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Abstract

Statistical inference and information processing of high-dimensional data often require efficient and ac-
curate estimation of their second-order statistics. With rapidly changing data, limited processing power and
storage at the sensor suite, it is desirable to extract the covariance structure from a single pass over the data
stream and a small number of measurements. In this paper, we explore a quadratic random measurement
model which imposes a minimal memory requirement and low computational complexity during the sampling
process, and is shown to be optimal in preserving low-dimensional covariance structures. Specifically, four
popular structural assumptions of covariance matrices, namely low rank, Toeplitz low rank, sparsity, jointly
rank-one and sparse structure, are investigated. We show that a covariance matrix with either structure can
be perfectly recovered from a near-optimal number of sub-Gaussian quadratic measurements, via efficient
convex relaxation algorithms for the respective structure.

The proposed algorithm has a variety of potential applications in streaming data processing, high-
frequency wireless communication, phase space tomography in optics, non-coherent subspace detection,
etc. Our method admits universally accurate covariance estimation in the absence of noise, as soon as the
number of measurements exceeds the theoretic sampling limits. We also demonstrate the robustness of this
approach against noise and imperfect structural assumptions. Our analysis is established upon a novel notion
called the mixed-norm restricted isometry property (RIP-`2/`1), as well as the conventional RIP-`2/`2 for
near-isotropic and bounded measurements. Besides, our results improve upon best-known phase retrieval
(including both dense and sparse signals) guarantees using PhaseLift with a significantly simpler approach.

1 Introduction

Accurate estimation of second-order statistics of stochastic processes and data streams is of ever-growing im-
portance to various applications that exhibit high dimensionality. Covariance estimation is the cornerstone of
modern statistical analysis and information processing, as the covariance matrix constitutes the sufficient statis-
tics to many signal processing tasks, and is particularly crucial for extracting reduced-dimension representation
of the objects of interest. For signals and data streams of high dimensionality, there might be limited mem-
ory and computation power available at the sensor end to process the rapidly changing input, which requires
the covariance estimation task to be performed with a single pass over the data stream, minimal storage, and
low computational complexity. This is not possible unless appropriate structural assumptions are incorporated
into the high-dimensional problems. Fortunately, a broad class of high-dimensional signals indeed possesses
low-dimensional structures, and the intrinsic dimension of the covariance matrix can be far smaller than the
ambient dimension. For different types of data, the covariance matrix may exhibit different structures; four of
the most widely considered structures are listed below.

• Low Rank: The covariance matrix is (approximately) low-rank, which occurs when a small number of
components accounts for most of the variability in the data. Low-rank covariance matrices arise in appli-
cations including traffic data monitoring, array signal processing, collaborative filtering, metric learning,
etc.
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• Stationarity and Low Rank: The covariance matrix is simultaneously low-rank and Toeplitz, which arises
when the random process is generated by a few spectral spikes. Recovery of the stationary covariance
matrix, often equivalent to spectral estimation, is crucial in many tasks in wireless communications (e.g.
detecting spectral holes in cognitive radio networks), array signal processing (e.g. direction of arrival
analysis [1]), etc.

• Sparsity: The covariance matrix can be approximated in a sparse form [2]. This arises when a large
number of variables have small pairwise correlation, or when several variables are mutually exclusive.
Sparse covariance matrices arise in finance, biology and spectrum estimation.

• Joint Sparsity and Rank-One: The covariance matrix can be approximated in a jointly sparse and rank-
one matrix. This has received much attention in recent development of sparse PCA, and is closely related
to sparse signal recovery from magnitude measurements (called sparse phase retrieval).

In this paper, we wish to reconstruct an unknown covariance matrix Σ ∈ Rn×n with the above structure
from a small number of rank-one measurements. In particular, we explore quadratic sampling methods of the
form

yi = aTi Σai + ηi, i = 1, . . . ,m, (1)

where y := {yi}mi=1 denotes the measurements, ai ∈ Rn represents the sensing vector, η := {ηi}mi=1 denotes the
noise term, and m is the number of rank-one measurements. The noise-free measurements aTi Σai’s are quadratic
in ai and are thereby referred to as quadratic measurements. In practice, the number of measurements one can
obtain is constrained by the storage requirement at the sensors, which may be much smaller than the ambient
dimension of Σ. This sampling scheme finds applications in many practical scenarios, admits optimal covariance
estimation with tractable algorithms, and brings in computational and storage advantages compared with other
types of measurements, as detailed in the rest of the paper.

1.1 Motivations

The quadratic measurements in the form of (1) are motivated by several application scenarios listed below,
which illustrate the practicability and benefits of the proposed quadratic measurement scheme.

1.1.1 Covariance Sketching for Data Streams

A high-dimensional data stream model represents real-time data that arrives sequentially at a high rate, where
each data instance is itself high-dimensional. In many resource-constrained applications, the available memory
and processing power at the sensor suite are severely limited compared with the volume and rate of the data [3].
Therefore it is desirable to extract the covariance matrix of the data instances from inputs on the fly without
storing the whole stream. Interestingly, the quadratic measurement strategy can be leveraged as an effective
data stream processing method to extract the covariance information from real-time data, with limited memory
and low computational complexity.

Specifically, consider an input stream {xt}∞t=1 that arrives sequentially, where each xt ∈ Rn is a high-
dimensional data instance generated at time t. The goal is to estimate the covariance matrix Σ = E[xtx

T
t ] ∈

Rn×n. The prohibitively high rate at which data is generated forces covariance extraction to function with as
small a memory as possible. The scenario we consider is quite general, and we only impose that the covariance
of a random substream of the original data stream converges to the same covariance as Σ. No prior information
on the correlation statistics between consecutive instances is assumed to be known a priori (e.g. they are not
necessarily independently drawn), and hence it is not feasible to exploit these statistics to enable low sample
complexity.

We propose to pool the data stream {xt}∞t=1 into a small set of measurements in an easy-to-adapt fashion
with a collection of sketching vectors {ai}mi=1. Our covariance sketching method is outlined below:

1. At each time t, we randomly choose a sketch vector indexed by `t ∈ {1, . . . ,m}, and obtain a single linear
sketch aT`txt.

2



2. All sketches employing the same sketching vector ai are squared, aggregated and normalized, which
converge rapidly to a measurement1

yi = E[(aTi xt)
2] + ηi = aTi E[xtx

T
t ]ai + ηi

= aTi Σai + ηi, i = 1, . . . ,m; (2)

where η := {ηi}mi=1 denotes the noise term.

We call this sketching method “quadratic sketching”, as the measurements yi’s are quadratic in each relevant
ai and xt.

There are several benefits of this covariance sketching method. First, the storage requirement is only O(m),
which can indeed be much smaller than the ambient dimension of Σ. The computational cost for sketching each
instance is linear with respect to the dimension of the instance in the data stream. Unlike the uncompressed
sketching methods where each instance one measures usually affect many stored measurements, our scheme
allows each aggregate quadratic sketch to be composed by completely different instances, which allows sketching
to be performed in a distributed and asynchronous manner. This arises since each randomized sketch is a
compressive snapshot of the second-order statistics, while each uncompressed measurement itself is unable to
preserve the correlation information. As will be shown later, this sketching scheme allows optimal covariance
estimation with theoretically minimal memory complexity at the sensing stage.

1.1.2 Noncoherent Energy Measurements in Communications and Signal Processing

When communication takes place in the high-frequency regime, empirical energy measurement is often more
accurate than the phase measurement. For instance, the energy measurements will be more reliable when
communication systems are shifting toward extremely high carrier frequency regimes such as 60GHz communi-
cations [4], and also result in popular noncoherent detection methods which do not require prior information on
the transmitted signal.

• Spectral Estimation of Stochastic Processes from Energy Measurements: A large class of wireless com-
munication tasks in stochastic environments rely on reliable estimation of the spectral characteristics of
random processes [5]. For instance, optimal signal transmissions are often based on the Karhunen–Loeve
decomposition of a random process, which requires accurate covariance estimation [6]. If we employ a
sampling vector ai and observe the average energy measurements over N instances {xt}1≤t≤N , then the
energy measurement can similarly be expressed as

yi =
1

N

N∑

t=1

∣∣aTi xt
∣∣2 = aTi ΣNai, i = 1, . . . ,m (3)

where ΣN := 1
N

∑N
t=1 xtx

T
t denotes the sample covariance matrix, leading to the quadratic-form obser-

vations.

• Noncoherent Subspace Detection from Energy Measurements: Matched subspace detection [7] finds many
applications in wireless communication, radar, and pattern recognition when the transmitted signal is
encoded by the membership of subspaces. Our algorithm can also be cast as recovering the principal
subspace of a dataset {xt}Nt=1, with an energy detector obtaining m measurements in the form of (3).
Thus, the noncoherent subspace detection is subsumed by the formulation (1).

1.1.3 Phaseless Measurements in Physics

Optical imaging devices are incapable of acquiring the phase of the measurements due to ultra-high frequencies
associated with light. In many applications, measurements in the form of (1) arise naturally.

• Compressive Phase Space Tomography: Phase Space Tomography [8] is an appealing method to measure
the correlation function of a wave field in physics. However, tomography becomes challenging when the

1Note that we might only be able to obtain measurements for empirical covariance matrices instead of Σ, but this inaccuracy
can be absorbed into the noise term η. In fact, for various stationary data streams, yi converges rapidly to aT

i Σai even with a few
instances xt.

3



dimensionality of the correlation matrix becomes large. Recently, it was proposed experimentally in [9]
to recover an approximately low-rank correlation matrix, which often holds in physics, by only taking a
small number of measurements in the form of (1).

• Phase Retrieval: Due to the physical constraints, one can only measure amplitudes of the Fourier coeffi-
cients of an optical object. This gives rise to the problem of recovering a signal x ∈ Rn from magnitude
measurements, which is often referred to as phase retrieval. Several algorithms (e.g. [10–12]) have been
proposed that enable exact phase retrieval (i.e. recovers x · xT ) from random magnitude measurements.
If we set Σ := xxT , then our problem formulation (1) subsumes phase retrieval as a special case in the
low-rank setting.

In summary, these applications require faithful covariance matrix estimation from a small number of rank-one
measurements (1). In this paper, we will use the number m of measurements to denote the number of sketches
in the covariance sketching problem, and the number of magnitude or energy samples in other applications,
respectively. We aim to develop tractable algorithms that enable covariance estimation with near-optimal
performance guarantees.

1.2 Contributions

Our main contributions are three fold. First, we have developed convex optimization algorithms for covariance
estimation from a set of quadratic measurements as given in (1) for a variety of structural assumptions including
low-rank, Toeplitz low-rank, sparse, and sparse rank-one covariance matrices. The proposed algorithms encour-
age the assumed low-dimensional structures using convex relaxation, specifically trace norm minimization for
promoting low-rank structure, `1 norm minimization for promoting sparsity. For a large class of sub-Gaussian
sensing vectors, we derive theoretical performance guarantees (Theorems 1 – 4) for the following aspects:

1. Exact and universal recovery: once the sensing vectors are selected, then with high probability, all
covariance matrices satisfying the presumed structure can be recovered;

2. Stable recovery: the proposed algorithms allow us to reconstruct the true covariance matrix within high
accuracy even under imperfect structural assumptions; additionally, if the measurements are corrupted by
noise, the estimate deviates from the true covariance matrix by at most a constant multiple of the noise
level;

3. Near-minimal measurements: the proposed algorithms succeed as soon as the number of measurements
is slightly above the theoretic sampling limits for most of the respective structure. For the special case of
(sparse) rank-one matrices, our result recovers and strengthens the best-known reconstruction guarantees
of (sparse) phase retrieval using PhaseLift [10,13,14] with a much simpler proof technique.

Secondly, to obtain some of the above theoretical guarantees (Theorems 1, 3, and 4), we have introduced a novel
mixed-norm restricted isometry property, denoted by RIP-`2/`1. An operator is said to satisfy the RIP-`2/`1 if
the strength of the signal class of interest before and after measurements are preserved when measured in the
`2 norm and in the `1 norm, respectively. While the conventional RIP-`2/`2 does not hold for the quadratic
sensing model for general low-rank structures as pointed out by [10], we have established that it does satisfy the
RIP-`2/`1 after a small “debiasing” modification for the general low-rank, sparse, and simultaneously sparse
and rank-one structural assumptions. This seemingly subtle change allows us to develop a significantly simpler
approach without resolving to constructing complicated dual certificates as in [10,13,14].

On the other hand, we show that linear combinations of the quadratic measurements satisfy RIP-`2/`2 when
restricted to Toeplitz low-rank covariance matrices via the entropy method [15]. This allows the establishment
of near-optimal recovery guarantees for Toeplitz low-rank covariance matrices (Theorem 2). Along the way,
we have also established a RIP-`2/`2 for bounded and near-isometric operators (Theorem 5) that strengthens
previous work [16, 17] to enable universal and stable low-rank matrix recovery for a broader class of operators
including Fourier-type measurements.

Last but not least, our measurement schemes and algorithms may be of independent interest to high-
dimensional data processing. The measurements in (1) are rank-one measurements with respect to the covariance
matrix, which are much easier to implement and bear a smaller computational cost than full-rank measurement
matrices with i.i.d. entries. Moreover, the performance guarantees of the measurement scheme (1) is universal,
which does not require any additional incoherence conditions on the covariance matrix as for the standard
matrix completion framework [16,18,19].
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1.3 Related Work

In most existing work, the covariance matrix is estimated from a collection of full data samples, and fundamental
guarantees have been derived on how many samples are sufficient to approximate the ground truth [2, 20].
In contrast, this paper is motivated by the success of Compressed Sensing (CS) [21, 22], which asserts that
compression can be achieved at the same time as sensing without losing information. Efficient algorithms have
been developed to estimate a deterministic signal from a much smaller number of linear measurements that
is proportional to the complexity of the parsimonious signal model. As we will show in this paper, covariance
estimation from compressive measurements can be highly robust.

When the covariance matrix is assumed to be approximately sparse, recent work [23,24] explored reconstruc-
tion of second-order statistics of a cyclostationary signal from random linear measurements, by `1-minimization
without performance guarantees; the problem formulation is quite different from (1). Another work [25] pro-
posed estimating an approximately sparse covariance matrix from measurements of the form Y = AΣAT , where
A ∈ Rm×n denotes the sketching matrix constructed from expander graphs. Nevertheless, this scheme cannot
accommodate low-rank covariance matrix estimation, and their performance guarantees do not hold universally
for all sparsity patterns.

