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Particle Filtering for Large-Dimensional State Spaces
With Multimodal Observation Likelihoods

Namrata Vaswani

Abstract—We study efficient importance sampling techniques
for particle filtering (PF) when either (a) the observation likelihood
(OL) is frequently multimodal or heavy-tailed, or (b) the state
space dimension is large or both. When the OL is multimodal,
but the state transition pdf (STP) is narrow enough, the optimal
importance density is usually unimodal. Under this assumption,
many techniques have been proposed. But when the STP is broad,
this assumption does not hold. We study how existing techniques
can be generalized to situations where the optimal importance
density is multimodal, but is unimodal conditioned on a part of
the state vector.

Sufficient conditions to test for the unimodality of this condi-
tional posterior are derived. Our result is directly extendable to
testing for unimodality of any posterior.

The number of particles N to accurately track using a PF in-
creases with state space dimension, thus making any regular PF
impractical for large dimensional tracking problems. But in most
such problems, most of the state change occurs in only a few dimen-
sions, while the change in the rest of the dimensions is small. Using
this property, we propose to replace importance sampling from a
large part of the state space (whose conditional posterior is narrow
enough) by just tracking the mode of the conditional posterior.
This introduces some extra error, but it also greatly reduces the im-
portance sampling dimension. The net effect is much smaller error
for a givenN , especially when the available N is small. An impor-
tant class of large dimensional problems with multimodal OL is
tracking spatially varying physical quantities such as temperature
or pressure in a large area using a network of sensors which may
be nonlinear and/or may have nonnegligible failure probabilities.
Improved performance of our proposed algorithms over existing
PFs is demonstrated for this problem.

Index Terms—Importance sampling for multimodal posteriors,
large dimensional sequential state estimation, particle filtering,
posterior mode tracking, tracking spatially varying physical
quantities.

I. INTRODUCTION

T RACKING is the problem of causally estimating a
hidden state sequence from a sequence of noisy and

possibly nonlinear observations that satisfy the hidden
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Markov model (HMM) assumption. A tracker recursively
computes (or approximates) the “posterior” at time , using the
posterior at and the current observation . For nonlinear
and/or non-Gaussian state space models, the posterior cannot be
computed exactly. But, it can be efficiently approximated using
a sequential Monte Carlo method called particle filtering (PF)
[3]–[5]. A PF outputs at each time , a cloud of weighted
particles whose empirical measure closely approximates the
true posterior for large . A generic PF is summarized in
Algorithm 1. There are two main issues in PF design: (a) choice
of importance sampling density that reduces the variance of the
particle weights and thus improves “effective particle size” [6]
and (b) choice of resampling techniques that improve effective
particle size while not significantly increasing “particle impov-
erishment” [4]. Some solutions for (b) are [5, Ch. 13], [7], [8].
Our focus is on designing efficient importance densities and
analyzing the assumptions under which they work, when either
or both of the following occur:

1) The observation likelihood (OL) is frequently multimodal
or heavy-tailed (or most generally, not strongly log-con-
cave) as a function of the state and the state transition prior
(STP) is broad.

2) State space dimension is large (typically more than 10 or
12). It is well known [3], [9] that the number of particles for
a given tracking accuracy increases with state space dimen-
sion. This makes any regular PF impractical for large-di-
mensional state spaces (LDSS).

Definition 1 (Multimodal (or Heavy-Tailed) OL): refers to
the OL, , having multiple local maxima (or a heavy
tail) as a function of the state for a given observation . An
example is the observation model for the nonstationary growth
model of [3]: . Here, the OL is bimodal with
modes at whenever is significantly positive.
Another example is the clutter model of [10].

