure of real-world online
social networks, or only leverage labeled fraudulent users or
labeled normal users (but not both) in the training dataset, which
limits detection accuracies.

In this work, we propose GANG, a guilt-by-association
method on directed graphs, to detect fraudulent users in OSNs.
GANG is based on a novel pairwise Markov Random Field
that we design to capture the unique characteristics of the
fraudulent-user-detection problem in directed OSNs. In the basic
version of GANG, given a training dataset, we leverage Loopy
Belief Propagation (LBP) to estimate the posterior probability
distribution for each user and uses it to predict a user’s label.
However, the basic version is not scalable enough and not
guaranteed to converge because it relies on LBP. Therefore,
we further optimize GANG and our optimized version can
be represented as a concise matrix form, with which we are
able to derive conditions for convergence. We compare GANG
with various existing guilt-by-association methods on a large-
scale Twitter dataset and a large-scale Sina Weibo dataset with
labeled fraudulent and normal users. Our results demonstrate
that GANG substantially outperforms existing methods, and that
the optimized version of GANG is significantly more efficient than
the basic version.

I. INTRODUCTION

Online social networks (OSNs) have become indispensable
platforms for interacting with people, processing information,
and diffusing social influence. However, a large number of
users on OSNs are fraudulent, e.g., spammers, fake users, and
compromised normal users. For instance, it was reported that
10% of Twitter users were fake [1]. Adversaries use these
fraudulent users to perform various malicious activities such as
disrupting democratic election and influencing financial market
via spreading rumors [2], [3], distributing malware [4], as well
as harvesting private user data. Therefore, detecting fraudulent
users is an urgent research problem.

Indeed, this research problem has attracted increasing
attention from multiple communities including data mining,
cybersecurity, and networking. Depending on the used in-
formation sources, we classify existing approaches into two
categories, global structure based methods [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16] and local feature based
methods [17], [18], [19], [20], [21]. Global structure based
methods leverage the global structure of a social graph and are

often based on the intuition that a user is likely to be fraudulent
(or normal) if it is linked with other fraudulent (or normal)
users. In order to stress their application to detecting fraudulent
users, we also call these methods guilt-by-association. Existing
guilt-by-association methods either assume symmetric (i.e.,
undirected) social links [5], [6], [7], [8], [9], [10], [11],
[12], [13], which oversimplifies the asymmetric (i.e., directed)
social graph structure in real-world OSNs, or leverage only
labeled fraudulent users or normal users (but not both) in the
training dataset [14], [15], [16], which limits their detection
accuracies. Local feature based methods leverage a user’s local
subgraph structure (e.g., ego-network) [17], side information
(e.g., IP address, behaviors, and content) [18], [19], and
possibly combine them with features from the global social
structure [20], [21]. A key limitation of these methods is that
they are not adversarially robust, i.e., fraudulent users can
evade detection via modifying their side information to mimic
normal users and colluding to manipulate their local subgraph
structures as desired. Indeed, in our experiments, we observe
such fraudulent users on Sina Weibo, one of the largest OSNs
in China (See Figure 5).

Our work: In this work, we propose GANG, a guilt-by-
association method on directed graphs, to detect fraudulent
users in OSNs. In GANG, we associate a binary random
variable with each user to model its label, and then we design
a novel pairwise Markov Random Field (pMRF) to model
the joint probability distribution of all these random variables
based on the directed social graph. Our pMRF incorporates
unique characteristics of the fraudulent-user-detection prob-
lem. Specifically, we call an edge (u,v) unidirectional if the
edge (v,u) in the reverse direction does not exist, otherwise
we call the edge bidirectional. If two users are linked by
bidirectional edges and have the same label, then our pMRF
produces a larger joint probability. However, suppose u and v
are linked by a unidirectional edge (u,v), e.g., on Twitter, this
means that u follows v, but v does not follow back to u. If u is
fraudulent or v is normal, then whether the unidirectional edge
(u,v) exists or not does not influence the joint probability under
our pMRF, otherwise the edge (u,v) makes the joint probability
larger. This is because a fraudulent user can follow arbitrary
users without being followed back, while a normal user can
be followed by arbitrary users without following them back.

In the basic version of GANG, given a training dataset,
we use Loopy Belief Propagation (LBP) [22] to estimate
the posterior probability distribution for each binary random
variable and use it to predict label of the corresponding user.
However, the basic version has two shortcomings: 1) it is not
scalable enough because LBP needs to maintain messages on

2017 IEEE International Conference on Data Mining

2374-8486/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDM.2017.56

465



each edge, and 2) it is not guaranteed to converge because
LBP might oscillate on loopy graphs [22]. Therefore, we
further optimize GANG to address these shortcomings. Our
optimizations include eliminating message maintenance and
approximating GANG by a concise matrix form. We also
derive the conditions for our optimized GANG to converge.

We evaluate GANG and compare it with various existing
guilt-by-association methods using a large-scale Twitter dataset
(42M users and 1.5B directed edges) and a large-scale Sina
Weibo dataset (3.5M users and 653M directed edges). Both
datasets have labeled fraudulent and normal nodes. Our results
demonstrate that GANG substantially outperforms existing
guilt-by-association methods. Via a case study on Sina Weibo,
we found that GANG can detect a large amount of fraudulent
users that evaded Sina Weibo’s detector. Moreover, we demon-
strate that the optimized version of GANG is significantly more
efficient than its basic version.

In summary, our key contributions are as follows:

• We propose GANG to detect fraudulent users in OSNs via
guilt-by-association on directed graphs. GANG leverages
a novel pMRF that captures the unique characteristics of
the fraudulent-user-detection problem.

• We optimize GANG to make it scalable and convergent.

• We evaluate GANG and various existing guilt-by-
association methods using a large-scale Twitter dataset
and a large-scale Sina Weibo dataset with labeled fraud-
ulent and normal users. Our results demonstrate that
GANG significantly outperforms existing methods, and
that the optimized GANG is significantly more efficient
than its basic version.

II. RELATED WORK

A. Using Global Graph Structure

These methods [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16] often leverage a set of labeled fraudulent nodes
and/or labeled normal nodes. Then they propagate these label
information among the graph to predict labels of the remaining
nodes. The key insight of these methods is that a node is
fraudulent (or normal) if it links to other fraudulent (or normal)
nodes. We call these methods guilt-by-association methods in
order to stress their application to detecting fraudulent users.

Using directed social graphs: Fraudulent users detection
in social networks can be modeled as binary classification
on directed graphs. For instance, Twitter’s follower-followee
network is a directed graph, and detecting fraudulent users
can be viewed as a binary classification problem for nodes in
the directed graph. To the best of our knowledge, guilt-by-
association methods [14], [15], [16] on directed graphs are
all based on random walks. Specifically, DistrustRank [15]
and CIA [16] assign an initial “badness” reputation score for
each node based on a set of labeled fraudulent nodes, while
TrustRank [14] assigns an initial “normalness” reputation score
for each node based on a set of labeled normal nodes. Then,
they use random walks to propagate the reputation scores to
the remaining nodes. They also restart the random walks from
the initial reputation scores with a certain probability called
restart probability.