Our covariance estimation method is inspired by recent developments in phase retrieval [10–13, 26, 27],
which is equivalent to recovering rank-one covariance matrices from quadratic measurements. In particular, our
recovery algorithm coincides with PhaseLift [10,13] when applied to low-rank matrices. In [13], it is shown that
PhaseLift succeeds at reconstructing a signal of dimensionality n from Θ(n) phaseless Gaussian measurements,
and stable recovery has also been established in the presence of noise. When specializing our result to this
case, we have shown that the same type of theoretical guarantee holds for a much larger class of sub-Gaussian
measurements, with a different proof technique that yields a much simpler proof. Moreover, when the signal
is further assumed to be k-sparse, the pioneering work [14] showed that O(k2 log n) Gaussian measurements
suffice; this result is extended to accommodate sub-Gaussian measurements and approximately sparse signals
by our framework with a much simpler proof. More details can be found in Section 2.4.

We also put the proposed covariance sketching scheme in Section 1.1.1 into perspective. In a streaming
setting, online principal component analysis (PCA) has been an active area of research for decades [28] using
full data samples, where non-asymptotic convergence guarantees have only been recently developed [29]. Inspired
by CS, subspace tracking from partial observations of a data stream [30,31], which can be regarded as a variant
of incremental PCA [32] in the presence of missing values, is also closely related. However, existing subspace
tracking algorithms mainly aim to recover the data stream, which is not necessary if one only cares to extract
the second-order statistics.

1.4 Organization

The rest of this paper is organized as follows. We first present the convex optimization based algorithms in
Section 2, and establish their theoretical guarantees. The analysis framework is based upon a novel mixed-
norm restricted isometry property as well as conventional RIP for near-isotropic and bounded measurements,
as elaborated in Sections 3 and 4. Section 2.4 discusses sparse phase retrieval, where the proposed proof
architecture is used to recover and improve upon existing results. The proof of main theorems is deferred to
the appendices. Numerical examples are provided in Sections 5 and 4. Finally, Section 6 closes the paper with
a summary of our findings and a discussion of future directions.

1.5 Notations

Before proceeding, we provide a brief summary of useful notations used throughout this paper. A variety of
matrix norms will be discussed; in particular, we denote by ‖X‖, ‖X‖F, and ‖X‖∗ the spectral norm, the
Frobenius norm, and the nuclear norm (i.e. sum of all singular values) of X, respectively. When X is a positive
semidefinite (PSD) matrix, the nuclear norm coincides with the trace norm ‖X‖∗ = Tr(X). We use ‖X‖1 and
‖X‖0 to denote the `1 norm and support size of the vectorized X, respectively. The Euclidean inner product
between X and Y is defined as 〈X,Y 〉 = Tr(XTY ). The best rank-r approximation and the best k-term
approximation of X are defined by

Xr = arg min
M :rank(M)=r

‖X −M‖F ,
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Table 1: Summary of Notation and Parameters

Σ, Σr, Σc true covariance matrix, best rank-r approximation of Σ, and Σc := Σ−Σr

Σ, ΣΩ0 , ΣΩc
0

true covariance matrix, best k-sparse approximation of Σ, and ΣΩc
0

:= Σ−ΣΩ0

T , T ⊥ orthogonal projection operator onto Toeplitz matrices, and its orthogonal
complement.

η,y ∈ Rm , noise, quadratic measurements
{
aTi Σai + ηi

}
1≤i≤m

ai ∈ Rn, Ai ∈ Rn×n ith sensing vector, ith sensing matrix Ai := ai · aTi
Bi ∈ Rn×n auxiliary sensing matrix, i.e. Bi = A2i−1 −A2i

Ai,A linear transformation X 7→ aTi Xai , linear mapping X 7→
{
aTi Xai

}
1≤i≤m

Bi,B linear transformation X 7→ 〈Bi,X〉 , linear mapping X 7→ {Bi (X)}1≤i≤m

and
Xk = arg min

M :‖M‖0=k
‖X −M‖F ,

respectively, where the usage of which is made clear in the context to avoid ambiguity. Besides, we denote by
T the orthogonal projection operator onto Toeplitz matrices, and T ⊥ its orthogonal complement. Some useful
notations are summarized in Table 1.

2 Convex Relaxation and Its Performance Guarantees

In general, recovering the covariance matrix Σ ∈ Rn×n from m < n(n+ 1)/2 measurements is ill-posed, unless
the sampling mechanism can effectively exploit the low-dimensional covariance structure. Random sampling
often preserves the information structure from minimal observations, and allows robust recovery from noisy
measurements.

In this paper, we restrict our attention to the following random sampling model. Specifically, we assume that
the sensing vectors are composed of i.i.d. sub-Gaussian entries. In particular, we assume ai’s (1 ≤ i ≤ m) are

i.i.d. copies of z = [z1, · · · , zn]
T

, where each zi is i.i.d. drawn from a distribution with the following properties

E[zi] = 0, E[z2
i ] = 1, and µ4 := Ez4

i > 1. (4)

We assume that the noise η := [η1, · · · , ηm]T is bounded in either `1 norm or `2 norm as specified later in
the theoretical guarantees. For notational simplicity, let Ai := aia

T
i represent the equivalent sensing matrix,

and hence the measurements y := [y1, · · · , ym]
T

obeys yi := 〈Ai,Σ〉 + ηi. We also define the linear operator
A(M) : Rn×n 7→ Rm that maps a matrix M ∈ Rn×n to {〈M ,Ai〉}mi=1. These notations allow us to express the
measurements as

y = A(Σ) + η. (5)

2.1 Recovery of Low-Rank Covariance Matrices

Suppose that Σ is low-rank. A natural heuristic is to perform rank minimization to encourage the low-rank
structure

Σ̂ = arg min
M

rank(M) subject to M � 0, ‖y −A(M)‖1 ≤ ε1, (6)

where ε1 is an upper bound on ‖η‖1 and assumed known a priori. However, the rank minimization problem
is in general NP-hard. Therefore, we replace it with trace minimization over all matrices compatible with the
measurements

Σ̂ = arg min
M

Tr(M) subject to M � 0, ‖y −A(M)‖1 ≤ ε1. (7)

Since Σ is PSD, the trace norm forms a convex surrogate for the rank function, which has proved successful in
matrix completion and phase retrieval problems [10, 18, 33]. It turns out that this convex relaxation approach
(7) admits stable and faithful estimates even when Σ is approximately low rank and/or when the measurements
are corrupted by bounded noise. This is formally stated in the following theorem.
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Theorem 1. Consider the sub-Gaussian sampling model in (4) and assume that ‖η‖1 ≤ ε1. Then with proba-

bility exceeding 1− exp(−c1m), the solution Σ̂ to (7) satisfies

‖Σ̂−Σ‖F ≤ C1
‖Σ−Σr‖∗√

r
+ C2

ε1
m

(8)

for all Σ ∈ Rn×n, provided that m > c0nr. Here, Σr represents the best rank-r approximation of Σ, and c0, c1,
C1 and C2 are some absolute constants.

Remark 1. We emphasize that the quadratic sampling operator A fails to satisfy the recovery condition RIP-
`2/`2 used in [33, 34] for the establishment of matrix recovery using full-rank measurement matrices with i.i.d.
sub-Gaussian entries. This fact is formally pointed out by Cand̈ı¿œs et. al. in [10], which motivates us to
propose a new analysis framework.

The main implications of Theorem 1 and its associated performance bound (8) are listed as follows.

1. Exact Recovery from Noiseless Measurements. Consider the case where rank (Σ) = r. In the
absence of noise, one can see from (8) that the trace minimization program (7) (with ε1 = 0) allows perfect
covariance recovery with exponentially high probability, provided that the number m of measurements
exceeds the order of nr. Notice that each PSD matrix can be uniquely decomposed as Σ = LLT , where
L ∈ Rn×r has orthogonal columns, which implies that the intrinsic degrees of freedom carried by PSD

matrices is about nr − r(r−1)
2 . That said, the theoretic sampling limit for perfect recovery is Θ (nr),

indicating that our algorithm allows order-wise optimal recovery.

2. Near-Optimal Universal Recovery. The trace minimization program (7) allows universal recovery,
in the sense that once the sensing vectors are chosen, all low-rank covariance matrices can be perfectly
recovered in the absence of noise. This highlights the power of convex programming, which allows uni-
versally accurate estimates as soon as the number of measurements exceeds the order of theoretic limit.
In addition, the universality and optimality results hold for a large class of sub-Gaussian measurements
beyond the Gaussian sampling model.

3. Robust Recovery for Approximately Low-Rank Matrices. In the absence of noise (ε = 0), if Σ is
approximately low-rank, then by (8) the reconstruction inaccuracy is at most

‖Σ̂−Σ‖F ≤ O
(‖Σ−Σr‖∗√

r

)

with probability at least 1 − exp(−c1m), as soon as m is about the same order of nr. One can obtain
a more intuitive understanding through the following power-law covariance model. Let λ` represent the
`th largest singular value of Σ, and suppose the decay of λ`’s exhibits a power law, i.e. λ` ≤ α

`β
for some

constant α > 0 and decay rate exponent β > 1. Then simple computation reveals that

‖Σ−Σr‖∗√
r

≤ 1√
r

n∑

`=r+1

α

`β
≤ α

(β − 1)rβ−
1
2

,

which in turn implies

‖Σ̂−Σ‖F = O

(
1

rβ−
1
2

)
. (9)

This asserts that (7) reconstructs an almost accurate estimate of Σ in a manner which requires no prior
knowledge on the signal (other than the power law decay that is natural for a broad class of data).

4. Stable Recovery from Noisy Measurements. When Σ is exactly of rank r and the noise is bounded
‖η‖1 ≤ ε1, the reconstruction inaccuracy of (7) is bounded above by

‖Σ̂−Σ‖F ≤ C2
ε1
m

(10)

with exponentially high probability, provided that m exceeds Θ (nr). This reveals that the algorithm (7)
recovers an unknown object with an error at most proportional to the average per-entry noise level, which
makes it practically appealing.

7



5. Phase Retrieval with Sub-Gaussian Measurements. The proposed algorithm (7) appears in the
same form as the convex algorithm called PhaseLift, which was proposed in [10] for phase retrieval. It
is equivalent to treating Σ as the rank-one lifted matrix xxT from an unknown signal x. It has been
established in [13] that with high probability it is possible to recover x exactly from Θ (n) quadratic
measurements, assuming that the sensing vectors are i.i.d. Gaussian-distributed. Our result immediately
recovers all results of [10,13] including exact and stable recovery. In fact, our analysis framework yields a
simpler and shorter proof of all these results, and immediately extends to a broader class of sub-Gaussian
sampling mechanisms. We will further discuss our improvement of sparse recovery from magnitude mea-
surements [14,35] in Section 2.4.

2.2 Recovery of Low-Rank Covariance Matrices for Stationary Instances

Suppose that Σ ∈ Rn×n is low-rank and represents the covariance matrix of n-dimensional stationary data
instances. Similar to recovery in the general low-rank model, we propose to seek a nuclear norm minimizer over
all matrices compatible with the measurements. Since it is known a priori that xi is stationary, we further
impose a Toeplitz constraint to enforce stationarity conditions, which results in the following estimate

Σ̂ = arg min
M

Tr(M) subject to M � 0, ‖y −A(M)‖2 ≤ ε2, M is Toeplitz, (11)

where ε2 is an upper bound of ‖η‖2.
Encouragingly, the semidefinite relaxation (11) is exact under noise-free measurements and provides stable

recovery from noisy measurements, as asserted in the following theorem.

Theorem 2. Consider the sub-Gaussian sampling model in (4), and assume that µ4 ≤ 3 and ‖η‖2 ≤ ε2. Then
with probability exceeding 1− 1/n2,

‖Σ̂−Σ‖F ≤ C2
ε2√
m

(12)

holds for all Toeplitz covariance matrices Σ of rank at most r, provided that m > c0r log10 n. Here, c0 and C2

are some universal constants.

Once we obtain accurate recovery of Σ, the underlying spectrum can be identified by conventional harmonic
retrieval methods, e.g. ESPRIT [1]. We highlight some implications of Theorem 2 as follows.

1. Exact Recovery without Noise. By Theorem 2, exact recovery of stationary covariance matrices
occurs as soon as the number m of measurements is on the theoretic sampling limit Ω (r) (up to some
poly-logarithmic factor). Note that this sampling theoretic limit r · poly log(n) is n times smaller than
that for general low-rank matrices, and is about n

r times lower than the degrees of freedom for general
Toeplitz matrices.

2. Stable and Universal Recovery from Noisy Measurements. The proposed convex relaxation (11)
returns faithful estimates in the presence of noise, as revealed by Theorem 2. This feature is universal: if
A is randomly sampled and then fixed once for all, then with high probability, the error bounds (12) hold
for all Toeplitz low-rank matrices. Note that the error bound (12) is stated in terms of the `2 norm of η.
This is out of mathematical convenience for this special setup, which will be discussed later.

Remark 2. Two aspects of Theorem 2 are worth mentioning. (a) Theorem 2 does not guarantee recovery with
exponentially high probability as ensured in Theorem 1, which arises from our use of stochastic RIP as will be
seen later. (b) We are only able to provide theoretical guarantee when µ4 ≤ 3; roughly speaking, the tails of
these distributions are typically no heavier than Gaussian measure (e.g. µ4 = 3 for Gaussian distribution and
µ4 = 1 for Bernoulli distribution). We conjecture that these two aspects can be improved via other analyitical
approaches.

2.3 Recovery of Sparse Covariance Matrices

Assume that Σ is approximately sparse, we propose to seek a matrix with minimal support size that is compatible
with observations:

Σ̂ = arg min
M
‖M‖0 subject to M � 0, ‖y −A(M)‖1 ≤ ε1, (13)

8



where ε1 is an upper bound of ‖η‖1. However, the `0 minimization problem in (13) is also intractable, and one
can instead solve a tractable convex relaxation of (13), given as

Σ̂ = arg min
M
‖M‖1 subject to M � 0, ‖y −A(M)‖1 ≤ ε1. (14)

Here, the `1 norm is the convex relaxation of the support size, which has proved successful in many compressed
sensing algorithms [22, 36]. It turns out that the convex relaxation (14) allows stable and reliable estimates
even when Σ is only approximately sparse and the measurements are contaminated by noise, as stated in the
following theorem.