Other examples are as follows. Consider tracking spatially
varying temperature change using a network of sensors (see Ex-
ample 1). Whenever one or more sensors fail (e.g., due to a large
unmodeled disturbance or some other damage), the OL is often
heavy-tailed or multimodal (see Fig. 1). The models of Example
1 are also similar to the commonly used clutter model in radar
based target tracking applications or in contour tracking applica-
tions, e.g., Condensation [10], and to outlier noise models used
in other visual tracking problems [11] or in aircraft navigation
problems [9]. Another reason for OL multimodality is having a
sensor that measures a nonlinear (many-to-one) function of the
actual temperature. For example, the growth model of [3]. An-
other many-to-one example is when the observation is a product
of functions of two subsets of states plus noise, for example,
bearings-only tracking [3] or illumination and motion tracking
[12], [13].
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Note that even though our work was motivated by tracking
problems with frequently multimodal OL, it is equally well ap-
plicable to any problem where the posterior is often multimodal
(e.g., due to nonlinearities in the system model), but is unimodal
conditioned on a part of the state space.

LDSS occur in tracking time-varying random fields, such
as temperature or pressure, at a large number of nodes using
a network of sensors [14], [15] (applications in environment
monitoring and weather forecasting); in tracking AR parameters
for noisy speech [16]; and in visual tracking problems such as
tracking deforming contours [17]–[19], [11], tracking spatially
varying illumination change [12], [13] or tracking sets of
“landmark” points [20]. In all of the above problems, at
any time, “most state change” occurs in a small number
of dimensions, while the change in the rest of the state
space is small. We call this the “LDSS property. The LDSS
property is related to, but different from, the assumption
used by dimension reduction techniques such as Principal
Components Analysis (PCA). If is a stationary large
dimensional time series, or if projected along a large part
of the state space is asymptotically stationary, PCA can be
used for dimension reduction. Under a similar assumption,
another PF has been recently proposed [21]. But if
follows a random walk model (the increments, ,
are stationary) in all dimensions, one cannot simply eliminate
the low variance directions of , or use [21]. This
is because the variance of even along these directions
will be significant as increases.

A generic PF is summarized in Algorithm 1. The most com-
monly used importance sampling density is the STP [3]. This
assumes nothing and is easiest to implement. But since this
does not use knowledge of the observation, the weights’ vari-
ance can be large (particularly when the STP is broad com-
pared to the OL), resulting in lower effective particle sizes [4].
The “optimal” importance density [6], i.e., one that minimizes
the variance of weights conditioned on past particles and ob-
servations until , is the posterior conditioned on the previous
state, denoted . When is unimodal (at least approximately),
PF-Doucet [6] approximates it by a Gaussian about its mode
(Laplace’s approximation) and importance samples from the
Gaussian. Laplace’s approximation has also been used for ap-
proximating posteriors in different contexts earlier [22]–[24].
Other work in PF literature that also implicitly assumes that

is unimodal includes [4], [25], [26]. When the OL is mul-
timodal, will be unimodal only if the STP is unimodal and
narrow enough (see Fig. 1). In many situations, especially for
LDSS problems, this does not hold. We develop the PF with Ef-
ficient IS (PF-EIS) algorithm to address such situations. PF-EIS

assumes unimodality of conditioned on a few states which
we call “multimodal states”.

Sufficient conditions to test for the unimodality of this
conditional posterior are derived in Theorem 1. To the best of
our knowledge, such a result has not been proved earlier. It is
equally applicable to test for unimodality of any posterior.

When in addition to multimodality, the state space dimension
is also large (typically more than 10 or 12), the number of
particles required for reasonable accuracy is very large [3],
[9] and this makes a regular PF impractical. One solution that
partially addresses this issue is [5, Ch. 13]or [7] which propose
to resample more than once within a time interval. But more
resampling results in more particle impoverishment [4]. When
the state space model is conditionally linear-Gaussian, or when
many states can be vector quantized into a few discrete centers
(need to know the centers a priori), Rao–Blackwellization
(RB-PF) [27], [9] can be used. In general, neither assumption
may hold. But when the LDSS property holds, it is possible to
split the state space in such a way that the conditional posterior
of a part of it is quite narrow, besides being unimodal. If it
is narrow enough, importance sampling (IS) from this part of
the state space can be replaced by just tracking the mode of
the conditional posterior [mode tracking (MT)]. The resulting
algorithm is called PF-EIS-MT. MT introduces some extra
error. But it greatly reduces the IS dimension. The net effect,
is that a much smaller number of particles are required to
achieve a given error, thus making PF practical for LDSS
problems.