These methods can only leverage labeled normal nodes [14]
or labeled fraudulent nodes [15], [16], but not both, which
limits their detection accuracies. Our method is a guilt-by-
association method on directed graphs, and it can leverage both
labeled fraudulent nodes and labeled normal nodes in the train-
ing dataset. Our method is based on a novel pairwise Markov
Random Field and optimized Loopy Belief Propagation.

Using undirected social graphs: Some guilt-by-association
methods [5], [6], [7], [8], [9], [10], [11], [12], [13] assume
symmetric relationships between nodes. They often assume the
graph satisfies the homophily property, i.e., two linked nodes
tend to share the same label. In principle, one can apply these
methods to detect fraudulent nodes in directed social graphs via
transforming them into undirected graphs. However, a directed
graph has richer structural information than its undirected
version [23]. Transforming a directed graph into an undirected
one oversimplifies the graph structure and achieves limited
accuracy (as we demonstrate in our experiments). Generally
speaking, there are two ways to transform a directed graph
to an undirected one. One way is to keep an undirected
edge between two nodes once they are connected by directed
edge(s). This way is not adversarially robust. In particular,
fraudulent nodes can easily inject a large amount of edges with
normal nodes in the undirected graph. For instance, on Twitter,
a fraudulent user can follow many normal users, all of which
will be kept in the undirected graph. As a result, fraudulent
nodes well embed in the normal nodes and the undirected
graph does not satisfy the homophily property, limiting the
detecting accuracy of those guilt-by-association methods. The
other way is to keep an undirected edge between two nodes
if they are connected via bidirectional edges. However, such
transformation cannot leverage unidirectional edges, which are
useful for determining reputations of nodes.

B. Using Local Features

Local feature based methods leverage a user’s local sub-
graph structure (e.g., dense subgraphs, a node’s hop-2 neigh-
borhood, and a node’s ego-network) [17], side information
(e.g., IP address, behaviors, and content) [18], [19], and
possibly combine them with features from the global social
structure [20], [21]. They rely on that fraudulent nodes have
abnormal subgraph structures, behavioral analysis, linguistic
analysis, and/or sentiment analysis.

A key limitation of these methods is that they are not
adversarially robust. Specifically, fraudulent nodes can evade
detection of subgraph based methods via creating many fake
nodes (e.g., an adversary can create many fake accounts on
Twitter [1]) and manipulating links between them to change
their subgraph structures as desired. Fraudulent nodes can
also modify their side information to mimic normal nodes to
evade side information based methods. Indeed, we found such
fraudulent nodes in Sina Weibo, and our method can detect
them (See Figure 5).

Hooi et al. [24] proposed a dense-subgraph-based method
to detect fraudulent accounts. Specially, they aimed to find
dense subgraphs and treat nodes in them as fraudulent. Their
method has theoretical guarantees on adversarial camouflage.
However, their method cannot produce a suspiciousness score
for every node and they assume the suspiciousness scores are

466



Fig. 1: Illustration of three types of neighbors. v1, v2, and v3

are bidirectional, unidirectional incoming, and unidirectional
outgoing neighbors of u, respectively.

given. In practice, OSN providers often hire human workers
to manually inspect users and flag fraudulent ones. Producing
a suspiciousness score can rank users, which serves as a
priority list to aid human workers to find more fraudulent
users within the same period of time. Our method produces
a suspiciousness score for every user (i.e., the probability that
a user is fraudulent).

III. PROBLEM DEFINITION

Suppose we are given a directed social graph G = (V,E),
where a node v ∈ V represents a user, |V | is the number
of users, and a directed edge (u,v) ∈ E indicates a certain
relationship between u and v. For instance, such relationship
could be that u follows v on Twitter, u sends a friend request to
v on Facebook, or u accepts friend request from v on Facebook.
Each node can be either fraudulent or normal. Fraudulent
nodes include spammers, fake users, and compromised users.

Definition 1 (Directed Graph based Fraudster Detection).
Suppose we are given a directed social graph and a training
dataset consisting of labeled fraudulent and normal nodes.
Fraudster detection is to predict the label of each remaining
node in the social graph.

Notations: We call an edge (u,v) unidirectional if the edge
(v,u) does not exist. We denote by E1 unidirectional edges
in the graph, e.g., E1 = {(u,v)|(u,v) ∈ E and (v,u) /∈ E}. We
call an edge (u,v) bidirectional if the edge (v,u) also exists.
We denote by E2 bidirectional edges in the graph, i.e., E2 =
{(u,v)|u < v and (u,v) ∈ E and (v,u) ∈ E}. Note that, in our
definition, either (u,v) or (v,u) (but not both) appears in E2 if
they are bidirectional edges.

We denote by Γb(u), Γi(u), and Γo(u) the set of bidirec-
tional, unidirectional incoming, unidirectional outgoing neigh-
bors of a user u. Fig. 1 illustrates the three types of neigh-
bors. Formally, we have Γb(u)={v|(v,u) ∈ E and (u,v) ∈ E},
Γi(u) = {v|(v,u) ∈ E and (u,v) /∈ E}, and Γo(u) = {v|(u,v) ∈
E and (v,u) /∈ E}. Furthermore, we denote by Γ(u) the set
of all neighbors of u, i.e., Γ(u)=Γb(u)∪ Γi(u)∪ Γo(u). Please
note that unidirectional incoming neighbors are different from
conventional incoming neighbors, and unidirectional outgoing
neighbors are different from conventional outgoing neighbors,
because conventional incoming neighbors and outgoing neigh-
bors also include bidirectional neighbors.

Table I includes these notations and other important nota-
tions used in the paper.

TABLE I: Important notations.

Notation Explanation
G = (V,E) Directed graph.

E1 Unidirectional edges.
E2 Bidirectional edges.

Γb(u) Bidirectional neighbors of u.
Γi(u) Unidirectional incoming neighbors of u.
Γo(u) Unidirectional outgoing neighbors of u.
Γ(u) All neighbors of u.
Ab Bidirectional adjacency matrix.
Ai Incoming adjacency matrix.
Ao Outgoing adjacency matrix.
xu Binary random variable modeling u.
qu Prior probability of u being fraudulent.
q̂u Residual of qu, i.e., q̂u=qu−0.5.
pu Posterior probability of u being fraudulent.
p̂u Residual of pu, i.e., p̂u=pu−0.5.
w Homophily strength of every edge.
ŵ Residual of w, i.e., ŵ=w−0.5.

mvu Message sent by v to u for xu = 1.
m̂vu Residual of mvu, i.e., m̂vu = mvu−0.5.