Theorem 3. Consider the sub-Gaussian sampling model in (4) and assume that ‖η‖1 ≤ ε1. Then with proba-

bility exceeding 1− exp(−c1m), the solution Σ̂ to (14) satisfies

‖Σ̂−Σ‖F ≤ C1
‖Σ−ΣΩ‖1√

k
+ C2

ε1
m
, (15)

for all Σ ∈ Rn×n, provided that m > c0k log(n/k). Here, ΣΩ denotes the best k-sparse approximation of Σ, and
c0, c1, C1 and C2 are universal constants.

Theorem 3 leads to similar implications as those listed in Section 2.1, which we briefly summarize as follows.

1. Exact Recovery without Noise: When Σ is exactly k-sparse and no noise is present, by setting ε1 = 0,
the solution to (14) is exactly equal to the ground truth with exponentially high probability, as soon as
the number m of measurements is about the order of k log(n/k). Therefore our performance guarantee in
(15) is optimal within a constant factor.

2. Universal Recovery: Our performance guarantee in (15) is universal in the sense that the same sensing
mechanism simultaneously works for all sparse covariance matrices.

3. Imperfect Structural Models: The estimate (15) allows robust recovery for approximately sparse
matrices (which appears in a similar form as that for CS [36]), indicating that quadratic measurements
are order-wise at least as good as linear measurements.

2.4 Recovery of Jointly Sparse and Rank-One Matrices

If we set the covariance matrix Σ = xxT to be a rank-one matrix, then covariance estimation from quadratic
measurements is equivalent to phase retrieval as studied in [10]. In addition to the general rank-one model, our
approach allows simple analysis for recovering jointly sparse and rank-one covariance matrices or, equivalently,
sparse signal recovery from magnitude measurements.

Specifically, suppose that the dominant component x of the matrix Σ is (approximately) sparse, and the
goal is to recover xxT from a small number of phaseless measurements. The measurements we obtain can be
expressed as

y :=
{
|〈ai,x〉|2 + ηi

}
1≤i≤m

.

When x is sparse, the lifting matrix xxT is simultaneously low rank and sparse, which motivates us to adapt
the convex program proposed in [14] to accommodate bounded noise as follows

minimize
M∈Sn×n

tr (M) + λ ‖M‖1
subject to M � 0, ‖y −A (M)‖1 ≤ ε1. (16)

Here, λ is a regularization parameter that balances the two convex surrogates (i.e. trace norm and `1 norm)
associated with the low-rank and sparse structural assumptions, respectively, and ε1 is an upper bound of ‖η‖1.
Our analysis framework ensures stable recovery of an approximately sparse signal, as stated in the following
theorem.
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Theorem 4. Set λ to be any number within the interval
[

1
n ,

1√
k
ρ
]

for some quantity ρ. Consider the sub-

Gaussian sampling model in (4) and assume that ‖η‖1 ≤ ε1. Then with probability at least 1− exp (−c0m), the

solution X̂ to (16) satisfies
∥∥∥X̂ − xΩx

T
Ω

∥∥∥
F
≤ C1

{∥∥xxT − xΩx
T
Ω

∥∥
∗ + λ

∥∥xxT − xΩx
T
Ω

∥∥
1

+
ε1
m

}
(17)

for all signals x ∈ Rn satisfying
‖xΩ‖2
‖xΩ‖1

≥ ρ, provided that m > C2 logn
λ2 . Here, xΩ denotes the best k-sparse

approximation of x, and C1, C2 and c0 are absolute constants.

Theorem 4 recovers all the theoretical performance guarantees established in [14] with a simpler proof, and
improves upon them in two aspects: (i) Theorem 4 establishes the performance guarantees of the algorithm
(16) when the structural assumption is imperfect and when the samples are noisy ; (ii) [14] considers only
Gaussian sensing vectors, whereas we extend the results to a large class of sub-Gaussian sensing vectors. Some
implications of Theorem 4 are as follows.

1. Stable and Universal Recovery for Imperfect Models and Noisy Samples. The recovered signal
is a highly accurate estimate even when the sparsity assumption is inexact, provided that the true signal
exhibits sufficiently fast decay outside the support Ω. The estimation inaccuracy due to noise corruption
is also small, in the sense that it is at most proportional to the per-entry noise level. Besides, the recovery

guarantee depends on the choice of λ, and is universal over a large class of signals with
‖xΩ‖2
‖xΩ‖1

≥ ρ.

2. Near-Optimal Recovery for Power-Law Sparse Signals. In general, by setting λ = 1
k , one can obtain

universal recovery for all k-sparse signals from O
(
k2 log n

)
samples with exponentially high probability.

Somewhat surprisingly, if the nonzero entries of x is known to be decaying, then the algorithm (16)
allows near-optimal recovery. For instance, suppose that the non-zero entries of x satisfies the power-law
decay such that the magnitude of the lth largest entry of xΩ/ ‖xΩ‖2 is bounded above by cpl/l

α for some

constants cpl and exponent α > 1. By setting λ = Θ
(

1√
k logn

)
, one can obtain accurate recovery from

O
(
k log2 n

)
noiseless samples, which is only a logarithmic factor from the theoretic sampling limit (which

is Θ (k)).

2.5 Extension to General Matrices

Table 2.5 summarizes the main results of Theorems 1 – 3. The main results hold even when Σ is not PSD
but a symmetric matrix. When Σ is not a covariance matrix but a general low-rank, Toeplitz low-rank, or
sparse matrix, one can simply drop the PSD constraint in the proposed algorithms, and replace the trace norm
objective by the nuclear norm in (7). As will be shown, the PSD constraint is never invoked in the proof, hence
it is straightforward to extend all results to the more general cases where Σ is a general n×n low-rank, Toeplitz
low-rank, or sparse matrix. Note that in this more general scenario, the measurements in (1) are no longer
nonnegative.

Structure Number of Measurements Noise RIP
rank-r O(nr) `1 `2/`1

Toeplitz rank-r O(rpolylogn) `2 `2/`2
k-sparse O(k log(n/k)) `1 `2/`1

k-sparse and rank-one O(k2 log n) (general sparse); `1 `2/`1
O(k log2 n) (power-law sparse)

Table 2: Summary of Main Results.

3 Approximate `2/`1 Isometry for Low-rank and Sparse Matrices

In this section, we present a novel concept called the mixed-norm restricted isometry properties (RIP-`2/`1)
that allows us to establish Theorems 1, 3, and 4 concerning universal recovery of low-rank, sparse and sparse
rank-one covariance matrices from quadratic measurements.
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Prevailing wisdom in CS asserts that perfect recovery from minimal samples is possible if the dimensionality
reduction projection preserves the signal strength when acting on the class of matrices of interest [22,33]. While
there are various ways to define the restricted isometry properties (RIP), an appropriately chosen approximate
isometry leads to a very simple yet powerful theoretical framework.

3.1 Mixed-Norm Restricted Isometry (RIP-`2/`1)

Recall that the RIP occurs if the sampling output preserves the input strength under certain metrics. The most
commonly used one is RIP-`2/`2, for which the signal strength before and after the projection are both measured
in terms of the Frobenius norm [33,36]. This, however, fails to hold under rank-one measurements – see detailed
argument by Candes et al [10]. Another isometry concept called RIP-`1/`1 has also been investigated, for which
the signal strength before and after the operation A are measured both in terms of the `1 norms2. This is
initially developed to account for measurements from expander graphs [37], and has become a powerful metric
when analyzing phase retrieval [10,13,14]. Nevertheless, RIP-`1/`1 no longer holds for general low-rank matrices
from minimal measurements, as we will show later. Moreover, the proof based on RIP-`1/`1 typically relies on
delicate construction of dual certificates [10,13,14], which is often mathematically complicated.

One of the key and novel ingredients in our analysis is a mixed-norm approximate isometry, which measures
the signal strength before and after the projection with different metrics. Specifically, we introduce RIP-`2/`1,
where the input and output are measured in terms of the Frobenius norm and the `1 norm, respectively. It
turns out that as long as the input is measured with the Frobenius norm, the standard trick pioneered in [36]
can be carried over to our problems with slight modifications and saves the need for dual construction. We
make formal definitions of RIP-`2/`1 for low-rank/sparse matrices as follows.

Definition 1 (RIP-`2/`1 for low-rank matrices). For the set of rank-r matrices, we define the RIP-`2/`1
constants δlb

r and δub
r with respect to an operator B as the smallest numbers such that for all X of rank at most

r: (
1− δlb

r

)
‖X‖F ≤

1

m
‖B (X)‖1 ≤

(
1 + δub

r

)
‖X‖F .

Definition 2 (RIP-`2/`1 for sparse matrices). For the set of k-sparse matrices, we define the RIP-`2/`1
constants γlb

k and γub
k with respect to an operator B as the smallest numbers such that for all X of sparsity at

most k: (
1− γlb

k

)
‖X‖F ≤

1

m
‖B (X)‖1 ≤

(
1 + γub

k

)
‖X‖F .

Definition 3 (RIP-`2/`1 for low-rank plus sparse matrices). Consider the class of index sets

Sk := {Ω ∈ [n]× [n] | ∃ an index set ω ∈ [n] of cardinality k : Ω = ω × ω} .

For the set of matrices

Mk
r,l = {X1 +X2 | ∃Ω ∈ Sk, rank (X1) ≤ r, X1 ∈ Ω, ‖X2‖0 ≤ l} , (18)

we define the RIP-`2/`1 constants δlb,k
r,l and δlb,k

r,l with respect to an operator B as the smallest numbers such

that ∀X ∈Mk
r,l: (

1− δlb,k
r,l

)
‖X‖F ≤

1

m
‖B (X)‖1 ≤

(
1 + δub,k

r,l

)
‖X‖F .

3.2 RIP-`2/`1 of Quadratic Measurements for Low-rank and Sparse Matrices

Unfortunately, the original sampling operator A does not satisfy RIP-`2/`1. This occurs primarily because each
measurement matrix Ai has non-zero mean, which biases the output measurements. In order to get rid of this
undesired bias effect, we introduce a set of “debiased” auxiliary measurement matrices as follows

Bi := A2i−1 −A2i. (19)

Without loss of generality, denote Bi (X) := 〈Bi,X〉 for all 1 ≤ i ≤ m, and let B (X) represent the linear
transformation that maps X to {Bi (X)}mi=1. Note that by representing the sensing process using m rank-2

2Note that the nuclear norm is the `1-norm counterpart for matrices.

11



measurements Bi, we have implicitly doubled the number of measurements for notational simplicity. This,
however, will not change our order-wise results.

It turns out that the auxiliary operator B exhibits RIP-`2/`1 in the presence of minimal measurements, which
can be shown by combining the following proposition with a standard covering argument as applied in [34].

Proposition 1. Let A be sampled from the sub-Gaussian model in (4). For any matrix X, there exist universal
constants c1, c2, c3 > 0 such that with probability exceeding 1− exp (−c3m), one has

c1 ‖X‖F ≤
1

m
‖B (X)‖1 ≤ c2 ‖X‖F . (20)

Proof. See Appendix A.

Remark 3. This statement extends without difficulty to the asymmetric rank-one measurement model where
yi = aTi Σbi for some independently generated sensing vectors ai and bi. This indicates that all our results
hold for this asymmetric sensing model as well.

An immediate consequence of Proposition 1 is the establishment of RIP-`2/`1 of the sampling operator B
for either general low-rank or sparse matrices. The proof of the corollaries below follows immediately from a
standard covering argument detailed in [34, Section III.B] and [38, Section 5]. We thus omit the details but
refer interested readers the above references for details.

Corollary 1 (RIP-`2/`1 for low-rank matrices). Consider the sub-Gaussian sampling model in (4) and the
universal constants c1, c2 > 0 given in (20). There exist universal constants c3, c4 > 0 such that with probability
exceeding 1− exp (−c3m), B satisfies RIP-`2/`1 for all matrices X of rank at most r, and obeys

1− δlb
r ≥

c1
2
, 1 + δub

r ≤ 2c2, (21)

provided that m > c4nr.

Corollary 2 (RIP-`2/`1 for sparse matrices). Consider the sub-Gaussian sampling model in (4) and the
universal constants c1, c2 > 0 given in (20). Then with probability exceeding 1 − exp (−c3m), B satisfies the
RIP-`2/`1 for all matrices X of sparsity at most k, and obeys

1− γlb
k ≥

c1
2
, 1 + γub

k ≤ 2c2, (22)

provided that m > c4k log(n/k).

Corollary 3 (RIP-`2/`1 for low-rank plus sparse matrices). Consider the sub-Gaussian sampling model
in (4) and the universal constants c1, c2 > 0 given in (20). Then with probability exceeding 1− exp (−c3m), B
satisfies the RIP-`2/`1 with respect to Mk

r,l (defined in (18)), and obeys

1− δlb,k
r,l ≥

c1
2
, 1 + δub,k

r,l ≤ 2c2, (23)

provided that m > c4 max {kr log n, l log(n/l)}.

3.3 Proof of Theorems 1, 3 and 4 via RIP-`2/`1

Theorems 1 and 3 can thus be proved given that reasonably small RIP-`2/`1 constants with respect to the
auxiliary operator B are guaranteed via Corollaries 1 and 2. We first present Lemma 1 which establishes
Theorem 1.

Lemma 1. Consider any matrix Σ = Σr + Σc, where Σr is the best rank-r approximation of Σ. If there exists
a number K1 > 2r such that

1− δlb
2r+K1√
2

−
(
1 + δub

K1

)√ 2r

K1
≥ β1 > 0 (24)

holds for some absolute constant β, then the minimizer Σ̂ to (7) obeys

‖Σ̂−Σ‖F ≤ C1
‖Σc‖∗√
K1

+ C2
ε1
m

(25)

for some constants C1 and C2 depending only on the restricted isometry constants and β1.
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Proof. See Appendix C.

By choosing K1 = 8
(

4c2
c1

)2

r ≥ 8

(
1+δub

K1

1−δub
2r+K1

)2

r for the universal constants c1, c2 given in Corollary 1, we

obtain (24) when m > c4 (K1 + 2r)n for some constant c4. This establishes Theorem 1.
The following Lemma establishes Theorem 3.

Lemma 2. Consider any matrix Σ = ΣΩ + ΣΩc , where ΣΩ is the best k-term approximation of Σ. If there
exists a number K2 > 2k such that

(1− γlb
k+K2

)√
2

−
(
1 + γub

K2

)√ k

K2
≥ β2 > 0 (26)

holds for some absolute constant β2, then the minimizer Σ̂ to (7) obeys

‖Σ̂−Σ‖F ≤ C1
‖ΣΩc‖1√

K1

+ C2
ε1
m

(27)

for some constants C1 and C2 depending only on the restricted isometry constants and β2.

Proof. See Appendix D.

