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Abstract. An analytical expression for the voltage measured by a four-point alternat-
ing current potential drop (ACPD) method on a flat metal surface is derived. Far-field
expressions for the electric field in a metal plate and in the region of the probe (air)
are used to obtain contributions to the ACPD voltage from the metal plate and due to
inductance in the pick-up circuit. The far-field approximation is accurate for a plate
whose edges are several tens of skin depths from the probe, and for a probe whose
pick-up points are several skin depths away from the current drive points. Comparison
of the theory with experiment on a brass plate shows excellent agreement.

1 Introduction

The alternating current potential drop (ACPD) method measures the voltage,V, between two
pick-up points on the surface of a conductor. For the configuration shown in Figure 1,

V = V + ε = −
∫ (q,y,0)

(p,y,0)

E · dl +

∮

C

E · dl, (1)

whereC is a closed loop,l is the vertical height of the pick-up loop above the plate surface
andε is the rate of change of magnetic flux within the loop [1].
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Figure 1: Path of integration,C (- - -), may occupy any plane of constanty. Here the planey = 0 is shown.

In direct current potential drop measurements there is no induction effect in the measure-
ment circuit (ε = 0) since the current does not vary with time. The measured potential drop is
almost exclusively due to the conductor. In ACPD measurements, the contribution toV from



the conductor dominates when the frequency is sufficiently low, since the inductive contri-
bution from the measurement circuit,iωL, is proportional to frequencyω. At sufficiently
high frequency the inductive term dominates. This technique is similar to resistivity measure-
ment methods used in applied geophysics, although the latter are usually performed at low
frequency and interpreted in the limit of direct current [2].

In this work, both contributions toV are evaluated. The far-field approximation forE
is used in calculatingV. This approximation gives accurate results when pick-up points at
(p, y, 0) and (q, y, 0) are sufficiently far from the source points at (±S, 0, 0), in practice a few
electromagnetic skin depths (δ) in the conductor.

2 Electric Field

For the configuration shown in Figure 1, the electric field can be obtained by superposition
of fields separately associated with the two current-carrying wires:

ET (r) = E(r+)− E(r−), (2)

wherer± =
√

(x± S)2 + y2 + z2. In the following sections the far-field form ofE is de-
termined in the region of the pick-up circuit (air) and in the metal plate for asinglecurrent-
carrying wire located on the axis of a cylindrical co-ordinate system.

2.1 Probe Region

For a single wire passing currentI into, or out of, a conductive plate, there are two contribu-
tions to the electric field in air. One is from the current flowing in the wire,Ew, and the other
is from the current density in the plate. In the far-field regime, for the closed loopC, onlyEw

is important. Assuming that the wire is perpendicular to the surface of the plate and that the
current has time-dependencee−iωt, the integral form of Amp̀ere’s Law and then Faraday’s
Law yields

Ew(ρ, z) = ẑ
iωµ0I

2π
ln ρ, ρ →∞, z ≤ 0, (3)

whereρ is the radial co-ordinate of a cylindrical system centered on the wire andEw has the
same direction as the current density in the wire,J = ẑJz.

2.2 Plate

An expression for the electric field in the conductive plate is obtained in a manner similar to
that given in reference [3] for a conductive half-space. For a current source oriented perpen-
dicular to the surface of the plate, only the transverse magnetic (TM) potential,ψ′′, is required
to fully describe the electric field:

E(r) = −iωµ∇×∇× ẑψ′′(r). (4)

Define a modified TM potential
Ψ = ∇2

zψ
′′, (5)

where∇z ≡ ∇− ẑ(∂/∂z) is the transverse differential operator. For a plate infinite inx and
y, occupyingz ∈ [0, T ], the governing equation is

(∇2 + k2)Ψ(r) = 0, 0 ≤ z ≤ T, (6)



wherek2 = iωµσ with µ andσ being the permeability and conductivity of the plate, respec-
tively. In the plate, only the horizontal component of the electric field,Eρ, contributes toV . It
is not convenient to expressEρ in terms ofΨ. Rather,Eρ will be obtained from the following
equation by means of relationship (5).