IV. DESIGN OF GANG

We introduce a basic version of our GANG. Specifically,
we first introduce intuitions on which GANG is based. Second,
we design a novel customized pairwise Markov Random Field
(pMRF) to capture the intuitions. Third, we discuss how we
leverage the pMRF to detect fraudulent nodes.

A. Intuitions

We associate a binary random variable xu with each user
u in the graph, where xu = 1 and xu = −1 mean that u is
fraudulent and normal, respectively. We denote by x̄u the
observed label of a node u. We denote by xS the set of binary
random variables associated with the set of vertices in S, and
we denote by x̄S the observed labels of these random variables.
In particular, x̄Γ(u) are the observed labels of u’s neighbors.

Different types of neighbors have different influences on a
node u’s label. Specifically, we have the following intuitions:

• Intuition I: Bidirectional neighbors. If a neighbor v is a
bidirectional neighbor of u, then u tends to have the same
label with v, e.g., both u and v tend to be fraudulent. This
property is known as homophily. OSNs with fraudulent
and normal nodes have the homophily property because
normal nodes will not link to fraudulent nodes with
bidirectional edges in most cases. Given the labels of u’s
bidirectional neighbors, we model the probability that u
is fraudulent as the following sigmoid function:

Pr(xu = 1|x̄Γb(u)) =
1

1+ exp(−∑v∈Γb(u) Jvux̄v)
, (1)

where Jvu is the coupling strength of the edge (v,u), and
we set Jvu=Juv for bidirectional edges. Moreover, we set
Jvu > 0 to model the homophily property. In our model,
u has a higher probability to be fraudulent if more of its
bidirectional neighbors are fraudulent. We note that using
a sigmoid function allows us to capture these intuitions
using a customized pMRF.

• Intuition II: Unidirectional incoming neighbors. If v is
an unidirectional incoming neighbor, then v is not infor-
mative for u’s label if v is fraudulent. This is because a
fraudulent node can link to many other nodes (fraudulent

467



or normal) in OSNs. For instance, in Twitter, the follower-
followee network is a directed graph in which an edge
(v,u) means that v follows u, and a fraudulent node could
follow many other fraudulent or normal users. Therefore,
being linked by a fraudulent node does not mean the node
is fraudulent nor normal. However, when v is normal,
u also tends to be normal. We model this intuition as
follows:

Pr(xu = 1|x̄Γi(u)) =
1

1+ exp(− 1
2 ∑v∈Γi(u) Jvu(x̄v−1))

, (2)

where Jvu > 0. In our model, unidirectional incoming
neighbors, which are known to be fraudulent, do not
influence u’s label; and u is less likely to be fraudulent if
more of its unidirectional incoming neighbors are known
to be normal.

• Intuition III: Unidirectional outgoing neighbors. If
v is an unidirectional outgoing neighbor, then v is not
informative for u’s label if v is a normal node. This is
because any node can link to a normal node in OSNs. For
instance, in the Twitter example, any node can follow a
normal user. However, if v is fraudulent, then u also tends
to be fraudulent because a normal user rarely follows a
fraudulent node. We model this intuition as follows:

Pr(xu = 1|x̄Γo(u)) =
1

1+ exp(− 1
2 ∑v∈Γo(u) Juv(x̄v +1))

, (3)

where Jvu > 0. In our model, unidirectional outgoing
neighbors, which are known to be normal, do not influ-
ence u’s label; and u is more likely to be fraudulent if
more of its unidirectional outgoing neighbors are known
to be fraudulent.

Modeling prior knowledge about u’s label: We could have
some prior knowledge about u’s label, which is independent
with u’s neighbors’ labels. We model the prior knowledge as:

Pr(xu = 1) =
1

1+ exp(−hu)
, (4)

where hu > 0 and hu < 0 indicate that u tends to be fraudulent
or normal according to its prior knowledge, respectively; and
hu = 0 means that u’s prior knowledge is not informative
for determining u’s label. Such prior knowledge can be ob-
tained through a labeled training dataset (See Section IV-C).
Moreover, in practice, we can learn the parameters hu for
each node through feature-based methods, which analyze local
graph structure, content, and behaviors.

Unifying neighbor influences and prior knowledge: Sup-
pose we already know the labels of u’s neighbors and its prior
knowledge, we model the probability that u is fraudulent as
follows:

Pr(xu = 1|x̄Γ(u)) =
1

1+ exp(−Ib(u)− Ii(u)− Io(u)−hu)
, (5)

where Ib(u) = ∑v∈Γb(u) Jvux̄v is the total influence of bidi-

rectional neighbors, Ii(u) = 1
2 ∑v∈Γi(u) Jvu(x̄v − 1) is the to-

tal influence of unidirectional incoming neighbors, Io(u) =
1
2 ∑v∈Γo(u) Juv(x̄v + 1) is the total influence of unidirectional
outgoing neighbors, and hu models the prior knowledge about
u.

B. A Novel Pairwise Markov Random Field

We introduce a novel pairwise Markov Random Field
(pMRF) to capture our intuitions in Equation 5. A pMRF
models the joint probability distribution of all binary random
variables xu for all u∈V . We denote by xV the set of all binary
random variables. Our proposed pMRF is as follows:

H(xV ) =− 1

2
∑

(u,v)∈E2

Juvxuxv

− 1

4
∑

(u,v)∈E1

Juv(xu−1)(xv +1)

− 1

2
∑
u∈V

huxu, (6)

Pr(xV ) ∝ exp(−H(xV )) (7)

where H(xV ) is conventionally called energy function. Either
(u,v) or (v,u), but not both, appears in H(xV ) when (u,v) is
a bidirectional edge. We can verify that our pMRF satisfies
Equation 5. In particular, when u’s neighbors’ states are
observed, the conditional probability that u is fraudulent is
given by Equation 5. Note that an unidirectional edge (u,v)
does not influence the value of our energy function nor the
joint probability if u is a fraudulent node or v is a normal
node. This is because of our Intuition II and III.

Next, we will transform Equation 7 into a product of a set
of node potentials and edge potentials, which is a standard
form of a pMRF. This form makes it easier for us to present
our method to infer states of nodes. Specifically, we define a
node potential φu(xu) for a node u as

φu(xu) :=

{
qu if xu = 1

1−qu if xu =−1,

where qu :=(1+exp{−hu})−1, which is the prior probability
of u being fraudulent. For a bidirectional edge (u,v), we define
its edge potential ϕuv(xu,xv) as:

ϕuv(xu,xv) :=

{
wuv if xuxv = 1

1−wuv if xuxv =−1.