By choosing K2 = 4
(

4c2
c1

)2

r ≥ 4

(
1+γub

K2

1−γlb
k+K2

)2

k, one can obtain (26) as soon as m > c4 (K2 + 2k) log n for

some constant c4. This establishes Theorem 3.
Furthermore, the specialized RIP-`2/`1 concept allows us to prove Theorem 4 through the following lemma.

Lemma 3. Set λ to be any number within the interval
[

1
n ,

1√
k

‖xΩ‖2
‖xΩ‖1

]
. Suppose that xΩ is the best k-sparse

approximation of x0. If there exists a number K1 such that

1−δlb
2K1,2

K1
λ2√

3
−

3

(
1+δub,k

K1,
K1
λ2

)
√
K1

2 max





1+δub,k

K1,
K1
λ2√

K1
, 1





≥ β3 > 0, and

1 + δub,k
K1,

K1
λ2(

1− δlb,k
K1,

K1
λ2

)√
K1

≤ β4 (28)

for some absolute constants β3 and β4, then the solution X̂ to (16) satisfies
∥∥∥X̂ − xΩx

T
Ω

∥∥∥
F
≤ C

(∥∥X − xΩx
T
Ω

∥∥
∗ + λ

∥∥X − xΩx
T
Ω

∥∥
1

+
ε1
m

)
(29)

for some constant C that depends only on β3 and β4.

Proof. See Appendix E.

By Corollary 3, one can ensure small RIP-`2/`1 constants as soon as

m > c4 max

{
kK1 log n,

K1

λ2
log n

}
= c4

K1

λ2
log n.

This in turn establishes Theorem 4.
Finally, careful readers will notice our lack of discussions for general Toeplitz low-rank matrices. We are

unaware of a rigorous approach to prove it using RIP-`2/`1. Fortunately, the analysis for Toeplitz low-rank
matrices can be performed via a different method, which we detail in the next section.

4 Approximate `2/`2 Isometry for Toeplitz Low-Rank Matrices

While quadratic measurements in general do not exhibit RIP-`2/`2 (as introduced in [33]) with respect to the
set of general low-rank matrices (as pointed out in [10]), a slight variant of them can indeed satisfy RIP-`2/`2
when restricted to Toeplitz low-rank matrices. In this section, we first provide a characterization of RIP-`2/`2
for general low-rank manifold under bounded and near-isotropic measurements, and then convert quadratic
measurements into equivalent isotropic measurements.
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4.1 RIP-`2/`2 for Near-Isotropic and Bounded Measurements

Before proceeding to the Toeplitz low-rank matrices, we investigate near-isotropic and bounded operators for
general low-rank manifold as follows. For convenience of presentation, we repeat the definition of RIP-`2/`2 as
follows, followed by a theorem characterizing RIP-`2/`2 for near-isotropic and bounded operators.

Definition 4 (RIP-`2/`2 for low-rank matrices). For the set of rank-r matrices, we define the RIP-`2/`2
constants δr w.r.t. an operator B as the smallest numbers such that for all X of rank at most r,

(1− δr) ‖X‖F ≤
1

m
‖B (X)‖2 ≤ (1 + δr) ‖X‖F .

Theorem 5. Suppose that for all 1 ≤ i ≤ m,

‖Bi‖ ≤ K, and ‖EB∗i Bi − I‖ ≤
c5
n

(30)

hold for some quantity K ≤ n2. For any small constant δ > 0, if3 m > c0rK
2 log7 n, then with probability at

least 1− 1/n2, one has
i) B satisfies RIP-`2/`2 w.r.t. all matrices of rank at most r and obeys δr ≤ δ;
ii) If ‖y − B(M)‖2 ≤ ε2, then for all Σ of rank at most r, the minimizer

Σ̂ = argminM ‖M‖∗ subject to ‖y − B(M)‖2 ≤ ε2 (31)

satisfies

‖Σ̂−Σ‖F ≤ C2
ε2√
m
. (32)

Here, c0, C2, c5 > 0 are some universal constants.

Proof. See Appendix B.

In fact, the bound on ‖Bi‖ can be as small as Θ (
√
n), and we say a measurement matrix Bi is well-bounded

if K = O (
√
npoly log (n)). Simultaneously well-bounded and near-isotropic operators (i.e. those satisfying

(30)) subsume the Fourier-type basis as discussed in [16], which admits a small RIP-`2/`2 constant as soon as
m = Ω (nrpoly log (n)). Theorem 5 strengthens the result in [16] by justifying RIP-`2/`2, universal and stable
recovery, which are not revealed by the approach of [16].

Unfortunately, Theorem 5 cannot be directly applied to the class of Toeplitz low-rank matrices for the
following reasons: i) The sampling operator A is neither isotropic nor well-bounded; ii) Theorem 5 requires
m > c0rK

2poly log(n) = Ω (nrpoly log(n)) measurements, which far exceeds the measurement complexity
stated in Theorem 2. This motivates us to construct another set of equivalent sampling operators that satisfy
the assumptions of Theorem 5, which is the focus of the following subsection.

4.2 Construction of RIP-`2/`2 Operators for Toeplitz Low-rank Matrices

Note that the quadratic measurement matrices Ai = ai · aTi are neither non-isotropic nor well bounded. For
instance, when ai ∼ N (0, In), simple calculation reveals that

‖Ai‖ = Θ
(√
n
)
, and EAi 〈Ai,X〉 = 2X + tr (X) · I, (33)

precluding Ai’s from being isotropic and well-bounded. In order to facilitate the use of Theorem 5, we generate
a new set of measurement matrices B̃i through the following procedure.

1. Define a set of matrices Bi of rank at most 3

Bi :=

{
1
2 (A2i−1 −A2i) , if µ4 = 3,

αA3i + βA3i−1 + γA3i−2, if µ4 < 3,
(34)

where α, β, γ are specified in Lemma 4.

3The proof of Theorem 5 follows the entropy method introduced in [15]. The log7 n factor is a consequence of the entropy
method, which might be refined a bit by generic chaining due to Talagrand [39] as employed in [40]. But we are unaware of an
approach that can get rid of the logarithmic factor.
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2. Generate M matrices independently such that4

B̂i =

{√
nT (Bi) , with probability 1

n ,√
n
n−1T ⊥ (Gi) , with probability n−1

n ,
(35)

where Gi is a random matrix with i.i.d. standard Gaussian entries.

3. Define a truncated version B̃i of B̂i as follows

B̃i := B̂i1{‖B̂i‖≤c10 log3/2 n}, 1 ≤ i ≤M. (36)

We will demonstrate that B̃i’s are nearly-isotropic and well-bounded, and hence by Theorem 5 the associated
operator B̃ enables exact and stable recovery for all rank-r matrices when M exceeds nrpoly log(n). This in
turn establishes Theorem 2 through an equivalence argument, detailed below.

4.2.1 Isotropy Trick

While Ai’s are in general non-isotropic, a linear combination of them can be made isotropic when restricted to
Toeplitz matrices. This is stated in the following lemma.

Lemma 4. Consider the sub-Gaussian sampling model in (4).
1) When µ4 = 3, then for any X, the matrix

Bi =
1

2
(A2i−1 −A2i) , (37)

satisfy
EBi 〈Bi,X〉 = X. (38)

2) When µ4 < 3, take any constant ξ > 0 obeying ξ2 > 1.5 · (3− µ4) and set

Bi = αA3i + βA3i−1 + γA3i−2, (39)

with the choice of ∆ := −
(

1− ξ
n

)2

− 2 + 2ξ2

3−µ4
,

α =

√
3− µ4

2ξ2
, β :=

−
(

1− ξ√
n

)
+
√

∆

2
α, and γ :=

−
(

1− ξ√
n

)
−
√

∆

2
α. (40)

Then, for any norm ‖·‖n and any X that satisfies X11 = X22 = · · · = Xnn, one has





EBi =
√

3−µ4

2n ;

EBi 〈Bi,X〉 = X;

‖Bi‖n ≤
√

3 maxi:1≤i≤m ‖Ai‖n .
(41)

Proof. See Appendix F.

Lemma 4 asserts that a large class of measurement matrices can made isotropic when restricted to the class
of matrices with equal diagonal entries (e.g. Toeplitz matrices). This immediately implies that the operator B̂
associated with B̂i’s (defined in (35)) are isotropic. Specifically, for any symmetric X,

EB̂i

〈
B̂i,X

〉
= ET (Bi) 〈Bi, T (X)〉+ ET ⊥ (Gi)

〈
Gi, T ⊥ (X)

〉

= T (X) + T ⊥ (X) = X, (42)

which is a consequence of Lemma 4.

4We choose M to be about Θ(nm), which will be made clear later.
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4.2.2 Truncation of B̂ is near-isotropic

The operators associated with B̂i’s are in general not well-bounded. Fortunately, B̂i’s are well-bounded with
high probability, which follows from the following lemma whose proof can be found in Appendix G.

Lemma 5. Consider z follows the sub-Gaussian sampling model in (4). There exists an absolute constant
c10 > 0 such that ∥∥T

(
zzT

)∥∥ ≤ c12 log
3
2 n (43)

holds with probability exceeding 1− n−10.

As ‖Bi‖ can be bounded above by max1≤i≤m ‖Ai‖ up to some constant factor, Lemma 5 provides a tight
estimate (within some logarithmic factor) of ‖T (Bi)‖ for sub-Gaussian vectors, i.e.

‖T (Bi)‖ ≤ c10 log
3
2 n, 1 ≤ i ≤ m (44)

with probability exceeding 1− 3n−8. Similarly, classical results in random matrices (e.g. [41]) assert that ‖Gi‖
can also be bounded above by O (

√
n log n) with overwhelming probability. These bounds taken collectively

suggest that

‖B̂i‖ ≤ K := c10

√
n log

3
2 n, 1 ≤ i ≤ m (45)

for some constant c10 > 0 with probability exceeding 1− n−7.
The above stochastically boundedness property motivates us to study the truncated version B̃i of B̂i as

defined in (36). Interestingly, B̃i is near-isotropic, a consequence of the following lemma whose proof can be
found in Appendix H.

Lemma 6. Suppose that the restriction of Bi to Toeplitz matrices is isotropic. Consider any event E obeying
P (E) ≥ 1− 1

n5 . Then there is some constant c5 > 0 such that

‖E (T B∗i BiT 1E)− T ‖ ≤ c5
n2
. (46)

The truncated version of Gi can be easily bounded as in [40], which we omit for simplicity of presentation.
This combined with (46) indicates that

∥∥∥E
(
B̃∗i B̃i

)
− I

∥∥∥ ≤ ‖E (T B∗i BiT )− T ‖+
∥∥E
(
T ⊥G∗i GiT ⊥

)
− T ⊥

∥∥ ≤ c5
n
. (47)

4.3 Proof of Theorem 2

So far we have demonstrated that B̃i’s are near-isotropic and satisfy
∥∥∥B̃i

∥∥∥ = O
(√

n log
3
2 n
)

. Suppose that∥∥∥y − B̃ (Σ)
∥∥∥

2
≤ ε̃2. Theorem 5 implies that if M exceeds Θ

(
nr log10(n)

)
, then the solution

Σ̃ := argminM ‖M‖∗ subject to
∥∥∥y − B̃(M)

∥∥∥
2
≤ ε̃2 (48)

satisfies

‖Σ̃−Σ‖F ≤ C2
ε̃2√
M

(49)

for all rank-r matrix Σ. This in turn establishes Theorem 2 through the following simple argument:

1. By (35) and Chernoff bound, B̃ entails Θ
(
M
n

)
= Θ

(
r log10 n

)
independent copies of

√
nT (Bi), and all

other measurements are on the orthogonal complement of Toeplitz space.

2. For any rank-r Toeplitz matrix X, the original A entails m
3 > Θ

(
r log10 n

)
measurement matrices of the

form T (Bi), and any non-Toeplitz component of X is perfectly known (i.e. equal to 0). This indicates
that the convex program (11) dominates (48) when ε̃2 = Θ (

√
nε2). This combined with (49) establishes

Theorem 2.
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5 Numerical Examples

To demonstrate the practical applicability of the proposed convex relaxation under quadratic sensing, we present
a variety of numerical examples for low-rank or sparse covariance matrix estimation.

5.1 Recovery of Low-Rank Covariance Matrices

We conduct a series of Monte Carlo trials for various parameters. Specifically, we choose n = 50, and for each
(m, r) pair, we repeat the following experiments 20 times. We generate Σ, an n×n PSD matrix via Σ = LLT ,
where L is a randomly generated n × r matrix with independent Gaussian components. The sensing vectors
are generated as i.i.d. Gaussian vectors and Bernoulli vectors, and we obtain noiseless quadratic measurements
y. We use the off-the-shelf SDP solver SDPT3 with the modeling software CVX, and declare a matrix Σ to
be recovered if the solution Σ̂ returned by the solver satisfies ‖Σ̂−Σ‖F/‖Σ‖F < 10−3. Figure 1 illustrates the
empirical probability of success recovery in these Monte Carlo trials, which is reflected through the color of each
cell. In order to compare the optimality of the practical performance, we also plot the theoretic limit in red

lines, i.e. the fundamental lower limit on m required to recover all rank-r matrices, which is nr − r(r−1)
2 in our

case. It turns out that the practical phase transition curve is very close to the theoretic sampling limit, which
demonstrates the optimality of our algorithm.
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Figure 1: Recovery of covariance matrices from quadratic measurements when n = 50. For each (m, r) pair, we
repeated Monte Carlo trials 20 times. A PSD matrix Σ and m sensing vectors are selected at random. The
colormap for each cell indicates the empirical probability of success, and the red line reflects the fundamental
information theoretic limit. The results are shown for (a) Gaussian sensing vectors and (b) symmetric Bernoulli
sensing vectors.

In the second numerical example, we consider a random covariance matrix generated via the same procedure
as above but with n = 40. We let the rank r vary as 1, 3, 5, 10 and the number of measurements m vary from 20
to 600. For each pair of (r,m), we perform 10 independent experiments where in each run the sensing matrix is
generated with i.i.d. Gaussian entries. Fig. 2 (a) shows the average Normalized Mean Squared Error (NMSE)

defined as ‖Σ̂−Σ‖2F/‖Σ‖2F with respect to m for different ranks when there is no noise. We further introduce
additive bounded noise to each measurement by letting λi be generated from σ · U [−1, 1], where U [−1, 1] is a
uniform distribution on [−1, 1], σ is the noise level. Fig. 2 (b) shows the average NMSE when r = 5 for different
noise levels by setting ε = σm in (7).