Eρ(r) = −iωµ
∂2ψ′′(r)
∂ρ∂z

, (7)

whereρ andz are co-ordinates of the cylindrical system. Equation (6) is solved forΨ subject
to boundary conditions

Ψ(ρ, 0) = C(ρ) where C(ρ) =

{
I

π(ka)2
, ρ ≤ a,

0, ρ > a,
(8)

and
Ψ(ρ, T ) = 0. (9)

These derive from the fact that, at the surface of the plate, the normal component of current
density is continuous - zero everywhere apart from at the point of contact with the current-
carrying wire, radiusa. Applying the zero-order Hankel transform to solve (6) and taking the
limit a → 0 yields

Ψ(ρ, z) =
I

2πk2

∫ ∞

0

e−γz

[
1− e2γ(z−T )

1− e−2γT

]
J0(κρ)κdκ, (10)

whereγ2 = κ2 − k2. If T → ∞, the term in square brackets tends to unity and the resulting
integral is identical to that obtained for a half-space conductor [3].

It is possible to evaluate the integral in (10) analytically by expanding the term in the
denominator as a binomial series [5, 3.6.10]:

(1− e−2γT )−1 = 1 + e−2γT + e−4γT + e−6γT + e−8γT + . . . =
∞∑

n=0

e−2nγT . (11)

Multiplying the right-hand side of (11) by the factore−γz[1 − e2γ(z−T )], and substituting the
result into (10), yields

Ψ(ρ, z) =
I

2πk2

∞∑
n=0

∫ ∞

0

{
e−γ(z+2nT ) − eγ[z−2(n+1)T ]

}
J0(κρ)κdκ, (12)

where the order of summation and integration has been reversed. The first term in braces in
(12),e−γz, gives rise to the result for the TM potential in a half-space conductor. The second
term,−eγ(z−2T ), accounts for the primary reflection of the field from the surface of the plate
at z = T . Other terms deal with multiple reflections between the surfaces of the plate. By
analogy with the result for the half-space conductor, reference [3], or by multiple use of the
analytic result given in reference [6], result 8.2.23, the terms in (12) can be integrated. It is
found that

Ψ(ρ, z) = − I

2π

∞∑
n=0

{
ik(z + 2nT )

(ikrn)3
eikrn(1− ikrn)

+
ik[z − 2(n + 1)T ]

(ikr′n)3
eikr′n(1− ikr′n)

}
, 0 ≤ z ≤ T, (13)



whereinrn =
√

ρ2 + (z + 2nT )2 andr′n =
√

ρ2 + [z − 2(n + 1)T ]2. To obtainEρ from Ψ
as given in (13) via relations (7) and (5) requires some manipulation [3]. The result is

Eρ(r) = − ikI

2πσρ

∞∑
n=0

{
eik(z+2nT ) − eikrn

ikrn

[
1 +

[ik(z + 2nT )]2

ikrn

(
1− 1

ikrn

)]

+e−ik[z−(2n+1)T ] − eikr′n

ikr′n

[
1 +

{ik[z − 2(n + 1)T ]}2

ikr′n

(
1− 1

ikr′n

)]}
,

0 ≤ z ≤ T. (14)

In the far field, the electric field is dominated by terms of the formeikz/ρ and

Eρ(r) = − ikI

2πσρ

∞∑
n=0

{
eik(z+2nT ) + e−ik[z−2(n+1)T ]

}
, ρ →∞, 0 ≤ z ≤ T. (15)

If the far-field current density is integrated over a cylindrical surface of large radius extending
from z = 0 to T , the result isI[1 + eik(2N+1)T ] for a series truncated toN terms. This
expression tends toI asN → ∞, as it should. IfT → ∞ the far-field expression for the
electric field in a half-space conductor is recovered [3]

Eρ(r) = −ρ̂
ikI

2πσρ
eikz, ρ →∞, z ≥ 0. (16)

This expression was also given in reference [4] in the context of fatigue crack measurement.