For an unidirectional edge, we define its edge potential as:

ϕuv(xu,xv) :=

{
wuv if xu = 1 or xv =−1

1−wuv otherwise.

wuv :=(1+exp{−Juv})−1 in both definitions of edge potentials.
wuv > 0.5 captures the homophily property. In our definitions,
wuv can be interpreted as the probability that two nodes have
the same label when they are linked via bidirectional edges.
In this work, we set wuv = w > 0.5 for all edges, and we call
w homophily strength. However, learning the parameters wuv
would be a valuable future work.

With node potentials and edge potentials, we can rewrite
Equation 7 as follows:

Pr(xV ) =
1

Z ∏
v∈V

φv(xv) ∏
(u,v)∈E1∪E2

ϕuv(xu,xv), (8)

where Z = ∑xV ∏v∈V φv(xv)∏(u,v)∈E1∪E2
ϕuv(xu,xv) is conven-

tionally called the partition function and normalizes the prob-
abilities. Note that either (u,v) or (v,u), but not both, appears
in the above equation if (u,v) is a bidirectional edge.

468



C. Detecting Fraudulent Nodes

We leverage the above pMRF to detect fraudulent nodes.
Suppose we are given a set of labeled fraudulent nodes denoted
as L f and a set of labeled normal nodes denoted as Ln. We set
the parameter qu in node potentials as follows:

qu =

⎧⎨
⎩

0.5+θ if u ∈ L f

0.5−θ if u ∈ Ln

0.5 otherwise,

(9)

where 0< θ ≤ 0.5. Then, we compute the posterior probability
distribution of a node u, i.e., Pr(xu) = ∑xV/u

Pr(xV ). For

simplicity, we denote by pu the posterior probability that u
is a fraudulent node, i.e., pu = Pr(xu = 1). We predict u to be
fraudulent if pu > 0.5, otherwise we predict u to be normal.

Computing posterior probability distribution using Loopy
Belief Propagation (LBP): In the basic version of GANG, we
use LBP [22] to estimate the posterior probability distribution
Pr(xu). LBP iteratively passes messages between neighboring

nodes in the graph. Specifically, the message m(t)
vu (xu) sent from

v to u in the tth iteration is

m(t)
vu (xu) = ∑

xv

φv(xv)ϕvu(xv,xu) ∏
k∈Γ(v)/u

m(t−1)
kv (xv), (10)

where Γ(v)/u is the set of all neighbors of v, except the
receiver node u. This encodes that each node forwards a
product over incoming messages of the last iteration and adapts
this message to the respective receiver based on the homophily
strength with the receiver. LBP stops when the changes of
messages become negligible in two consecutive iterations (e.g.,
l1 distance of changes becomes smaller than 10−3) or it reaches
the predefined maximum number of iterations T . After LBP
halts, we estimate the posterior belief Pr(xu) as follows:

Pr(t)(xu) ∝ φu(xu) ∏
k∈Γ(u)

m(t)
ku (xu), (11)

which is equivalent to

p(t)u =
qu ∏k∈Γ(u) m(t)

ku

qu ∏k∈Γ(u) m(t)
ku +(1−qu)∏k∈Γ(u)(1−m(t)

ku )
, (12)

where m(t)
ku = m(t)

ku (xu = 1) and 1−m(t)
ku = m(t)

ku (xu =−1). Note

that normalizing m(t)
ku (xu) does not affect the computation of

posterior probability distribution of any node. Therefore, for

simplicity, we have normalized m(t)
ku (xu) such that m(t)

ku (xu = 1)

+ m(t)
ku (xu =−1) = 1 in the above equation.

V. OPTIMIZING GANG

The basic version of GANG has two shortcomings: 1)
GANG is not scalable enough, and 2) GANG is not guaranteed
to converge. These shortcomings are caused by LBP which
estimates the posterior probability distribution for each node.
Specifically, LBP is not scalable enough because it maintains
messages on each edge, and LBP might oscillate on loopy
graphs [22]. In this section, we optimize GANG to address
these shortcomings.

A. Eliminating Message Maintenance

One of the major reasons why GANG is not scalable
enough is that LBP maintains messages on each edge. We
observe that the key reason why LBP needs to maintain
messages on edges is that when a node v prepares a message
to its neighbor u, it needs to exclude the message that u sends
to v. Therefore, our first optimization step is to include the
message that u sends to v when v prepares its message for u.
Formally, we modify Equation 10 as follows:

m(t)
vu (xu) = ∑

xv

φv(xv)ϕvu(xv,xu) ∏
k∈Γ(v)

m(t−1)
kv (xv). (13)

Considering Equation 11, we have:

m(t)
vu (xu) ∝ ∑

xv

ϕvu(xv,xu)Pr(t−1)(xv). (14)

Recall that we normalize m(t)
vu (xu) such that m(t)

vu (xu = 1) +

m(t)
vu (xu = −1) = 1, and we abbreviate m(t)

vu (xu = 1) as m(t)
vu .

With such normalization, our modified messages become

m(t)
vu =

⎧⎪⎨
⎪⎩

0.5, if p(t−1)
v > 0.5 and v ∈ Γi(u)

0.5, if p(t−1)
v < 0.5 and v ∈ Γo(u)

p(t−1)
v w+(1− p(t−1)

v )(1−w), otherwise.

(15)

With our modified messages, GANG does not need to store
messages on edges and computing posterior beliefs is much
more scalable as we will demonstrate in our experiments.

B. Approximating GANG with a Matrix Form

GANG iteratively applies Equations 15 and 12 with our
modified messages, which still cannot guarantee convergence.
The key reason is that Equation 12 combines messages from
a node’s neighbors in a nonlinear fashion. We make GANG
converge via linearizing Equation 12. The resulting optimized
GANG can be represented in a concise matrix form.

We define the residual of a variable y as ŷ = y− 0.5; we
define the residual vector ŷ of y as ŷ = [y1−0.5,y2−0.5, · · · ];
and we define the residual matrix Ŷ of Y as each entry of Y
substracting 0.5. With residual variables, we can represent the

residual message m̂(t)
vu in Lemma 1.

Lemma 1 (Residual Messages). The residual message m̂(t)
vu

can be represented as follows:

m̂(t)
vu =

⎧⎪⎨
⎪⎩

0 if p̂(t−1)
v > 0 and v ∈ Γi(u)

0 if p̂(t−1)
v < 0 and v ∈ Γo(u)

2p̂(t−1)
v ŵ otherwise.

(16)

Proof: By substituting variables in Equation 15 with their
residuals.