In summary, our contributions are (a) two efficient algo-
rithms for multimodal and large dimensional problems, (PF-EIS
and PF-EIS-MT); and (b) a set of sufficient conditions to test
for unimodality of the conditional posterior (Theorem 1) and
heuristics based on it to split the state space in the most efficient
way. PF-EIS and Theorem 1 are derived in Section II. A generic
LDSS model is introduced in Section III. Practical ways of
choosing the “multimodal states” are discussed in Section IV.
PF-EIS-MT and PF-MT are introduced in Section V. Relation
to existing work is described in Section VI. In Section VII,
we given extensive simulation results comparing our methods
with existing work for the temperature field tracking problem.
Conclusions and open issues are presented in Section VIII.

II. PF-EIS: PF-EFFICIENT IMPORTANCE SAMPLING

We denote the probability density function (pdf) of a random
vector , , using the notation and we denote the
conditional pdf, , by . Consider tracking a
hidden sequence of states from a sequence of observations

which satisfy the HMM property.
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Fig. 1. Demonstrating the effect of multimodal or heavy-tailed OL and broad STP for a M = 1 dimensional version of Example 1 with temperature independent
failure. X is temperature. The STP is N (X ; � ), i.e., Example 1 with a = 0. (a): One out of J = 2 sensors fails (bimodal OL) but narrow enough STP
(� = 1). So p is unimodal. (b): One out of J = 2 sensors fails (bimodal OL) and broad STP (� = 5). So p is bimodal. (c): Estimating temperature but
with J = 1 sensor and broad STP (� = 5). When the sensor fails, the OL is heavy-tailed and peaks at the wrong mode. Thus, p is bimodal with the wrong
mode being the strong one. Note that the correct mode is so weak it may get missed in numerical computations.

Assumption 1 (HMM): For each
1) The dependence is Markovian, with STP,

.
2) Conditioned on , is independent of past and future

states and observations. The OL is .
A generic PF is summarized in Algorithm 1.

A. PF-EIS Algorithm

Consider designing a PF for a given state space model. The
optimal importance sampling density [6] is

. In most cases, this cannot be computed analytically
[6]. If is unimodal (at least approximately), [6] suggests ap-
proximating it by a Gaussian about its mode and sampling from
it (Laplace’s approximation [24]). But, when the OL is multi-
modal, or heavy-tailed, or otherwise not strongly log-concave,

will be unimodal only if the STP is unimodal and narrow
enough and the predicted state particle is near enough to an OL
mode (see Fig. 1). In many situations, this may not hold in all
dimensions. But in most such situations, the STP is broad and/or
multimodal in only a few directions of the state space which we
call the “multimodal” directions. It can be shown that if the STP
is unimodal and narrow enough in the rest of the directions,
will be unimodal conditioned on the “multimodal states” (The-
orem 1). When this holds, we propose to split the state vector as

in such a way that contains the minimum
number of dimensions for which is unimodal conditioned on
it, i.e.

(1)

is unimodal. We sample from its STP (to sample the pos-
sibly multiple modes of ), and use Laplace’s approximation
to approximate and sample from it, i.e., sample

from where

(2)

denotes the Hessian of . The weighting step also
changes to satisfy the principle of importance sampling. The
complete algorithm is given in Algorithm 2. We call it PF-EIS.
As we shall see later, it is very expensive to exactly verify
the unimodality conditions of Theorem 1. But even if is
chosen so that is unimodal for most particles and at most
times (i.e., is unimodal with high probability), the proposed
algorithm works well. This can be seen from the simulation
results of Section VII.

B. Conditional Posterior Unimodality

We derive sufficient conditions for unimodality of the condi-
tional posterior, . Let , ,

. Because of the HMM structure

(3)

where is a proportionality constant.
Definition 2: We first define a few terms and symbols.