3 Voltage calculation

Voltage is now calculated according to equation (1). For the configuration shown in Figure 1
the contributions are

V = V + ε = −
∫ q

p

ET
x (x, y, 0)dx +

∫ −l

0

ET
z (p, y, z)dz +

∫ 0

−l

ET
z (q, y, z)dz, (17)

with ET given by (2). It is a simple matter to evaluate the last two terms on the right-hand
side of equation (17) withEz given in equation (3). To neatly evaluate the first term on the
right-hand side of (17) recognize that, at the surface defined byz = 0, equation (15) can be
written

Eρ(ρ, 0) = − ikI

2πσρ

[(
2

∞∑
n=0

e2iknT

)
− 1

]
, ρ →∞. (18)

Further [5, equation 3.6.10],
∞∑

n=0

e2iknT =
1

1− e2ikT
,

so that

Eρ(ρ, 0) =
ikI

2πσρ
coth(ikT ), ρ →∞. (19)

The final expression forV is

V =
I

4π

[
− ik

σ
coth(ikT ) + iωµ0l

]
ln

{[
(p− S)2 + y2

(p + S)2 + y2

] [
(q + S)2 + y2

(q − S)2 + y2

]}
. (20)



Table 1: Experimental parameters.

brass plate probe (Figure 1)
conductivity,σ (MSm−1) 16.2± 0.3 S (mm) 38.2± 0.3
thickness,T (mm) 5.66± 0.01 p (mm) -9.18± 0.01
horizontal dimensions (mm) 615× 616 q (mm) 9.18± 0.01

l (mm) 0.35 (fitted value)

The first term in equation (20) is the contribution from the conductor and has approximately
equal real and imaginary parts. The contribution from the measurement circuit is imaginary
(inductive) and proportional to the dimension of the circuit perpendicular to the conductor
surface,l. For a typical non-magnetic metal andl ∼ 1 mm, the inductive term is practically
negligible for frequencies up to about 10 Hz whereas at104 Hz the terms are of similar mag-
nitude. The logarithmic term represents the physical arrangement of the four probe points.

4 Experiment

ACPD measurements were made as a function of frequency on a brass plate whose conduc-
tivity and dimensions are given in Table 1. The brass plate was precision ground to remove
surface scratches and mounted on a 5 cm thick plastic support plate. Electrical contact with
the brass plate was made via sprung, point contacts, held perpendicular to the surface of
the plate. In this experiment the four contact points were arranged in a straight line, with
a common midpoint between the two current drive points and the two pick-up points. The
dimensions of the probe are given in Table 1.

The two current-carrying wires were held perpendicular to the plate surface for a distance
of approximately 40 cm, after which they were twisted together to reduce the effects of inter-
wire capacitance. This distance was sufficient to remove any effect of motion of the current
wires on the measured voltage. The two pick-up wires were arranged with the objective of
minimizing l, lying as close to the plate surface as possible. They were twisted together at the
midpoint between the pick-up points.

In the theoretical calculation, two measured values are needed. One is the current through
the plate, the other is the voltage measured by the pick-up probe. To monitor the current
in the plate, a high precision resistor was connected in series with the drive current circuit
and the voltage across the resistor measured. The resistance maintains one percent accuracy
over the range of frequency for which it could be measured with an Agilent 4294A precision
impedance analyzer; 40 Hz to 40 kHz. The voltage across the resistor and that of the pick-up
probe were both measured using a Stanford Research Systems SR830 DSP lock-in amplifier.
In order to make both voltage measurements using the same lock-in amplifier, a switch was
used activated by a control signal from the auxiliary analog output of the lock-in amplifier.

It was necessary to correct the experimental data for common-mode rejection (CMR)
error in the lock-in amplifier. This systematic error shows itself by the fact that, when the
pick-up terminals are reversed, the measured voltage changes by a fewµV. The magnitude of
the error is, therefore, similar to that of the voltage being measured, and a corrective procedure
is essential. The CMR error was eliminated by taking two sets of measurements, reversing
the pick-up terminals for the second. The two sets were then subtracted and the result divided
by two.