We denote by Ab ∈ R
|V |×|V |, Ai ∈ R

|V |×|V |, and Ao ∈
R
|V |×|V | the bidirectional, unidirectional incoming, and uni-

directional outgoing adjacency matrices of the social graph,
respectively. The uth row of Ab, Ai, and Ao represents the
bidirectional, unidirectional incoming, and unidirectional out-
going neighbors of u. Formally, if there exists a bidirectional
edge between u and v, then the entry Ab,uv = Ab,vu = 1,

469



otherwise, Ab,uv = Ab,vu = 0; if there exists an unidirectional
edge from u to v, then Ao,uv = 1 and Ai,vu = 1. We define

p(t) = [p(t)1 ; p(t)2 ; · · · ; p(t)|V |] as the column vector of all nodes’

posterior beliefs in the tth iteration, and p̂(t) as its residual
vector. Similarly, we denote by q= [q1;q2; · · · ;q|V |] the column
vector of all nodes’ prior beliefs, and by q̂ its residual vector.
Let P̂(t) ∈ R

|V |×|V | be a matrix consisting of |V | repeats of
the column vector p̂(t), i.e., P̂(t) = [p̂(t), p̂(t), · · · ]. With these
notations, we have the following theorem, which states that
GANG can be approximated as a concise matrix form.

Theorem 1. We can approximate Equations 15 and 12 as the
following equation:⎧⎪⎨

⎪⎩
A′(t−1)

i = I(Ai ◦ P̂(t−1)T
),

A′(t−1)
o = I(−Ao ◦ P̂(t−1)T

),

p̂(t) = q̂+2 · ŵ · (Ab +A′(t−1)
i +A′(t−1)

o ) · p̂(t−1),

(17)

where the operator ◦ represents element-wise product of two
matrices, YT is the transpose of the matrix Y, and the indicator
function I(Y) means that an entry is set to be 0 if the
corresponding entry of the matrix Y is non-negative, otherwise
it is set to be 1.

Proof: See Appendix A.

Theorem 1 demonstrates that posterior beliefs can be itera-
tively solved by matrix operations without explicitly modeling
messages. We note that Gatterbauer et al. [25] and Jia et
al. [26] recently linearized LBP over a pMRF on an undirected
graph. In particular, Jia et al. also leveraged the two steps of
eliminating message maintenance and approximating as matrix
form. However, our work linearizes LBP over a new pMRF
on a directed graph, which is more complex.

Computational complexity: We use sparse matrix represen-
tation to implement GANG. In each iteration, GANG traverses
each unidirectional edge twice (once for each node of the edge)
and each bidirectional edge once. Therefore, time complexity
of GANG is O(2 · (|E1|+ |E2|) · t), where t is the number of
iterations. We note that the basic version of GANG has the
same asymptotic time complexity. However, the constants in
their asymptotic representations are different, which results in
their significantly different scalability performances.

VI. CONVERGENCE ANALYSIS

We analyze the conditions when our optimized version of
GANG converges. Suppose we are given an iterative linear
process: y(t) ← c+My(t−1). A basic result from linear sys-
tems [27] says that the linear process converges with any initial
condition y(0) if and only if the spectral radius of M is smaller
than 1, i.e., ρ(M)< 1. We use this basic result to analyze the
convergence conditions for our optimized GANG.

Theorem 2 (Sufficient and Necessary Convergence Condition
for Optimized GANG). A sufficient and necessary condition
for our optimized GANG to converge is that the residual of
the homophily strength (i.e., ŵ) is bounded as follows:

ŵ <
1

2ρ
(
Ab +A′(t∗)i +A′(t∗)o

) , (18)

where t∗ = argmaxt ρ
(
Ab +A′(t)i +A′(t)o

)
.

Proof: By applying the result in linear systems [27].

Theorem 2 gives a strong sufficient and necessary con-
vergence condition for optimized GANG. However, setting
ŵ using Theorem 2 is computationally expensive in prac-
tice. Because it involves simulating the iterative process and
computing spectral radius. Therefore, we derive a sufficient
condition for optimized GANG to converge. We can easily
set ŵ using our sufficient condition. Our sufficient condition
is based on the fact that any norm is an upper bound of the
spectral radius [28], i.e., ρ(M) ≤ ‖M‖, where ‖ · ‖ indicates
some matrix norm. In particular, we use the induced l1 matrix
norm ‖·‖1, i.e., ‖M‖1 = max j ∑i |Mi j|, which is the maximum
absolute column sum of the matrix. Our sufficient condition
for convergence is as follows:

Theorem 3 (Sufficient Convergence Condition for Optimized
GANG). Let ‖ · ‖1 stand for the induced l1 norm of a matrix.
The following inequality is a sufficient condition for our
optimized GANG to converge.

ŵ <
1

2‖Ab +Ai +Ao‖1
=

1

2maxu∈V du
, (19)

where du = |Γu| is the degree of u.

Proof: See Appendix B.

Theorem 3 provides an elegant way to guide us to set
ŵ, i.e., once ŵ is smaller than the inverse of 2 times of the
maximum node degree, GANG is guaranteed to converge. In
practice, some nodes (e.g., celebrities) could have orders of
magnitude bigger degrees than the others (e.g., ordinary peo-
ple), and such nodes make ŵ very small. In our experiments,
we find that GANG can still converge when replacing the
maximum node degree with the average node degree.

Similar to analyzing convergence of the optimized LBP
over a standard pMRF on an undirected graph in Jia et
al. [26], our analysis relies on linear systems and matrix theory.
However, the mathematical details are more complex for the
convergence analysis of the optimized version of GANG.

VII. EVALUATIONS

A. Experimental Setup

Dataset description: We compare GANG with existing meth-
ods on two large-scale OSN datasets with labeled fraudulent
and normal nodes.

First, we obtained a Twitter follower-followee graph with
41,652,230 users and 1,468,364,884 edges from Kwak et
al. [29]. In this graph, a directed edge (u,v) means that u
follows v. We obtained ground truth labels for each node from
Wang et al. [7]. Specifically, 205,355 users were suspended by
Twitter and we treated them as fraudulent users; 36,156,909
users were active and we treated them as normal users; and
the remaining 5,289,966 users were deleted. As deleted users
could be deleted by Twitter or by users themselves, we could
not distinguish the two cases without accessing to Twitter’s
internal data. Thus, we treat them as unlabeled users. We
sample 500,000 labeled users uniformly at random as a training
set and treat the remaining labeled users as the testing set.

Second, we obtained a Sina Weibo dataset with 3,538,487
users and 652,889,971 directed edges from Fu et al. [9]. Like

470



TABLE II: Dataset statistics.

Dataset Twitter Sina Weibo
#Nodes 41,652,230 3,538,487

#Edges 1,468,364,884 652,889,971

Ave. degree 71 369

Twitter, a directed edge (u,v) means that u follows v. Fu et
al. also manually labeled 2000 users sampled uniformly at
random. Among them, 482 were fraudulent users, 1,498 were
normal users, and 20 were unknown users (we do not consider
these users in our experiments). We split the fraudulent and
normal users into two halves; one is treated as the training set
and the other is treated as the testing set. Table II shows some
statistics of our datasets.

Compared methods: We compare GANG with both undi-
rected and directed graph based methods. By default, we will
use the optimized version of GANG.