1) The notation ( ) where is a square ma-
trix means that is positive definite (positive semidefinite).
Also, ( ) means ( ).

2) The term “minimizer” refers to the unconstrained
local minimizer of a function, i.e., a point s.t.

in its neighborhood. Similarly for
“maximizer.”

3) A twice differentiable function is strongly convex in a
region , if there exists an s.t. at all points, ,
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the Hessian . If is strongly convex in the
region , it has at most one minimizer in which lies in
the interior of . If is strongly-convex on , then it
has exactly one minimizer.

4) A function is strongly log-concave if its negative logarithm
is strongly convex. An example is a Gaussian pdf.

5) Since a pdf is an integrable function, it will always have
at least one (finite) maximizer. Thus, a pdf having at most
one maximizer is equivalent to it being unimodal.

6) The symbol denotes expected value.
7) We denote the of OL using the symbol , i.e.

(4)

8) We denote the of the STP of as

(5)

9) When the STP of is strongly log-concave (assumed in
Theorem 1), we denote its unique mode by

(6)

10) or denotes the th coordinate of a vector .
11) is often used in place of .

Combining (3), (4), and (5), can be written as

(7)

Using (5) from above, will be unimodal if and only
if we can show that has at most one minimizer. We derive a
set of sufficient conditions on , and to ensure this. The
main idea is as follows. We assume strong log-concavity (e.g.,
Gaussianity) of the STP of . Thus will be strongly
convex with a unique minimizer at . But (and so

as a function of ) can have multiple minimizers since
OL can be multimodal. Assume that is locally
convex in the neighborhood of (this will hold if is close
enough to any of its minimizers). Denote this region by .
Thus, inside , will be strongly convex and hence it will
have at most one minimizer. We show that if is
large enough outside (the spread of the STP of is
small enough), will have no stationary points (and hence no
minimizers) outside or on its boundary.

This idea leads to Theorem 1. Its first condition ensures strong
convexity of everywhere. The second one ensures that
exists. The third one ensures that an , s.t. at all points in

(complement of ), (i.e., has
no stationary points in ).

Theorem 1: is unimodal with the unique mode
lying inside if Assumption 1 and the following hold.

1) The STP of , , is strongly log-con-
cave. Its unique mode is denoted by .

2) The of OL given , is twice con-
tinuously differentiable almost everywhere and is locally
convex in the neighborhood of . Let de-
note the largest convex region in the neighborhood of
where ( as a function of

is locally convex).

3) There exists an such that

(8)

where

if

if
(9)

(10)

(11)

Proof: In the proof, is used to denote . Also, we
remove the superscripts from and . will be
unimodal iff defined in (7) has at most one minimizer. We
obtain sufficient conditions for this. Condition 1) ensures that
is strongly convex everywhere with a unique minimizer at .
Condition 2) ensures that exists. By definition of ,

is convex inside it. Thus the first two conditions ensure
that is strongly convex inside . So it has at most one
minimizer inside .

We now show that if condition 3) also holds, will have no
stationary points (and hence no minimizers) in or on its
boundary. A sufficient condition for this is: s.t.

(12)

We show that condition 3) is sufficient to ensure (12). Note
that . In the regions where for at least one

, (have same sign) and ,
(12) will always hold. Thus, we only need to worry about
regions where, for all , either or

but . This is the region

(13)

Now, only has one stationary point which is and it lies
inside (by definition of ), and none in . Thus,

in and, in particular, inside . Thus, if
we can find a condition which ensures that, for all points in , for
at least one , “follows the sign of ” (i.e.,

where and where ), we
will be done.

We first find the required condition for a given and a point
. For any , if , then it either belongs to

or belongs to . If , if

(14)

This is obtained by combining the conditions for the case
and the case . Proceeding in a similar

fashion, if , if

(15)
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Inequalities (14) and (15) can be combined and rewritten as
where is defined in (9). For (12) to hold, we

need for at least one , for all . This will
happen if . But this is condition
3. Thus, condition 3) implies that has no minimizers in .
Thus, if conditions 1), 2), and 3) of the theorem hold, has at
most one minimizer which lies inside . Thus
has a unique mode which lies inside , i.e., it is unimodal.