Interestingly, [13, 42] showed that when the covariance matrix is rank-one, if m = O(n), the intersection of
two convex sets, namely S1 = {M : A(M) = y} and S2 = {M : M � 0} is a singleton, with high probability.
For the low-rank case, if the same conclusion holds, we can find the solution via alternating projection between
two convex sets. Therefore, we experiment on the following Projection Onto Convex Sets (POCS) procedure:

Σt+1 = PS2PS1Σt, (50)

17



0 100 200 300 400 500 600
10

−4

10
−3

10
−2

10
−1

10
0

Number of measurements

N
M

S
E

 

 

r = 1

r = 3

r = 5

r = 10

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

Number of measurements

N
M

S
E

 

 

sigma = 1e−4

sigma = 1e−3

sigma = 1e−2

sigma = 1e−1

(a) (b)

Figure 2: The NMSE of the reconstructed covariance matrix via trace minimization versus the number of
measurements when n = 40: (a) for different ranks when no noise is present; (b) for different noise levels when
r = 5.

where PS2
denotes the projection onto the PSD cone, and

PS1
Σt := Σt −A∗(AA∗)−1(A(Σt)− y). (51)

Fig. 3 (a) shows the NMSE of the reconstruction with respect to the number of iterations for r = 3 and
different m = 200, 250, 300, 350. By comparing Fig. 2, we see that it requires more measurements for the POCS
procedure to succeed, but the computational cost is much lower than the trace minimization. This is further
validated from Fig. 3 (b), which is obtained under the same simulation setup as Fig. 2 by repeating POCS with
2000 iterations.
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Figure 3: The NMSE of the reconstructed covariance matrix via POCS for n = 40: (a) the NMSE versus the
number of iterations for different numbers of measurements when r = 3; (b) the NMSE versus the number of
measurements for different ranks when running 2000 iterations.

5.2 Recovery of Toeplitz Low-rank Matrices

To justify the convex heuristic for Toeplitz low-rank matrices, we perform a series of numerical experiments
for matrices of dimension n = 50. By Caratheodory’s theorem, each PSD Toeplitz matrix can be uniquely
decomposed into a linear combination of line spectrums [43]. Thus, we generate the PSD Toeplitz matrix by
randomly generating the frequencies and amplitudes of each line spectra. In the real-valued situation, the
underlying spectral spikes occur in conjugate pairs (i.e. (f1,−f1) , (f2,−f2) , · · · ). We independently generate
r/2 frequency pairs within the unit disk uniformly at random, and the amplitudes are generated as the absolute
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values of i.i.d. Gaussian variables. Figure 4 illustrates the phase transition diagram for varying choices of (m, r).

Each trial is declared successful if the estimate Σ̂ satisfies ‖Σ̂−Σ‖F/ ‖Σ‖F < 10−3. The empirical success rate
is calculated by averaging over 50 Monte Carlo trials, and is reflected by the color of each cell. While there
are in total r degrees of freedom, our algorithm exhibits approximately linear phase transition curve, which
confirms our theoretical prediction in the absence of noise.

m: number of measurements

r:
 r

an
k
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Figure 4: Phase transition plots where frequency locations are randomly generated. The plot corresponds to
the situation where n = 50. The empirical success rate is calculated by averaging over 50 Monte Carlo trials.

5.3 Recovery of Sparse Matrices

We perform a series of Monte Carlo trials for various parameters for matrices of dimensions 50 × 50. We first
generate PSD sparse covariance matrices in the following way. For each sparsity value k, we generate a

√
k×
√
k

matrix via Σk = LLT , where L is a
√
k×
√
k matrix with independent Gaussian components. We then randomly

select
√
k rows and columns of Σ and embed Σk into the corresponding

√
k×
√
k submatrix; all other entries of

Σ are set to 0. In addition, we also conduct numerical simulations for general symmetric sparse matrices, where
the non-zero entries are drawn from i.i.d. Gaussian distribution and the support are randomly chosen. For each
(m, k) pair in each scenario, we repeated the experiments 20 times, and solve it using CVX. Again, a matrix Σ

is claimed to be recovered if the solution Σ̂ returned by the solver satisfies ‖Σ̂−Σ‖F/‖Σ‖F < 10−3. Figure 5
illustrates the empirical success probability in these Monte Carlo experiments. For ease of comparison, we also

plot the degrees of freedom in red lines, which is
√
k(
√
k+1)

2 in our case. It turns out that the practical phase
transition curve is close to the theoretic sampling limit, which demonstrates the optimality of our algorithm.

Another numerical example concerns recovery of a random symmetric sparse matrix (not necessarily PSD).
We randomly generated a symmetric sparse matrix of sparsity level k with n = 40, and sketched it with i.i.d.
Gaussian vectors. For each pair of (r,m), we perform 10 independent runs where in each run the sensing
matrix is generated with i.i.d. standard Gaussian entries. Fig. 6 (a) shows the average NMSE with respect
to m for different sparsity levels when there is no noise. We further introduce additive bounded noise to each
measurement by letting λi be generated from σ · U [−1, 1], and run 10 trials for each pair of (σ,m). Fig. 6 (b)
shows the average NMSE when k = 240 for different noise levels by setting ε = σm in (14).

6 Conclusions and Future Work

In this paper, we investigate a general covariance estimation problem under a quadratic sampling model. This
sampling model acts as an effective signal processing method for real-time data with limited processing power
and memory at the sensor side, and subsumes many sampling strategies where we can only obtain magnitude
or energy samples. Three of the most popular covariance structures, i.e. sparsity, low rank, and jointly Toeplitz
and low-rank structure, have been explored as well as sparse phase retrieval.

Our results indicate that covariance matrices under the above structural assumptions can be perfectly re-
covered from a small set of quadratic measurements and minimal storage, as long as the sensing vectors are
i.i.d. drawn from sub-Gaussian distributions. The recovery can be achieved via efficient convex programming

19



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Exact and Stable Covariance Sketching via Convex Programming

m / (n*n)

k u/(n
*n

)

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

theoretic sampling limit

m / (n*n)

k u/(n
*n

)

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

theoretic sampling limit

(a) (b)

Figure 3. Reconstruction of sparse matrices from Gaussian quadratic measurements when n = 50. Here, ku denotes the
number of non-zero entries above or on the main diagonal, which represents the degrees of freedom for symmetric matrices.
The results are shown for (a) PSD sparse matrices, and (b) general symmetric sparse matrices.

We have also examined the stability of our algorithm
in the presence of noise, which is deferred to the sup-
plemental materials.

5. Conclusions and Future Work

In this paper, we design a novel covariance sketch-
ing strategy to extract covariance information via
quadratic sampling. This sampling model acts as an
effective signal processing method for real-time data
with limited memory and low computational complex-
ity. Covariance recovery from quadratic sketches can
be achieved via efficient convex programming as soon
as the number of measurements exceeds the funda-
mental sampling theoretic limit. Our results highlight
the stability and robustness of the convex program in
the presence of noise and imperfect structural assump-
tions. The performance guarantees are established
via a novel notion of mixed-norm restricted isometry
property (RIP-!2/!1), which significantly simplifies the
proof. It remains to see whether the proposed sens-
ing scheme can be used to recover other types of low-
dimensional covariance structures, such as a sparse in-
verse covariance matrix. It will also be interesting to
explore general types of sampling models that satisfy
RIP-!2/!1 such as structured random measurements.

A. Proof of Main Results

We present here the key lemmas for proving Theo-
rems 1-2, with proofs deferred to supplemental mate-
rials. Our proof is short and uses very simple analy-
sis. Specifically, Theorems 1-2 can be proved if we can
ensure small RIP-!2/!1 constants w.r.t. the auxiliary
operator B, which we established in Section 3.

A.1. Proof of Theorem 1

Lemma 1. Consider any matrix Σ = Σr +Σc, where
Σr is the best rank-r approximation of Σ. If there
exists a number K1 > 2r such that

1 − δlb
2r+K1√
2

−
(
1 + δub

K1

) √
2r

K1
≥ β1 > 0 (14)

holds for some absolute constant β, then the minimizer
Σ̂ to the trace minimization program obeys

∥∥∥Σ̂ − Σ
∥∥∥

F
≤ C1

‖Σc‖∗√
K1

+ C2
ε

m
(15)

for some constants C1 and C2 depending only on the
restricted isometry constants and β1.

By choosing K1 = 8
(

4c2

c1

)2

r ≥ 8

(
1+δub

K1

1−δub
2r+K1

)2

r for

the universal constants c1, c2 given in Corollary 1 in
the main body of the paper, we obtain (14) when m >
c4 (K1 + 2r)n for some constant c4. This establishes
Theorem 1.

A.2. Proof of Theorem 2

Lemma 2. Consider any matrix Σ = ΣΩ + ΣΩc ,
where ΣΩ is the best k-term approximation of Σ. If
there exists a number K2 > 2k such that

(1 − γlb
k+K2

)√
2

−
(
1 + γub

K2

)√
k

K2
≥ β2 > 0 (16)

holds for some absolute constant β2, then the mini-
mizer Σ̂ to the !1 minimization program obeys

∥∥∥Σ̂ − Σ
∥∥∥

F
≤ C1

‖ΣΩc‖1√
K1

+ C2
ε

m
(17)
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Figure 3. Reconstruction of sparse matrices from Gaussian quadratic measurements when n = 50. Here, ku denotes the
number of non-zero entries above or on the main diagonal, which represents the degrees of freedom for symmetric matrices.
The results are shown for (a) PSD sparse matrices, and (b) general symmetric sparse matrices.
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in the presence of noise, which is deferred to the sup-
plemental materials.

5. Conclusions and Future Work

In this paper, we design a novel covariance sketch-
ing strategy to extract covariance information via
quadratic sampling. This sampling model acts as an
effective signal processing method for real-time data
with limited memory and low computational complex-
ity. Covariance recovery from quadratic sketches can
be achieved via efficient convex programming as soon
as the number of measurements exceeds the funda-
mental sampling theoretic limit. Our results highlight
the stability and robustness of the convex program in
the presence of noise and imperfect structural assump-
tions. The performance guarantees are established
via a novel notion of mixed-norm restricted isometry
property (RIP-!2/!1), which significantly simplifies the
proof. It remains to see whether the proposed sens-
ing scheme can be used to recover other types of low-
dimensional covariance structures, such as a sparse in-
verse covariance matrix. It will also be interesting to
explore general types of sampling models that satisfy
RIP-!2/!1 such as structured random measurements.

A. Proof of Main Results
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rials. Our proof is short and uses very simple analy-
sis. Specifically, Theorems 1-2 can be proved if we can
ensure small RIP-!2/!1 constants w.r.t. the auxiliary
operator B, which we established in Section 3.

A.1. Proof of Theorem 1
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Σr is the best rank-r approximation of Σ. If there
exists a number K1 > 2r such that
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the universal constants c1, c2 given in Corollary 1 in
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c4 (K1 + 2r)n for some constant c4. This establishes
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Lemma 2. Consider any matrix Σ = ΣΩ + ΣΩc ,
where ΣΩ is the best k-term approximation of Σ. If
there exists a number K2 > 2k such that
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Figure 5: Reconstruction of sparse matrices from Gaussian quadratic measurements when n = 50. For ease of
comparison, we let ku denote the number of non-zero entries above or on the main diagonal, which represents
the degrees of freedom for symmetric matrices. For each (m, ku) pair, we conducted Monte Carlo experiments
20 times. A PSD matrix Σ and m sensing vectors are selected at random. The colormap for each cell and
the red line reflects the empirical probability of success and the information theoretic limit, respectively. The
results are shown for (a) sparse PSD matrices, and (b) sparse symmetric matrices.
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Figure 6: The NMSE of the reconstructed sparse matrix via `1 minimization versus the number of measurements
when n = 40: (a) for different sparsity level when no noise is present; (b) for different noise levels when k = 240.
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as soon as the number of measurements exceeds the fundamental sampling theoretic limit. We also observe
universal recovery phenomena, in the sense that once the sensing vectors are chosen, all covariance matrices
possessing the presumed structure can be recovered. Our results highlight the stability and robustness of the
convex program in the presence of noise and imperfect structural assumptions. The performance guarantees
for low-rank, sparse and jointly rank-one and sparse models are established via a novel notion of a mixed-norm
restricted isometry property (RIP-`2/`1), which significantly simplifies the proof. Our innovation also includes
a systematic approach to analyze Toeplitz low-rank structure, which relies on RIP-`2/`2 under near-isotropic
and bounded operators.

Several future directions of interest are as follows.

• Another covariance structure of interest is an approximately sparse inverse covariance matrix rather than
a sparse covariance matrix. In particular, when the signals are jointly Gaussian, the inverse covariance
matrix encodes the conditional independence, which is often sparse. It remains to be seen whether the
measurement scheme in (1) can be used to recover a sparse inverse covariance matrix.

• It will be interesting to explore whether more general types of sampling models satisfy RIP-`2/`1. For
instance, when the sensing vectors do not have i.i.d. entries, more delicate mathematical tricks are
necessary to establish RIP-`2/`1.

• In the case where RIP-`2/`1 does not hold or is difficult to evaluate (e.g. the case with random Fourier
sampling vectors), it would be interesting to develop an RIP-less theory as the one developed for linear
measurement models [40].
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A Proof of Proposition 1

To prove Proposition 1, we will first derive an upper bound and a lower bound on E |〈Bi,X〉|, and then apply
the Bernstein-type inequality [44, Proposition 5.16] to establish the large deviation bound.

In order to derive an upper bound on E |〈Bi,X〉|, the key step is to apply the Hanson-Wright inequality
[45,46], which characterizes the concentration of measure for quadratic forms in sub-Gaussian random variables.
We adopt the version in [46] and repeat it below for completeness.

Lemma 7 (Hanson-Wright Inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent
components Xi which satisfy EXi = 0 and ‖Xi‖ψ2

≤ K. Let A be an n× n matrix. Then for any t > 0,

P
{∣∣∣XTAX − EXTAX

∣∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖

)]
(52)

Observe that 〈Bi,X〉 can be written as a symmetric quadratic form in 2n i.i.d. sub-Gaussian random
variables:

〈Bi,X〉 =
[
aT2i−1 aT2i

] [X
−X

] [
a2i−1

a2i

]
.