1) Using undirected graphs. We consider the following
undirected graph based methods: the well known graph-based
semi-supervised learning method (SSL) [30], SybilRank [12],
SybilBelief [5], and SybilSCAR [7]. SSL and SybilRank are
based on random walks and SybilBelief is based on pMRF.
SybilSCAR unifies random walk based methods and pMRF
based methods as a local rule based framework. Moreover,
under the framework, SybilSCAR designs a new local rule
which outperforms existing random walk and pMRF based
local rules. SSL, SybilBelief, and SybilSCAR can leverage
both fraudulent users and normal users in the training dataset,
while SybilRank is only able to leverage labeled normal users.
These methods transform a directed graph into an undirected
one via keeping an edge between two nodes if they are
connected via bidirectional edges. This is more robust than
keeping both bidirectional and unidirectional edges because
fraudulent nodes can create arbitrary number of unidirectional
edges with normal nodes, making them well embedded among
normal nodes. Since these methods require connected graphs,
we evaluate them on the largest connected component in the
transformed undirected graph.

We note that SybilWalk [8] is very accurate at detecting
fraudulent users in the Twitter dataset when we transform
the directed graph into an undirected one via keeping an
edge between two nodes if they are connected via directional
edge(s). However, such transformation is not adversarially
robust. On the transformed undirected Twitter graph with bidi-
rectional edges only, SybilWalk achieves performance close to
SybilBelief. Therefore, we do not show results of SybilWalk
for simplicity.

2) Using directed graphs. We consider the follow-
ing directed graph based methods: TrustRank [14], Dis-
trustRank [15], CIA [16], and CatchSync [20]. TrustRank,
DistrustRank, and CIA are based on random walks, while
CatchSync leverages HITS [31]. TrustRank and DistrustRank
were originally designed to detect fraudulent webpages based
on hyperlinks, but they can be applied to detect fraudulent
users in OSNs. TrustRank leverages only labeled normal nodes
in the training dataset; DistrustRank and CIA are essentially
the same, and they only leverage labeled fraudulent nodes; and
CatchSync does not leverage the training dataset.

TABLE III: AUCs of compared methods.

Methods Twitter Sina Weibo
Using SSL [30] 0.55 0.68

undirected SybilRank [12] 0.57 0.61
graphs SybilBelief [5] 0.61 0.65

SybilSCAR [7] 0.64 0.68

TrustRank [14] 0.60 0.66
Using DistrustRank [15] 0.63 0.64

directed CIA [16] 0.63 0.64
graphs CatchSync [20] 0.68 0.51

GANG 0.72 0.80

Parameter setting: For GANG, we set θ = 0.4 to consider
possible label noises, i.e., we assign a prior probability of being
fraudulent 0.9, 0.1, and 0.5 to labeled fraudulent nodes, labeled
normal nodes, and unlabeled nodes, respectively; we set δ =
10−3; and we respectively set ŵ = 0.01 and ŵ = 0.001 on
Twitter and Sina Weibo, considering their different average
node degrees. For all other compared methods, we set their
parameters according to the original papers. For instance, we
set the decay factor to be 0.85 for TrustRank [14] as suggested
by its authors. For CatchSync [20], we set the parameter α = 3
as suggested by its authors.

B. Ranking Results

Each compared method essentially computes a score for
each node. We rank the nodes in the testing dataset using the
scores such that fraudulent nodes are supposed to rank higher
than normal nodes.

Overall ranking performance: We first use AUC to measure
the overall ranking performance of the compared methods.
In our problem, AUC can be interpreted as the probability
that a randomly sampled fraudulent node is ranked higher
than a randomly sampled normal node in the testing dataset.
The higher AUC, the better performance. Table III shows the
AUCs of all compared methods on the Twitter and Sina Weibo
datasets. We observe that GANG consistently outperforms all
compared methods on both datasets. We note that CatchSync
achieves a close AUC as GANG on the Twitter dataset.
However, CatchSync’s performance degrades substantially on
the Sina Weibo dataset. CatchSync relies on node degrees and
properties of a node’s neighbors. Therefore, we suspect the
reason for CatchSync’s poor performance on Sina Weibo is
that nodes in the Sina Weibo dataset have larger average node
degrees and their neighbors have more diverse properties.

Fraudulent nodes in top-ranked nodes: In practice, the
ranking of nodes can be used as a priority list to help OSNs’
human workers manually inspect nodes and detect fraudulent
nodes. Inspecting nodes according to their rankings could aid
human workers to detect more fraudulent nodes than inspecting
nodes picked uniformly at random, within the same amount
of time. When ranking is used for such purpose, the number
of fraudulent nodes in top-ranked nodes is important because
human workers can only inspect a limited number of nodes.

AUC measures the overall ranking performance, but it
cannot tell fraudulent nodes among the top-ranked nodes.
Therefore, we further compare the considered methods using

471



1 2 3 4 5 6 7 8 9 10
Top-10 2K-user intervals

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
F

ra
ct

io
n

of
Sy

bi
ls SSL

SybilRank

SybilBelief

SybilSCAR

TrustRank

DistrustRank

CIA

CatchSync

GANG

Fig. 2: Fraction of fraudulent nodes in each top ranked interval
on the Twitter dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration t

0.001
0.002

0.010

0.020

0.030

R
el

at
iv

e
er

ro
r

(a) Twitter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration t

0.001

0.010

0.020

0.050

0.100

R
el

at
iv

e
er

ro
r

(b) Sina Weibo

Fig. 3: GANG’s relative errors of residual posterior beliefs vs.
number of iterations. GANG converges.

the fraction of fraudulent nodes in top-ranked nodes. In par-
ticular, we divide the top-20K nodes into 10 intervals, where
each interval has 2K nodes. Figure 2 shows the fraction of
fraudulent nodes in each interval for the Twitter dataset. Since
the Sina Weibo dataset does not have enough labeled nodes to
draw a similar graph, we omit its corresponding results. GANG
achieves the best performance and substantially outperforms
other methods. Specifically, the fraction of fraudulent nodes
detected by GANG ranges from 77.5% to 99.8% in the top-10
2K-node intervals. The superiority of GANG comes from that
GANG leverages unidirectional edges and GANG utilizes both
labeled fraudulent and normal users.