The most common example of a strongly log-concave pdf is
a Gaussian. When the STP of is Gaussian with mean (=
mode) , the above result can be further simplified to get an
upper bound on the eigenvalues of its covariance matrix. First
consider the case when the covariance is diagonal, denoted .
In this case, and so

. By substituting this in condition
3), it is easy to see that we get the following simplified condi-
tion:

(16)

if

if
(17)

(18)

Also, since
for any two functions , , a sufficient condition for (16) is

(19)
Thus, we have the following corollary.

Corollary 1: When the STP of is Gaussian with mean
and diagonal covariance, , is unimodal if (a)

condition 2) of Theorem 1 holds and (b) there exists an
s.t. (16) holds with defined in (17) and defined in
(18). A sufficient condition for (16) is (19).

Now consider the case when the STP of is Gaussian
with nondiagonal covariance, . Define

. Since is a one-to-one and linear
function of , it is easy to see that is unimodal
iff is unimodal. The STP
of is . Also, its OL is .
Define .

Corollary 2: When the STP of is Gaussian with mean
and nondiagonal covariance, ,

is unimodal if the conditions of Corollary 1 hold with
replaced by and replaced by

.
To summarize the above discussion, is unimodal if

1) The STP of is strongly log-concave (e.g., Gaussian).

2) The mode of the STP of is “close enough” to a mode
of [OL given ], so that condition 2) of Theorem 1
holds. Denote this mode by .

3) The maximum spread of the STP of is “small enough”
to ensure that condition 3) of Theorem 1 holds. In the
Gaussian STP case, this translates to the maximum eigen-
value of its covariance being smaller than , defined in
(19). itself is directly proportional to the distance of

to the next nearest mode of [OL given ] and in-
versely proportional to its strength.

The last two conditions above automatically hold if [OL given
] is strongly log-concave ( is empty and so ).

III. A GENERIC STATE SPACE MODEL FOR LDSS

For many problems, and, in particular, for many LDSS prob-
lems, the state space model can be expressed as follows with

(a generalization of the constant velocity motion
model):

(20)

The noises , are independent of each other and over time. If
is one-to-one as a function of , and its inverse is denoted

by , the OL can be written as

(21)

Then its , . In cer-
tain problems, it is easier to directly specify

. In the above model, denotes the LDSS
quantity of interest, for example, it may denote the contour
point locations or it may denote temperature (or any other
physical quantity) at sensor nodes. The quantity
often denotes the time “derivative” of and is assumed to
follow a first order Markov model. If belongs to a smooth
manifold , then belongs to the tangent space to at .

denotes the mapping from the tangent space at to ,
while if is a vector space, then . In this work, we
only study the vector space case. We develop the same ideas
for the space of contours (a smooth manifold) in [11]. Related
work on defining AR models for smooth manifolds is [28].

Note that in the above model, the system noise dimension (and
hence the importance sampling dimension) is

, and not , and this is what governs the number of
particles required for a given accuracy.

We discuss some LDSS examples here.
1) Example 1 (Temperature Tracking): Consider tracking

temperature at locations using a network of sensors. Here
is a vector space and so . Let denotes tempera-
ture at location , and denote the first deriva-
tive of temperature at node . is assumed to be zero mean and
its dynamics can be modeled by a linear Gauss Markov model
(as also in [14]), i.e.