The Hanson-Wright inequality (52) then asserts that: there exists an absolute constant c > 0 such that for any
matrix X, |〈Bi,X〉| ≤ t with probability at least

1− 2 exp

[
−cmin

(
t2

4K4 ‖X‖2F
,

t

K2 ‖X‖

)]
.
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This indicates that 〈Bi,X〉 is a sub-exponential random variable [44] satisfying

E |〈Bi,X〉| ≤ c1 ‖X‖F (53)

for some positive constant c1.
On the other hand, to derive a lower bound on E |〈Bi,X〉|, we notice that for a random variable ξ, repeatedly

applying the Cauchy-Schwartz inequality yields
(
Eξ2

)2 ≤ E |ξ|E |ξ|3 ≤ E |ξ|
√

Eξ2Eξ4,

which further leads to

E |ξ| ≥
√

(Eξ2)
3

Eξ4
. (54)

Let ξ := 〈Bi,X〉, of which the second moment can be expressed as

Eξ2 = E |〈Bi,X〉|2 = 〈X,E (B∗i Bi)X〉 .
Simple algebraic manipulation yields

E (B∗i Bi) (X) = 4X + 2 (µ4 − 3) diag(X),

and hence

Eξ2 = 4 ‖X‖2F + 2 (µ4 − 3)

n∑

i=1

|Xii|2

≥ min{4, 2(µ4 − 1)} ‖X‖2F = c2 ‖X‖2F , (55)

where c2 := min{4, 2(µ4 − 1)}. Furthermore, since ξ := 〈Bi,X〉 has been shown to be sub-exponential with
sub-exponential norm O (‖X‖F), one can derive [44]

Eξ4 =
(

4 ‖ξ‖ψ1

)4

≤ c3 ‖X‖4F (56)

for some constant c7 > 0. This taken collectively with (54) and (55) gives rise to

E |〈Bi,X〉| ≥
√
c32 ‖X‖6F
c3 ‖X‖4F

= c4 ‖X‖F

for some constant c4 > 0.
Now, we are ready to characterize the concentration of 〈Bi,X〉, which is a simple consequence of the

following sub-exponential variant of Bernstein inequality.

Lemma 8. [44, Proposition 5.16] Let X1, . . . , Xm be independent sub-exponential random variables with EXi =
0 and K = maxi ‖Xi‖ψ1 . Then for every t > 0, we have

P

{
1

m

∣∣∣∣∣
m∑

i=1

Xi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

[
−cmmin

(
t2

K2
,
t

K

)]
(57)

where c is an absolute constant.

For any matrix X, let Xi = |〈Bi,X〉| − E |〈Bi,X〉|, i = 1, . . . ,m. It is apparent that Xi’s satisfy the
conditions in Lemma 8, therefore for any ε > 0, we have

∣∣∣∣
1

m
‖B(X)‖1 −

1

m
E ‖B (X)‖1

∣∣∣∣ ≤ ε‖X‖F

with probability exceeding 1− 2 exp(−cmε) for some absolute constant c > 0. This yields

1

m
‖B(X)‖1 ≤

1

m
E ‖B (X)‖1 + ε‖X‖F ≤ (c1 + ε)‖X‖F

and
1

m
‖B(X)‖1 ≥

1

m
E ‖B (X)‖1 − ε‖X‖F ≥ (c4 − ε)‖X‖F

with probability at least 1− 2 exp(−cmε) , where the constants c, c1 and c4 depend only on the sub-Gaussian
norm of ai. Renaming the universal constants establishes Proposition 1.
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B Proof of Theorem 5

The proof of Theorem 5 follows the entropy method introduced in [15]. Specifically, the RIP-`2/`2 constant can
be bounded by

δr = sup
‖X‖F≤1,rank(X)≤r

∣∣∣∣∣
1

m

m∑

i=1

|〈Bi,X〉|2 − ‖X‖2F

∣∣∣∣∣ = sup
T∈M2

r,X∈T,‖X‖F≤1

∣∣∣∣∣

〈
X,

(
1

m

m∑

i=1

B∗i Bi − I
)
X

〉∣∣∣∣∣

≤ sup
T∈M2

r

∥∥∥∥∥PT
(

1

m

m∑

i=1

B∗i Bi − I
)
PT
∥∥∥∥∥ (58)

≤ sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥+

c5
n
, (59)

where
M2

r := {tangent space with respect to M | ∀M : rank (M) ≤ r} , (60)

and the last inequality follows from the near-isotropic assumption of Bi (i.e. (30)).
The first step is to prove that Eδr ≤ ε for some small constant ε > 0. For sufficiently large n, it suffices to

prove that

E := E sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥ ≤ δ. (61)

This can be established by a Gaussian process approach as follows.
Observe that 1

m

∑m
i=1 (B∗i Bi − EB∗i Bi) is a zero-mean operator, which can be reduced to symmetric operators

via the symmetrization argument (see, e.g. [41]). Specifically, let B̃i be an independent copy of Bi. Conditioning
on Bi we have

E

(
1

m

m∑

i=1

B∗i Bi −
1

m

m∑

i=1

B̃∗i B̃i
∣∣∣∣∣Bi (1 ≤ i ≤ m)

)
=

1

m

m∑

i=1

B∗i Bi − EB∗i Bi.

Since the function f (X ) := supT∈M2
r
‖PTXPT ‖ is convex in X , applying Jensen’s inequality yields

sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥

= sup
T∈M2

r

∥∥∥∥∥E
(
PT
(

1

m

m∑

i=1

B∗i Bi −
1

m

m∑

i=1

B̃∗i B̃i
)
PT
∣∣∣∣∣Bi (1 ≤ i ≤ m)

)∥∥∥∥∥

≤ E

{
sup
T∈M2

r

∥∥∥∥∥PT
(

1

m

m∑

i=1

B∗i Bi −
1

m

m∑

i=1

B̃∗i B̃i
)
PT
∥∥∥∥∥

∣∣∣∣∣Bi (1 ≤ i ≤ m)

}
.

By undoing conditioning over Bi we derive

E sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥ ≤ E sup

T∈M2
r

∥∥∥∥∥PT
(

1

m

m∑

i=1

B∗i Bi −
1

m

m∑

i=1

B̃∗i B̃i
)
PT
∥∥∥∥∥

≤ 2E sup
T∈M2

r

∥∥∥∥∥
1

m

m∑

i=1

εiPTB∗i BiPT
∥∥∥∥∥ , (62)

where εi’s are i.i.d. symmetric Bernoulli random variables. Moreover, if we generate a set of i.i.d. random
variables gi ∼ N (0, 1), then the conditional expectation obeys

E

(
1

m

m∑

i=1

|gi| εiPTB∗i BiPT
∣∣∣∣∣ εi,Bi (1 ≤ i ≤ m)

)
=

√
2

π

1

m

m∑

i=1

εiPTB∗i BiPT .
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Similarly, by convexity of f (X ) := supT∈M2
r
‖PTXPT ‖, one can obtain

E sup
T∈M2

r

∥∥∥∥∥
1

m

m∑

i=1

εiPTB∗i BiPT
∥∥∥∥∥ =

√
π

2
E sup
T∈M2

r

∥∥∥∥∥E
(

1

m

m∑

i=1

|gi| εiPTB∗i BiPT
∣∣∣∣∣ εi,Bi (1 ≤ i ≤ m)

)∥∥∥∥∥

≤
√
π

2
E sup
T∈M2

r

∥∥∥∥∥
1

m

m∑

i=1

giPTB∗i BiPT
∥∥∥∥∥ . (63)

Putting (62) and (63) together we obtain

E sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥

≤
√

2πE sup
T∈M2

r

∥∥∥∥∥
1

m

m∑

i=1

giPTB∗i BiPT
∥∥∥∥∥

=
√

2πE sup
T∈M2

r,X∈T,‖X‖F=1

∣∣∣∣∣gi
1

m

m∑

i=1

|Bi (X)|2
∣∣∣∣∣ , (64)

which converts the problem into bounding the supremum of a Gaussian process.
We would like to prove the following lemma.

Lemma 9. Suppose that gi ∼ N (0, 1) are i.i.d. random variables, and that K ≤ n2. Conditional on Bi’s, we
have

E sup
T∈M2

r

∥∥∥∥∥PT
(

m∑

i=1

giB∗i Bi
)
PT
∥∥∥∥∥ ≤ C14

√
rK log3 n sup

T :T∈M2
r

√√√√
∥∥∥∥∥
m∑

i=1

PTB∗i BiPT
∥∥∥∥∥. (65)

Proof. See Appendix I.

Combining Lemma 9 with (64) and undoing the conditioning on Bi’s yield

E sup
T∈M2

r

∥∥∥∥∥PT
{

1

m

m∑

i=1

(B∗i Bi − EB∗i Bi)
}
PT
∥∥∥∥∥ ≤

C15
√
rK log3 n

m


E

√√√√ sup
T :T∈M2

r

∥∥∥∥∥
m∑

i=1

PTB∗i BiPT
∥∥∥∥∥




≤ C15
√
rK log3 n√
m

√√√√E sup
T :T∈M2

r

∥∥∥∥∥
1

m

m∑

i=1

PTB∗i BiPT
∥∥∥∥∥

for some numerical constant C15 > 0, where the last inequality follows from Jensen’s inequality. Recall the
definition of E in (61), then the above inequality implies

E ≤ C15

(√
rK log3 n√

m

)√
E + 1,

or more concretely,

Eδr ≤ E ≤ 2C15

√
rK log3 n√

m
< 1 (66)

as soon as m >
(
2C15

√
rK log3 n

)2
.

Now that we have established that Eδr can be a small constant if m > 4C2
15rK

2 log6 n, it remains to show that
δr sharply concentrates around Eσr. To this end, consider the Banach space Υ of operators H : Rn×n 7→ Rn×n
equipped with the norm

‖H‖Υ := sup
T∈M2

r

‖PTHPT ‖ .
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Let εi’s be i.i.d. symmetric Bernoulli variables, then the symmetrization trick yields

E

∥∥∥∥∥
1

m

m∑

i=1

B∗i Bi − EB∗i Bi
∥∥∥∥∥

Υ

≤ E

∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

≤ 2E

∥∥∥∥∥
1

m

m∑

i=1

B∗i Bi − EB∗i Bi
∥∥∥∥∥

Υ

,

and

P

{∥∥∥∥∥
1

m

m∑

i=1

B∗i Bi − EB∗i Bi
∥∥∥∥∥

Υ

> 2E

∥∥∥∥∥
1

m

m∑

i=1

B∗i Bi − EB∗i Bi
∥∥∥∥∥

Υ

+ u

}
≤ P

{∥∥∥∥∥
1

m

m∑

i=1

(
B∗i Bi − B̃∗i B̃i

)∥∥∥∥∥
Υ

> u

}

≤ 2P

{∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

>
u

2

}
,

where B̃i is an independent copy of Bi. Note that εiB∗i Bi’s are i.i.d. zero-mean random operators.
Besides, for any 1 ≤ i ≤ m, we know that

‖εiB∗i Bi‖Υ = max
T∈M2

r

‖PTB∗i BiPT ‖ = max
T∈M2

r,‖X‖F=1
|〈Bi,PT (X)〉|2

≤ max
T∈M2

r,‖X‖F=1
‖Bi‖2 ‖PT (X)‖2∗ ≤ K2r.

[15, Theorem 3.10] asserts that there is a universal constant C12 > 0 such that

P

{∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

> 8qE

∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

+
2K2r

m
l + t

}
≤
(
C12

q

)l
+ 2 exp

(
− t2

256q
(
E
∥∥ 1
m

∑m
i=1 εiB∗i Bi

∥∥
Υ

)2

)
.

If we take q = 2C12, l = C13 log n and t = C14

√
log nE

∥∥ 1
m

∑m
i=1 εiB∗i Bi

∥∥
Υ

, then for sufficiently large C13 and

C14, there exists an absolute constant C20 > 0 such that if m > C20rK
2 log7 n, then for any small positive

constant δ we have ∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

< C15

√
log nE

∥∥∥∥∥
1

m

m∑

i=1

εiB∗i Bi
∥∥∥∥∥

Υ

< δ

with probability exceeding 1− n−2.
Now that we have ensured a small RIP-`2/`2 constant, repeating the argument as in [33,34] implies

‖Σ̂−Σ‖F ≤ C2
ε2√
m

(67)

for all Σ of rank at most r. This concludes the proof.

C Proof of Lemma 1

We first introduce a few mathematical notations before proceeding to the proof. Let the singular value de-
composition of a rank-r matrix Σ be Σ = UΛV T , then the tangent space T at the point Σ is defined as

T :=
{
UM1 +M2V

T |M1 ∈ Rr×n,M2 ∈ Rn×r
}

. We denote by PT and PT⊥ the orthogonal projection

onto T and its orthogonal complement, respectively. For notational simplicity, we denote HT := PT (H) and
HT⊥ := H − PT (H) for any matrices H ∈ Rn×n.

Write Σ := Σr + Σc, where Σr represents the best rank-r approximation of Σ. Denote by T the tangent
space with respect to Σr. Suppose that the solution to (7) is given by Σ̂ = Σ +H for some matrix H. The

optimality of Σ̂ yields

0 ≥ ‖Σ +H‖∗ − ‖Σ‖∗
≥ ‖Σr +H‖∗ − ‖Σc‖∗ − ‖Σ‖∗
≥ ‖Σr +HT⊥‖∗ − ‖HT ‖∗ − ‖Σr‖∗ − 2 ‖Σc‖∗
= ‖Σr‖∗ + ‖HT⊥‖∗ − ‖HT ‖∗ − ‖Σr‖∗ − 2 ‖Σc‖∗ ,
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which leads to
‖HT⊥‖∗ ≤ ‖HT ‖∗ + 2 ‖Σc‖∗ . (68)

We then divide HT⊥ into M =
⌈
n−r
K1

⌉
orthogonal matrices H1, H2, · · · , HM satisfying the following: (i)

the largest singular value of Hi+1 does not exceed the smallest non-zero singular value of Hi, and (ii)

‖HT⊥‖∗ =

M∑

i=1

‖Hi‖∗ (69)

and rank (Hi) = K1 for 1 ≤ i ≤M − 1. Along with the bound (68), this yields that

∑

i≥2

‖Hi‖F ≤
1√
K1

∑

i≥2

‖Hi−1‖∗ ≤
1√
K1

‖HT⊥‖∗

≤ 1√
K1

(‖HT ‖∗ + 2 ‖Σc‖∗) . (70)

It then follows that 1
m ‖B(H)‖1 ≤ 2

m ‖A (Σ)− y‖1 ≤ 2ε1
m , and that

2ε1
m
≥ 1

m
‖B (H)‖1

≥ 1

m
‖B (HT +H1)‖1 −

∑

i≥2

1

m
‖B (Hi)‖1

≥
(
1− δlb

2r+K1

)
‖HT +H1‖F −

(
1 + δub

K1

)∑

i≥2

‖Hi‖F

≥ (1− δlb
2r+K1

)√
2

(‖HT ‖F + ‖H1‖F)−
(
1 + δub

K1

)
√
K1

(‖HT ‖∗ + 2 ‖Σc‖∗) .