Unbalanced vs. balanced training dataset: SSL, SybilBe-
lief, SybilSCAR, and GANG leverage both labeled normal
nodes and labeled fraudulent nodes in the training dataset. In
real-world, human workers of an OSN would sample some
nodes (e.g., 500,000 nodes in our Twitter dataset) and manually
label them as a training dataset. In our Twitter dataset, such a
training dataset is very unbalanced, i.e., fraudulent : normal =
1 : 176. We found that SSL, SybilBelief, SybilSCAR, and
GANG achieve better results for fraudulent nodes in top-
ranked nodes when using the unbalanced training dataset.
However, they achieve much better AUCs when transforming
the unbalanced training dataset into a balanced one. Specifi-
cally, among the 500,000 labeled nodes in the training dataset,
we further sample some labeled normal nodes such that we

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Number of edges ×107

0

40

80

120

160

200

T
im

e
(s

ec
)

GANG Opt
GANG Basic
CatchSync
TrustRank

Fig. 4: Running time of directed graph based methods on syn-
thesized graphs with increasing number of edges. DistrustRank
and CIA have almost identical results with TrustRank, and thus
we omit their results for conciseness.

have the same number of labeled fraudulent nodes and labeled
normal nodes, which we treat as a balanced training dataset.
Therefore, for the Twitter dataset, we obtained the AUC results
in Table III for SSL, SybilBelief, SybilSCAR, and GANG
using the sampled balanced training dataset; and we obtained
the results in Figure 2 using the original unbalanced training
dataset. For the Sina Weibo dataset, we did not observe the
difference between unbalanced and balanced training dataset,
and thus we use the original unbalanced training dataset for
all methods. We suspect the reason is that Sina Weibo dataset
has a much more balanced ratio between fraudulent nodes and
normal nodes, i.e., fraudulent : normal = 1 : 3.

C. Convergence

Figure 3 shows GANG’s relative errors of residual pos-
terior beliefs in two consecutive iterations, i.e., ‖p̂(t) −
p̂(t−1)‖1/‖p̂(t)‖1, as a function of the number of iterations
t. We observe that the relative error first increases, then
decreases, and finally converges on both datasets.

D. Scalability

We measure the scalability of compared directed graph
based methods with respect to the number of edges in the
graph. Since we need graphs with different number of edges,
but the Twitter and Sina Weibo datasets have fixed number
of edges, we synthesize graphs according to a Preferential
Attachment (PA) model [32]. We note that there are more
advanced network models (e.g., the one proposed by Gong
et al. [33]) to synthesize more realistic graphs. However,
since the scalability does not depend on the graph structures,
we use the simple PA model to synthesize graphs. All the
compared methods involve iterative computing processes, e.g.,
TrustRank, DistrustRank, and CIA iteratively compute random
walks, while CatchSync relies on the iterative HITS [31]
algorithm. For fair comparison, we run the iterative processes
with the same number of iterations. Figure 4 shows the running
time used by the directed graph based methods (GANG Basic

472



TABLE IV: Labeling results of the 1K nodes that are sampled
from the top-ranked 100K nodes for Sina Weibo.

Category Percentage

Fraudulent users

Suspended users 41.5%

92.0%Spammers 42.5%
Compromised users 8.0%

Normal users 6.8%
Unknown users 1.2%

and GANG Opt are the basic and optimized versions of
GANG, respectively) when we increase the number of edges
in the synthesized graph.

First, GANG Opt is slightly less efficient than random
walk based methods TrustRank, DistrustRank, and CIA. This
is because, in each iteration, these methods traverse each
unidirectional edge once while GANG traverses twice. Second,
GANG Opt is more scalable than CatchSync. This is because
CatchSync first uses HITS, which already has the same time
complexity with GANG Opt, to compute nodes’ hubness and
authoritativeness scores, and then CatchSync further computes
each node’s synchronicity, which involves going through node
pairs between a node’s outgoing neighbors, and normality,
which involves going through node pairs between a node’s
outgoing neighbors and all nodes. Third, GANG Opt is one
order of magnitude more scalable than GANG Basic.

E. Case Study on Sina Weibo

We apply our GANG to the Sina Weibo dataset and
manually inspect the detected fraudulent nodes. Specifically,
we use all the 1980 labeled nodes as a training dataset and
produce a ranking list for the remaining nodes. Then we
sample 1K nodes from the top-ranked 100K nodes uniformly
at random, and we manually inspect them. Table IV shows the
labeling results of the 1K nodes.

1) Suspended users. These users didn’t exist any more at
the time of our inspection. They could be suspended/deleted
by Sina Weibo’s detector or the users themselves.

2) Spammers. These users post or share a large amount
of advertisements, e.g., to promote their products or to sell
pirated products. These users violate Sina Weibo’s policy,1

and thus they should be suspended/deleted by Sina Weibo
company. Interestingly, we found that some spammers also
posted many seemingly normal tweets to camouflage them-
selves. For instance, Figure 5(a) shows an example spammer
who posts seemingly normal tweets exactly every 9 hours and
13 minutes. We randomly sampled some tweets and used them
as keywords to search on Baidu (the largest search engine in
China). We found that these tweets were simply copied from
Internet. Figure 5(b) shows the search results of one tweet.
We suspect such spammers are controlled by software and
are trying to evade content-based detection. Indeed, they have
successfully evaded Sina Weibo’s detector.

3) Compromised users. These users posted normal tweets
about daily activities before a certain time point, and then they
started to post or share a large amount of advertisements. We
also randomly sampled some normal tweets of these users, but

1http://weibo.cn/dpool/ttt/h5/regagreement.php

(a) Periodic tweeting (b) Search results

Fig. 5: (a) A user performing periodic tweeting. (b) Search
results of one of the user’s tweet on Baidu.

we could not find them on the Baidu search engine. Therefore,
we suspect that these users could be compromised normal
users. Our method can detect these compromised users because
they link to other spammers to share their tweets.

4) Normal users. These users post normal tweets and
comply with Sina Weibo’s policy.

5) Unknown users. These users had no tweets at the time
of inspection, so we cannot classify them through contents.

Comparing with Sina Weibo’s detector: When Sina Weibo’s
detector detects a fraudulent user, the user will be suspended
or deleted. In other words, the number of fraudulent nodes
detected by Sina Weibo’s detector is upper bounded by the cat-
egory suspended users, and the users in the category spammers
and compromised users have evaded Sina Weibo’s detector.
However, our method GANG can detect these fraudulent users.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose GANG, a guilt-by-association
method on directed graphs, to detect fraudulent users in OSNs.
Based on the unique characteristics of the fraudulent-user-
detection problem in directed graphs, we design a novel
pairwise Markov Random Field to model the joint probability
distribution of the states of all users. In the basic version of
GANG, we use Loopy Belief Propagation to perform infer-
ence. Furthermore, we optimize GANG to make it convergent
and more scalable via eliminating message maintenance and
approximating GANG by a concise matrix form. We com-
pare GANG with various existing guilt-by-association methods
using a large-scale Twitter dataset and a large-scale Weibo
dataset with labeled fraudulent users and normal users. Our
results demonstrate that GANG substantially outperforms ex-
isting guilt-by-association methods. Moreover, we demonstrate
that the optimized version of GANG is significantly more
efficient than its basic version.

Future research direction includes applying GANG to de-
tect other online frauds such as web spams, spamming reviews,
and fake page likes.