The drive current was produced by a Kepco bipolar operational power supply/amplifier,



model number BOP 20-20M. The sine signal from the internal function generator of the lock-
in amplifier was connected to the current programming input of the power supply, with the
power supply working as a current drive.

The conductivity of the plate was measured using a MIZ-21A eddy current instrument.
The error quoted in Table 1 is estimated from the manufacturer’s literature and derives from
a combination of inaccuracy in the instrument, inaccuracy in the comparative standards and
probe lift-off error.

In Figure 2, ACPD measurements are compared with theory. The average of ten data sets
(taken sequentially) is shown. The value ofl was adjusted in the calculation to obtain the best
fit to the high frequency part of the data, having negligible influence on the low-frequency
data. The valuel = 0.35 mm appears reasonable since the pick-up wire is AWG 32 with
diameter 0.2 mm. The agreement between theory and experiment is excellent. There is no
obvious error in the imaginary part ofV. The theory overestimates the low frequency real
part ofV by 3%. Applying standard error analysis to the low frequency limiting expression
for V, equation (22), shows that errors in the plate conductivity and in the relative positions
of the probe points combine to give an experimental error which is also 3%.
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Figure 2: ACPD measurements on a brass plate compared with theory, equation (20). Experimental parameters
are given in Table 1.

5 Limiting Cases

5.1 Half Space Conductor

If the limit T → ∞ is taken in equation (20),coth(ikT ) → −1 andV for a half-space
conductor is given by

V =
I

4π

(
ik

σ
+ iωµ0l

)
ln

{[
(p− S)2 + y2

(p + S)2 + y2

] [
(q + S)2 + y2

(q − S)2 + y2

]}
. (21)

Considering the behavior ofcoth(x), it can be shown that the plate thickness needs to be
only twice the electromagnetic skin depth in order for the plate to behave as a half-space,
to within 1% accuracy. In Figure 3,V is plotted for a number of values of plate thickness,
including a half-space. The calculations are made using equations (20) and (21). For the plate
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Figure 3: Calculated values ofV as a function of frequency and plate thickness. Other parameters are given in
Table 1.

with thickness 10 mm, the frequency at whichT = 2δ is about 600 Hz. It can be seen from
Figure 3 that the theory for the half-space and the plate converge at this point, as expected.

5.2 Low Frequency

To take the limitk → 0 in equation (20), note thatlimk→0[ikT/ sinh(ikT )] = 1. Then

V → − I

4πσT
ln

{[
(p− S)2 + y2

(p + S)2 + y2

] [
(q + S)2 + y2

(q − S)2 + y2

]}
, k → 0. (22)

It is seen that at low frequency the voltage is real, being inversely proportional to the plate
thickness and conductivity. Formula (22) is consistent with one given by Yamashita and
Masahiro for four-point DC measurements on a finite plate [7]. The inverse dependence of
Re(V) on the plate thickness at low frequency, predicted by equation (22), can be clearly seen
in Figure 3.

5.3 High Frequency

At high frequency the voltage is dominated by the inductive term in equation (20). This term
is proportional tol, the length of the pick-up wire perpendicular to the metal plate. Practically
it is desirable to minimize the contribution of this term by makingl as small as possible. In
this way the contribution toV due to the plate, from which useful information may be derived,
is not masked by induction in the measurement circuit. In Figure 4, the effect onV of varying
l is shown. Only Im(V) is shown sincel has no influence on Re(V).

6 Conclusion

This simple analytic result, equation (20), gives useful insight into the primary contributors in
ACPD measurements. It is accurate for a flat metal plate whose edges are several tens of skin
depths from the probe, and for a probe whose pick-up points are several skin depths away
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Figure 4: Calculated values of Im(V) as a function of frequency and perpendicular length of the pick-up wire,l.
Other parameters are given in Table 1.

from the current drive points. Near-field contributions toV and surface layers are subjects of
future work.
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