By reorganizing the terms and ‖HT ‖∗ ≤
√

2r‖HT ‖F, one can derive

[
(1− δlb

2r+K1
)√

2
−
(
1 + δub

K1

)√
2r√

K1

]
‖HT ‖F +

(1− δlb
2r+K1

)√
2

‖H1‖F ≤
2
(
1 + δub

K1

)
√
K1

‖Σc‖∗ +
2ε1
m
. (71)

The bound (71) allows us to see that if
1−δlb

2r+K1√
2

−
(
1 + δub

K1

)√
2r
K1
≥ β1 > 0 for some absolute constant β1,

then one has

‖HT ‖F + ‖H1‖F ≤
2

β1

((
1 + δub

K1

)
√
K1

‖Σc‖∗ +
ε1
m

)
. (72)

On the other hand, (70) allows us to bound

∑

i≥2

‖Hi‖F ≤
1√
K1

(‖HT ‖∗ + 2 ‖Σc‖∗)

≤
√

2r

K1
‖HT ‖F +

2√
K1

‖Σc‖∗ . (73)

This taken collectively with (72) establishes

‖H‖F ≤ C1
‖Σc‖∗√
K1

+ C2
ε1
m

for some absolute constants C1 and C2.
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D Proof of Lemma 2

For an index set Ω, let PΩ as the orthogonal projection onto the index set Ω. We denote HΩ as the matrix
supported onHΩ = PΩ(H) andHΩ⊥ as the projection onto the complement support set Ω⊥. Write Σ̂ = Σ+H,
and Σ = ΣΩ0

+ ΣΩc0
, where Ω0 denotes the support of the k largest entries of Σ. The feasibility constraint

yields
1

m
‖B(H)‖1 ≤

2

m

∥∥∥A(Σ̂)−A(Σ)
∥∥∥

1
≤ 2ε1

m
.

The triangle inequality of `1 norm gives

‖Σ̂−Σ‖1 ≤ ‖Σ̂−ΣΩ0‖1 + ‖ΣΩc
0
‖1

Decompose HΩc0
into a collection of M2 matrices HΩ1 , HΩ2 , . . ., HM2 , where ‖HΩi‖0 = K2 for all

1 ≤ i < M2, HΩ1 consists of the K2 largest entries of HΩc0
, HΩ2 consists of the K2 largest entries of H(Ω0∪Ω1)c ,

and so on. A similar argument as in [36] implies

∑

i≥2

‖HΩi‖F ≤
1√
K2

∑

i≥1

‖HΩi‖1 =
1√
K2

‖HΩc0
‖1. (74)

The optimality of Σ̂ yields

‖Σ‖1 ≥ ‖Σ +H‖1 = ‖ΣΩ0
+H‖1 − ‖ΣΩc

0
‖1

≥ ‖ΣΩ0
‖1 + ‖HΩc0

‖1 − ‖HΩ0
‖1 − ‖ΣΩc‖1,

which gives
‖HΩc0

‖1 ≤ ‖HΩ0
‖1 + 2‖ΣΩc‖1.

Combining the above bound and (74) leads to

∑

i≥2

‖HΩi‖F ≤
1√
K2

(‖HΩ0
‖1 + 2‖ΣΩc‖1)

≤ 1√
K2

(√
k‖HΩ0

‖F + 2‖ΣΩc‖1
)
. (75)

It then follows that

2ε1
m
≥ 1

m
‖B (H)‖1

≥ 1

m
‖B (HΩ0

+HΩ1
)‖1 −

1

m

∑

i≥2

‖B (HΩi)‖1

≥
(
1− γlb

k+K2

)
‖HΩ0

+HΩ1
‖F −

(
1 + γub

K2

)∑

i≥2

‖HΩi‖F

≥ (1− γlb
k+K2

)√
2

(‖HΩ0‖F + ‖HΩ1‖F)−
(
1 + γub

K2

)
√
K2

(√
k ‖HΩ0‖F + 2 ‖ΣΩc‖1

)
.

Reorganizing the above equation yields
[

(1− γlb
k+K2

)√
2

−
(
1 + γub

K2

)√
k√

K2

]
‖HΩ0

‖F +
(1− γlb

k+K2
)√

2
‖HΩ1

‖F ≤
2
(
1 + γub

K2

)
√
K2

‖ΣΩc‖1 +
2ε1
m
.

When Assumption (26) is satisfied, one has

‖HΩ0
‖F + ‖HΩ1

‖F ≤
2

β2

[(
1 + γub

K2

)
√
K2

‖ΣΩc‖1 +
ε1
m

]
.

This along with (75) gives

‖H‖F ≤ C1
‖ΣΩc‖1√

K2

+ C2
ε1
m

for some constants C1 and C2.
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E Proof of Lemma 3

Before proceeding to the proof, we introduce a few notations for convenience of presentation. Let X := xxT ,
XΩ := xΩx

T
Ω and Xc := X−XΩ, where xΩ denotes the k-sparse approximation of x whose support is denoted

by Ω. We set u := 1
‖xΩ‖2

xΩ, and hence the tangent space T with respect to XΩ and its orthogonal complement

T⊥ are characterized by

T :=
{
uzT + zuT | z ∈ Rn

}
,

T⊥ :=
{(
I − uuT

)
M
(
I − uuT

)
|M ∈ Rn×n

}
.

We adopt the notations introduced in [14] as follows: let Ω denote the support of XΩ, and decompose the entire
matrix space into the direct sum of 3 subspaces as

(T ∩ Ω)⊕
(
T⊥ ∩ Ω

)
⊕
(
Ω⊥
)
. (76)

In fact, one can verify that
T ∩ Ω =

{
uzT + zuT | zΩc = 0

}
,

and that both the column and row spaces of T⊥ ∩Ω can be spanned by a set of k− 1 orthonormal vectors that
are supported on Ω and orthogonal to u. As pointed out by [14], T and Ω are compatible in the sense that

PTPΩ = PΩPT = PT∩Ω. (77)

Additionally, for simplicity of notation, we use δlb
r,l and δub

r,l to represent δlb,k
r,l and δub,k

r,l in short whenever there
is no ambiguity.

Suppose that X̂ = xxT + H is the solution to (16). Then for any W ∈ T⊥ and Y ∈ Ω⊥ satisfying

‖W ‖ ≤ 1 and ‖Y ‖∞ ≤ ∞, the matrix uuT +W +λsign (u) sign (u)
T

+λY forms a subgradient of the function
‖·‖∗ + λ ‖·‖1 at point XΩ. If we pick W and Y such that Y = sgn (HΩ⊥) and 〈W ,H〉 = ‖HT⊥∩Ω‖∗, then

0 ≥‖X +H‖∗ + λ ‖X +H‖1 − ‖X‖∗ − λ ‖X‖1 (78)

≥‖XΩ +H‖∗ − ‖Xc‖∗ + λ ‖XΩ +H‖1 − λ ‖Xc‖1 − ‖XΩ‖∗ − ‖Xc‖∗ − λ ‖XΩ‖1 − λ ‖Xc‖1 (79)

≥
〈
uuT +W ,H

〉
+
〈
λsign (u) sign (u)

T
+ λY ,H

〉
− 2 ‖Xc‖∗ − 2λ ‖Xc‖1 (80)

=
〈
uuT ,HT

〉
+ λ

〈
PT
(

sign (u) sign (u)
T
)
,HT

〉
+ λ

〈
PT⊥

(
sign (u) sign (u)

T
)
,HT⊥

〉

+ ‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1 − 2 ‖Xc‖∗ − 2λ ‖Xc‖1
≥
〈
uuT + λPT

(
sign (u) sign (u)

T
)
,HT∩Ω

〉
+ ‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1 − 2 ‖Xc‖∗ − 2λ ‖Xc‖1 , (81)

where (78) follows from the optimality of X̂, (79) follows from the definitions of XΩ and Xc and the triangle
inequality, (80) follows from the definition of subgradient. Finally, (81) follows from the following two facts:

(i) HT⊥ � 0, a consequence of the feasibility constraint of (16). This further gives

〈
PT⊥

(
sign (u) sign (u)

T
)
,HT⊥

〉
= sign (u)

T
HT⊥sign (u) ≥ 0.

(ii) It follows from (77) and the fact sign (u) sign (u)
T ∈ Ω that

〈
PT
(

sign (u) sign (u)
T
)
,HT

〉
=
〈
PT∩Ω

(
sign (u) sign (u)

T
)
,HT∩Ω

〉
. (82)

Since any matrix in T has rank at most 2, one can bound

∥∥∥PT
(

sign (u) sign (u)
T
)∥∥∥

2

∗
≤ 2

∥∥∥PT
(

sign (u) sign (u)
T
)∥∥∥

2

F
≤ 4

∥∥∥uuT sign (u) sign (u)
T
∥∥∥

2

F

= 4 |〈u, sign (u)〉|2 ‖sign (u)‖2F
≤ 4k ‖u‖21 ‖sign (u)‖2∞ ≤ 4k ‖u‖21 ≤

4

λ2
, (83)
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where (83) follows from the assumption on λ. Combining (83) with (81) yields

‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1 ≤ −
〈
uuT ,HT∩Ω

〉
− λ

〈
PT
(

sign (u) sign (u)
T
)
,HT∩Ω

〉
+ 2 ‖Xc‖∗ + 2λ ‖Xc‖1

≤
∣∣uTHT∩Ωu

∣∣+ λ
∥∥∥PT

(
sign (u) sign (u)

T
)∥∥∥
∗
· ‖HT∩Ω‖+ 2 ‖Xc‖∗ + 2λ ‖Xc‖1

≤ 3 ‖HT∩Ω‖+ 2 ‖Xc‖∗ + 2λ ‖Xc‖1 , (84)

where (84) results from ‖u‖2 = 1 and (83).

Divide HT⊥∩Ω into M1 :=
⌈
k−2
K1

⌉
orthogonal matrices H

(1)

T⊥∩Ω
, H

(2)

T⊥∩Ω
, · · · , H(M1)

T⊥∩Ω
∈ T⊥ ∩ Ω satisfying

the following: (i) the largest singular value of H
(i+1)

T⊥∩Ω
does not exceed the smallest non-zero singular value of

H
(i)

T⊥∩Ω
, and (ii)

‖HT⊥∩Ω‖∗ =

M∑

i=1

∥∥∥H(i)

T⊥∩Ω

∥∥∥
∗

and rank
(
H

(i)

T⊥∩Ω

)
= K1 (1 ≤ i ≤M1 − 1).

In the meantime, divide HΩ⊥ into M2 =
⌈
n2−k2

K2

⌉
orthogonal matrices H

(1)

Ω⊥
, H

(2)

Ω⊥
, · · · , H(M2)

Ω⊥
∈ Ω⊥ of non-

overlapping support such that (i) the largest entry magnitude of H
(i+1)

Ω⊥
does not exceed the magnitude of the

smallest non-zero entry of H
(i)

Ω⊥
, and (ii)

∥∥∥H(i)

Ω⊥

∥∥∥
0

= K2 (1 ≤ i ≤M2 − 1).

This decomposition gives the following bound

M1∑

i=2

∥∥∥H(i)

T⊥∩Ω

∥∥∥
F
≤

M1∑

i=2

1√
K1

∥∥∥H(i−1)

T⊥∩Ω

∥∥∥
∗
≤ 1√

K1

‖HT⊥∩Ω‖∗ ,

which combined with the RIP-`2/`1 property of B yields

M1∑

i=2

1

m

∥∥∥B
(
H

(i)

T⊥∩Ω

)∥∥∥
1
≤
(
1 + δub

K1,K2

)
√
K1

‖HT⊥∩Ω‖∗ , (85)

and, similarly,

M2∑

i=2

1

m

∥∥∥B
(
H

(i)

Ω⊥

)∥∥∥
1
≤
(
1 + δub

K1,K2

)
√
K2

‖HΩ⊥‖1 . (86)

SetK2 :=
⌈
K1

λ2

⌉
, and hence

√
K1

K2
≤ λ. Recalling H = HT∩Ω +HT⊥∩Ω +HΩ⊥ , one can proceed as follows

2ε1
m
≥ 1

m
‖B (H)‖1

≥ 1

m

∥∥∥B
(
HT∩Ω +H

(1)

T⊥∩Ω
+H

(1)

Ω⊥

)∥∥∥
1
−

M1∑

i=2

1

m

∥∥∥B
(
H

(i)

T⊥∩Ω

)∥∥∥
1
−

M2∑

i=2

1

m

∥∥∥B
(
H

(i)

Ω⊥

)∥∥∥
1

≥
(
1− δlb

2K1,2K2

) ∥∥∥HT∩Ω +H
(1)

T⊥∩Ω
+H

(1)

Ω⊥

∥∥∥
F
−
(
1 + δub

K1,K2

)
√
K1

‖HT⊥∩Ω‖∗ −
(
1 + δub

K1,K2

)
√
K2

‖HΩ⊥‖1

≥
(
1− δlb

2K1,2K2

) ∥∥∥HT∩Ω +H
(1)

T⊥∩Ω
+H

(1)

Ω⊥

∥∥∥
F
−
(
1 + δub

K1,K2

)
√
K1

(‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1)

≥
(
1− δlb

2K1,2K2

)
√

3

(
‖HT∩Ω‖F +

∥∥∥H(1)

T⊥∩Ω

∥∥∥
F

+
∥∥∥H(1)

Ω⊥

∥∥∥
F

)
−
(
1 + δub

K1,K2

)
√
K1

(‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1) .
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This taken collectively with (84) gives

2
(
1 + δub

K1,K2

)
√
K1

(‖Xc‖∗ + λ ‖Xc‖1) +
2ε

m

≥
(

1− δlb
2K1,2K2√

3
−

3
(
1 + δub

K1,K2

)
√
K1

)(
‖HT∩Ω‖F +

∥∥∥H(1)

T⊥∩Ω

∥∥∥
F

+
∥∥∥H(1)

Ω⊥

∥∥∥
F

)
.