REFERENCES

[1] Fake Users in Twitter, “http://goo.gl/q1snms.”

473



[2] Hacking Election. (2016, May). [Online]. Available: http://goo.gl/
G8o9x0

[3] Hacking Financial Market. (2016, May). [Online]. Available: http:
//goo.gl/4AkWyt

[4] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time url spam filtering service,” in IEEE S & P,
2011.

[5] N. Z. Gong, M. Frank, and P. Mittal, “SybilBelief: A semi-supervised
learning approach for structure-based sybil detection,” IEEE TIFS,
vol. 9, no. 6, 2014.

[6] P. Gao, N. Z. Gong, S. Kulkarni, K. Thomas, and P. Mittal, “Sybilframe:
A defense-in-depth framework for structure-based sybil detection,”
CoRR, 2015.

[7] B. Wang, L. Zhang, and N. Z. Gong, “SybilSCAR: Sybil detection
in online social networks via local rule based propagation,” in IEEE
INFOCOM, 2017.

[8] J. Jia, B. Wang, and N. Z. Gong, “Random walk based fake account
detection in online social networks,” in IEEE DSN, 2017.

[9] H. Fu, X. Xie, Y. Rui, N. Z. Gong, G. Sun, and E. Chen, “Robust
spammer detection in microblogs: Leveraging user carefulness,” ACM
Transactions on Intelligent Systems and Technology (TIST), 2017.

[10] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast
and scalable system for fraud detection in online auction networks,” in
WWW, 2007.

[11] G. Danezis and P. Mittal, “SybilInfer: Detecting Sybil nodes using social
networks,” in NDSS, 2009.

[12] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in NSDI, 2012.

[13] S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging
review networks and metadata,” in KDD, 2015.

[14] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in VLDB, 2004.

[15] B. Wu, V. Goel, and B. D. Davison, “Propagating trust and distrust to
demote web spam.” MTW, vol. 190, 2006.

[16] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing
spammer’s social networks for fun and profit,” in WWW, 2012.

[17] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network Sybils in the wild,” in IMC, 2011.

[18] K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers: Social
honeypots + machine learning,” in SIGIR, 2010.

[19] Q. Cao, X. Yang, J. Yu, and C. Palow, “Uncovering large groups of
active malicious accounts in online social networks,” in CCS, 2014.

[20] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “Catchsync:
catching synchronized behavior in large directed graphs,” in KDD, 2014.

[21] X. Hu, J. Tang, H. Gao, and H. Liu, “Social spammer detection with
sentiment information,” in ICDM, 2014.

[22] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference, 1988.

[23] N. Z. Gong and W. Xu, “Reciprocal versus parasocial relationships in
online social networks,” Social Network Analysis and Mining, vol. 4,
no. 1, pp. 1–14, 2014.

[24] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos,
“Fraudar: Bounding graph fraud in the face of camouflage,” in KDD,
2016.

[25] W. Gatterbauer, S. Günnemann, D. Koutra, and C. Faloutsos, “Lin-
earized and single-pass belief propagation,” PVLDB, vol. 8, no. 5, 2015.

[26] J. Jia, B. Wang, L. Zhang, and N. Z. Gong, “AttriInfer: Inferring user
attributes in online social networks using markov random fields,” in
WWW, 2017.

[27] Y. Saad, Iterative methods for sparse linear systems. Siam, 2003.

[28] N. Derzko and A. Pfeffer, “Bounds for the spectral radius of a matrix,”
Mathematics of Computation, vol. 19, no. 89, 1965.

[29] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW, 2010.

[30] X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, 2003.

[31] J. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, 1999.

[32] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, 1999.

[33] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar,
and D. Song, “Evolution of social-attribute networks: Measurements,
modeling, and implications using google+,” in IMC, 2012.

APPENDIX A
PROOF OF THEOREM 1

Our idea is to first linearize Equation 12 and then combine
the linearized version with Equation 16. Optimizing LBP for
a standard pMRF on undirected graphs in Jia et al. [26] also
involves linearizing Equation 12. In particular, they linearized
Equation 12 as follows:

p̂(t)u = q̂u + ∑
v∈Γ(u)

m̂(t)
vu . (20)

Next, we combine Equation 20 with Equation 16 to repre-
sent posterior beliefs as matrix form without explicitly mod-
eling messages. Recall that there are three types of neighbors
for each node and we can expand Equation 20 as follows:

p̂(t)u = q̂u + ∑
v∈Γb(u)

m̂(t)
vu + ∑

v∈Γi(u)
m̂(t)

vu + ∑
v∈Γo(u)

m̂(t)
vu . (21)

Therefore, we expect to solve m̂(t)
vu for u over its bidi-

rectional neighbors, unidirectional incoming neighbors, and
unidirectional outgoing neighbors. Towards this goal, we lever-
age the bidirectional adjacency matrix Ab, the unidirectional
incoming adjacency matrix Ai, and unidirectional outgoing ad-

jacency matrix Ao. For a bidirectional neighbor v, m̂(t)
vu can be

rewritten as m̂(t)
vu = 2p̂(t−1)

v ŵ according to Lemma 1. For an uni-

directional incoming neighbor, m̂(t)
vu = 0 when p̂(t−1)

v > 0. For

an unidirectional outgoing neighbor, m̂(t)
vu = 0 when p̂(t−1)

v < 0.
Therefore, we define an indicator function I(Y) over a matrix
Y, where an entry is set to be 0 if the corresponding entry
of the matrix Y is non-negative, otherwise it is set to be 1.
With these notations, we can obtain Equation 17 via combining
Equation 21 with Equation 16.

APPENDIX B
PROOF OF THEOREM 3

A′(t)i and Ai are binary matrices. For any iteration t, we

have A′(t)i = I(Ai ◦ P̂(t)T
) ≤ Ai ◦ I(P̂(t)T

) ≤ Ai, where the
comparison between two matrices is element-wise. Similarly,

we have A′(t)o ≤ Ao. Therefore, we have ‖Ab+A′(t)i +A′(t)o ‖1≤
‖Ab +Ai +Ao‖1 for any iteration t.

As ρ(M) ≤ ‖M‖1, we achieve a sufficient condition via

enforcing ‖M‖1 < 1, where M= 2ŵ(Ab+A′(t)i +A′(t)o ) in opti-
mized GANG. Specifically, we have the following derivations:

ρ(2ŵ(Ab +A′(t)i +A′(t)o ))< 1 (22)

⇐= ‖2ŵ(Ab +A′(t)i +A′(t)o )‖1 < 1 (23)

⇐= 2ŵ‖Ab +Ai +Ao‖1 < 1 (24)

⇐= ŵ <
1

2‖Ab +Ai +Ao‖1
(25)

Finally, ‖Ab +Ai +Ao‖1 = maxu∈V du.

474