Therefore, if we know that
1−δlb

2K1,2K2√
3

− 3(1+δub
K1,K2

)√
K1

2 max

{
1+δub

K1,K2√
K1

, 1

} ≥ β3 > 0

for some absolute constant β3, then

‖HT∩Ω‖F +
∥∥∥H(1)

T⊥∩Ω

∥∥∥
F

+
∥∥∥H(1)

Ω⊥

∥∥∥
F
≤ 1

β3

(
‖Xc‖∗ + λ ‖Xc‖1 +

ε1
m

)
. (87)

On the other hand, we know from (85) and (86) that

M1∑

i=2

∥∥∥H(i)

T⊥∩Ω

∥∥∥
F

+

M2∑

i=2

∥∥∥H(i)

Ω⊥

∥∥∥
F
≤ 1

1− δlb
K1,K2

M1∑

i=2

∥∥∥B
(
H

(i)

T⊥∩Ω

)∥∥∥
1

+

M2∑

i=2

∥∥∥B
(
H

(i)

Ω⊥

)∥∥∥
1

≤
1 + δub

K1,K2(
1− δlb

K1,K2

)√
K1

‖HT⊥∩Ω‖∗ +

(
1 + δub

K1,K2

)
(

1− δlb
K1,K2

)√
K2

‖HΩ⊥‖1

=
1 + δub

K1,K2(
1− δlb

K1,K2

)√
K1

(‖HT⊥∩Ω‖∗ + λ ‖HΩ⊥‖1)

≤
1 + δub

K1,K2(
1− δlb

K1,K2

)√
K1

(3 ‖HT∩Ω‖+ 2 ‖Xc‖∗ + 2λ ‖Xc‖1) ,

where the last inequality arises from (84). This together with (87) completes the proof.

F Proof of Lemma 4

Simple calculation yields that

EAi 〈Ai,X〉 = 2X +

(
1 +

µ4 − 3

n

)
tr (X) · I. (88)

When µ4 = 3, one can see that

EBi 〈Bi,X〉 =
1

4
E (A2i −A2i+1) 〈A2i −A2i+1,X〉 = X. (89)

When µ4 6= 3, consider the linear combination

B = aA1 + bA2 + cA3,

where we aim to find the coefficients a, b and c that makes B isotropic. If we further require

EB = a+ b+ c =
ε√
n
, (90)

then one can compute

EB 〈B,X〉 = 2
(
a2 + b2 + c2

)
X +

[(
1 +

µ4 − 3

n

)(
a2 + b2 + c2

)
+ 2 (ab+ bc+ ac)

]
tr (X) · I.
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Our goal is thus to determine a, b and c that satisfies

(
1 +

µ4 − 3

n

)(
a2 + b2 + c2

)
+ 2 (ab+ bc+ ac) = 0,

which combined with (90) gives
µ4 − 3

n

(
a2 + b2 + c2

)
+
ε2

n
= 0. (91)

If we set a = 1, then (91) reduces to

µ4 − 3

n

(
1 + b2 +

(
ε√
n
− 1− b

)2
)

+
ε2

n
= 0

⇒ b2 + b

(
1− ε√

n

)
+

1

2

(
1− ε√

n

)2

+
1

2
+

ε2

2 (µ4 − 3)
= 0.

Solving this quadratic equation yields

b =
−
(

1− ε√
n

)
+
√

∆

2
; c =

−
(

1− ε√
n

)
−
√

∆

2
, (92)

where

∆ :=

(
1− ε√

n

)2

− 4

(
1

2

(
1− ε√

n

)2

+
1

2
+

ε2

2 (µ4 − 3)

)
= −

(
1− ε

n

)2

− 2− 2ε2

µ4 − 3
.

Note that ∆ > 0 when ε2 > 1.5 · |3− µ4| . Also, b and c satisfies

1 + b2 + c2 =
ε2

3− µ4
. (93)

By choosing α =
√

3−µ4

2ε2 , β = bα, and γ = cα, we derive the form of Bi as introduced in (40), which satisfies

EBi 〈Bi,X〉 = X.

Finally, we remark that for any norm ‖·‖ n. This can be easily bounded as follows

‖Bi‖n ≤
√
|3− µ4|

2ε2
(1 + |b|+ |c|) max

i:1≤i≤m
‖Ai‖n

≤
√

3

√
|3− µ4|

2ε2
(1 + b2 + c2) max

i:1≤i≤m
‖Ai‖n (94)

=
√

3 max
i:1≤i≤m

‖Ai‖n . (95)

This concludes the proof.

G Proof of Lemma 5

Let M represent the symmetric Toeplitz matrix as follows

M =
[
M |i−l|

]
1≤i,l≤n := T (zz∗) ,

and hence

Mk :=
1

n− k
n∑

l=k+1

zlzl−k, 0 ≤ k < n.
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Apparently, one has EM0 = 1 and EMk = 0 (1 ≤ k < n).
The harmonic structure of the Toeplitz matrix M motivates us to embed it into a circulant matrix CM .

Specifically, a (2n− 1)× (2n− 1) circulant matrix

CM :=




c0 c1 · · · c2n−2

c2n−2 c0 c1 c2
...

...
. . .

...
c1 c2 · · · c0




is constructed such that

ci :=

{
M i, if 0 ≤ i < n;

M2n−i−1, if n ≤ i ≤ 2n− 2.

Since M is a submatrix of CM , it suffices to bound the spectral norm of CM . Define ωi := exp
(

2πj
2n−1 · i

)
,

then the corresponding eigenvalues of CM are given by

λi :=
∑

l

clω
l
i = M0 +

n−1∑

l=1

M lω
l
i +

2n−2∑

l=n

M2n−l−1ω
l
i = M0 + 2

n−1∑

l=1

M l cos

(
2πil

2n− 1

)
, i = 0, 1, · · · , 2n− 2,

which satisfies Eλi = EM0 = 1. This leads to an upper bound as follows

‖M‖ ≤ ‖CM‖ ≤ max
0≤i≤2n−2

|λi| . (96)

Note that λi is a quadratic form in {z1, z2, · · · , zn}. Define the symmetric coefficient matrix G(i) such that

∀α, β (1 ≤ α, β ≤ n) : G
(i)
α,β =

1

n− |l| cos

(
2πi |l|
2n− 1

)
, if α− β = l,

which satisfies

λi = EM0 +
∑

1≤α,β≤n
G

(i)
α,β (zαzβ − Ezαzβ) = 1 +

∑

1≤α,β≤n
G

(i)
α,β (zαzβ − Ezαzβ) .

When z are drawn from a sub-Gaussian measure, Lemma 7 asserts that there exists an absolute constant c10 > 0
such that

P (|λi − 1| ≥ t) ≤ exp

(
−c10 min

{
t

‖G(i)‖
,

t2

‖G(i)‖2F

})
(97)

holds for any t > 0.
It remains to compute ‖G(i)‖F and ‖G(i)‖. Since G(i) is a symmetric Toeplitz matrix, we have

‖G(i)‖2F =

n∑

α,β=1

|Gα,β |2 ≤ 2

n−1∑

l=0

1

n− l ≤ 2 log n. (98)

It then follows that
‖G(i)‖ ≤ ‖G(i)‖F ≤

√
2 log n. (99)

Substituting these two bounds into (97) immediately yields that there exists a constant c12 > 0 such that

λi ≤ c12 log
3
2 n, 1 ≤ i ≤ 2n− 2 (100)

holds with probability exceeding 1− 1
n10 . This taken collectively with (96) concludes the proof.

32



H Proof of Lemma 6

For technical convenience, we introduce another collection of events

∀1 ≤ i ≤ m : Fi := {‖Bi‖F ≤ 20n log n} .

Since the restriction of Bi to Toeplitz matrices is isotropic and T B∗i BiT � 0, we have T = E (T B∗i BiT ) �
E (T B∗i BiT 1E) � E (T B∗i BiT 1E∩Fi), which yields

‖E (T B∗i BiT 1E)− T ‖ ≤ ‖E (T B∗i BiT 1E∩Fi)− T ‖ . (101)

Thus, it is sufficient to evaluate ‖E (T B∗i Bi1E∩Fi)− T ‖. To this end, we adopt an argument of similar spirit
as [40, Appendix B]. Write

T = E (T B∗i BiT ) = E (T B∗i BiT 1E∩Fi) + E
(
T B∗i BiT 1Ec∪F ci

)
,

and, consequently,

‖E (T B∗i BiT 1E∩Fi)− T ‖ =
∥∥E
(
T B∗i BiT 1Ec∪F ci

)∥∥ ≤ ‖E (T B∗i BiT 1Fi∩Ec)‖+
∥∥E
(
T B∗i BiT 1F ci

)∥∥ , (102)

which allows us to bound ‖E (T B∗i BiT 1Fi∩Ec)‖ and
∥∥E
(
T B∗i BiT 1F ci

)∥∥ separately.

First, it follows from the identity ‖T B∗i BiT ‖ = ‖T (Bi)‖2F and the definition of the event Fi that

‖E (T B∗i BiT 1Fi∩Ec)‖ ≤ (20n log n)
2 P (Ec) <

1

n2
. (103)

Second, applying the tail inequality on the quadratic form (e.g. [47, Proposition 1.1]) yields

P
(
‖Ai‖F ≥ c20

(
n+ 2

√
nt+ 2t

))
≤ e−t. (104)

Thus, for any t > (20n log n)
2
, one has

P

(
‖Ai‖F ≥

√
t

3

)
≤ e−c21

√
t (105)

for some absolute constant c21 > 0. Recall that ‖Bi‖F ≤
√

3 max {‖A3i−2‖F , ‖A3i−1‖F , ‖A3i‖F}, which
indicates

P
(
‖Bi‖2F ≥ t

)
≤ P

(
‖A3i−1‖2F ≥

t

3

)
+ P

(
‖A3i−2‖2F ≥

t

3

)
+ P

(
‖A3i‖2F ≥

t

3

)
≤ 3P

(
‖Ai‖F ≥

√
t

3

)

≤ 3e−c21

√
t := g(t).

A similar approach as introduced in [40, Appendix B] gives

∥∥E
(
T B∗i BiT 1F ci

)∥∥ ≤ E
(
‖Bi‖2F 1F ci

)
≤ (20n log n)

2
g
(

(20n log n)
2
)

+

ˆ ∞
(20n logn)2

g (t) dt

< (20n log n)
2
g
(

(20n log n)
2
)

+

ˆ ∞
(20n logn)2

1

t5
dt (106)

<
c15

n2
(107)

for some absolute constant c15 > 0. This taken collectively with (101), (102) and (103) yields

‖E (T B∗i BiT 1E)− T ‖ ≤ ‖E (T B∗i BiT 1E∩Fi)− T ‖ ≤
c̃15

n2

for some absolute constant c̃15 > 0.
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I Proof of Lemma 9

Dudley’s inequality [48, Theorem 11.17] allows us to bound the supremum of the Gaussian process as follows

E sup
T∈M2

r,X∈T,‖X‖F=1

∣∣∣∣∣gi
m∑

i=1

|Bi (X)|2
∣∣∣∣∣ ≤ 24

ˆ ∞
0

log
1
2 N

(
D2

2r, d (·, ·) , u
)

du, (108)

where D2
r := {X | ‖X‖F = 1, rank (X) ≤ 2r}. Here, N (Z, d (·, ·) , u) denotes the smallest number of balls of

radius u centered in points of Z needed to cover the set Z, under the pseudo metric d (·, ·) defined as follows

d (X,Y ) : =

√√√√
m∑

i=1

(
|Bi (X)|2 − |Bi (Y )|2

)2

.

For any (X,Y ) that satisfy ‖X‖F = ‖Y ‖F = 1, rank (X) ≤ r and rank (Y ) ≤ r, the pseudo metric satisfies

d (X,Y ) ≤

√√√√
(

max
i:1≤i≤m

|Bi (X − Y )|2
) m∑

i=1

|Bi (X + Y )|2

≤
√

2

√√√√
m∑

i=1

|Bi (X)|2 + |Bi (Y )|2 max
i:1≤i≤m

|Bi (X − Y )|

≤
√

2





√√√√
〈
X,

(
m∑

i=1

B∗i Bi
)

(X)

〉
+

√√√√
〈
Y ,

(
m∑

i=1

B∗i Bi
)

(Y )

〉
 max
i:1≤i≤m

|Bi (X − Y )|

≤ 2
√

2 sup
T :T∈M2

r

√√√√
∥∥∥∥∥
m∑

i=1

PTB∗i BiPT
∥∥∥∥∥ max
i:1≤i≤m

|〈Bi,X − Y 〉| ,

where the last inequality relies on the observation that ‖X‖F = ‖Y ‖F = 1.
If we introduce the quantity

R := sup
T :T∈M2

r

√√√√
∥∥∥∥∥
m∑

i=1

PTB∗i BiPT
∥∥∥∥∥ (109)

and define another pseudo metric ‖·‖B as

‖X‖B := max
i:1≤i≤m

|〈Bi,X〉| , (110)

then d (X,Y ) ≤ 2
√

2R ‖X − Y ‖B, which allows us to bound

ˆ ∞
0

log
1
2 N

(
D2

2r, d (·, ·) , u
)

du ≤
ˆ ∞

0

log
1
2 N

(
D2

2r, 2
√

2R ‖·‖B , u
)

du

=

ˆ ∞
0

log
1
2 N

(
1√
2r
D2

2r, ‖·‖B ,
u

4R
√
r

)
du

≤
ˆ ∞

0

log
1
2 N

(
D1

2r, ‖·‖B ,
u

4R
√
r

)
du (111)

≤ 4R
√
r

ˆ ∞
0

log
1
2 N

(
D1, ‖·‖B , u

)
du. (112)

Here,
D1
r := {X | ‖X‖∗ ≤ 1, rank (X) ≤ r} , and D1 := {X | ‖X‖∗ ≤ 1} ,

and we have exploited the containment 1√
2r
D2

2r ⊆ D1
2r ⊆ D1. Hence it suffices to bound

E2 := 4R
√
r

ˆ ∞
0

log
1
2 N

(
D1, ‖·‖B , u

)
du.

34



It remains to bound the covering number (or metric entropy) of the nuclear-norm ball D1. Repeating the
well-known procedure as in [49, Page 1113] yields

ˆ ∞
0

√
logN (D1, ‖·‖B , u)du ≤ C10K (log n)

5/2
√

logm

≤ C11K log3 n

for some constants C10, C11 > 0. This taken collectively with (108) and (112) gives that conditioning on Bi’s,
one has

E sup
T∈M2

r

∥∥∥∥∥PT
(

m∑

i=1

giB∗i Bi
)
PT
∥∥∥∥∥ ≤ C14

√
rK log3 n

√√√√ sup
T :T∈M2

r

∥∥∥∥∥
m∑

i=1

PTB∗i BiPT
∥∥∥∥∥. (113)

for some absolute constant C14 > 0.
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