(22)
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Since is usually spatially correlated, may not be diagonal.
Let the eigenvalue decomposition of is .
Define , , , and

. For simplicity, we use and so
. With , is also the eigenvector

matrix of the covariance of . Then (22) can be rewritten in the
form (20) as

(23)

Temperature at each node is measured using ( or )
sensors that have failure probabilities , . Note that
there may actually be two sensors at a node, or two nearby sen-
sors can be combined and treated as one “node” for tracking pur-
poses. Failure of the sensors is assumed to be independent
of each other and over time. If a sensor is working, the obser-
vation, , is the actual temperature, , or some function
of it, , plus Gaussian noise with small variance,
(independent of noise in other sensors and at other times). If the
sensor fails, is either independent of, or weakly dependent
on (e.g., large variance Gaussian about ). An alterna-
tive failure model is being some different function, , of

plus noise. In all the above cases, the OL can be written as

(24)

We simulated two types of sensors (linear)
and (squared). Note that a squared sensor is an
extreme example of possible sensing nonlinearities. First con-
sider (one sensor per node), (all
linear sensors), and (when the sensor
fails, the observation is independent of the true temperature). In
this case, each OL term is a raised Gaussian (heavy-tailed) as
a function of and so it is not strongly log-concave. For a
given , will be multimodal when is “far” from
the predicted temperature at this node and the STP is not narrow
enough. This happens with high probability (w.h.p.) whenever
the sensor fails. See Fig. 1(c). A similar model is also used in
modeling clutter [10], [20].

Now consider , all linear sensors and

. Whenever one or both sensors at a node fail, the

observations , will be “far” compared to w.h.p.
In this case, the OL will be bimodal as a function of
since can be written as a sum of four terms: a
product of Gaussians term (which is negligible), plus

where ,
, are constants with respect to . This is bimodal since

the modes of the two Gaussians, , , are “far.” See
Fig. 1(b). If no sensor at a node fails, both observations will be
“close” w.h.p.. In this case all four terms have roughly the same
mode, and, thus, the sum is unimodal. When is
weakly dependent on (e.g., a large variance Gaussian), ,

, are not constants but are slowly varying functions of .
A similar argument applies there as well.

A squared sensor results in a bimodal OL whenever
is significantly positive. Squared sensor is one example of a
many-to-one measurement function. Other examples include
bearings-only tracking [3] and illumination tracking [12], [13].

2) Example 2 (Illumination/Motion Tracking): The illumina-
tion and motion tracking model of [12] and [13] can be rewritten
in the form (20). In this case, the OL is often multimodal since
the observation (image intensity) is a many-to-one function of
the state (illumination, motion), but conditioned on motion, it is
often unimodal. The STP of illumination is quite narrow.

3) Example 3 (Contour Tracking, Landmark Shape
Tracking): Two non-Euclidean space examples of the LDSS
model (20) are (a) the contour tracking problems given in [11],
[29], [17] and (b) the landmark shape tracking problem of [20],
[10].

IV. CHOOSING THE “MULTIMODAL STATES” FOR LDSS

In Section IV-A, we apply Theorem 1 to the generic LDSS
model, (20), and show an example of verifying its conditions.
Practical ways to select are given in Section IV-B.

A. Unimodality Result for LDSS Model

Consider a model of the form (20) with . As-
sume that can be partitioned into where
denotes the temperature change coefficients along the “multi-
modal” directions of the state space and denotes the rest.
Thus, and . Similarly partition

, and .
We discuss how to choose and in Section IV-B. The
“multimodal” dimension, and .
Denote

Then we have

(25)

where denotes the Dirac delta function and is a propor-
tionality constant. Since is a deterministic function of

, , , its pdf is a Dirac delta function (which is
trivially unimodal at ). Thus, for the purpose of
importance sampling, only, and we need con-
ditions to ensure that is unimodal. In this case,

becomes

(26)

Applying Corollary 1 we get Corollary 3.
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Fig. 2. Computing � for Example 4. We used � = [0:1; 0:1;0:1], � = [0:4; 0:4;0:4], p (Y ) = Unif(�10;10), j = 1; 2; 8p, � = [1; 1; 1],
� = 5:4, B = [�0:27; 0:96;�0:02] ;[0:33;0:11;0:94] ; [0:90;0:24 � 0:35] (we use MATLAB notation). Also, C = [0; 0; 0] , v = [0 0] ,
v = 0, Y = [5:36;0:59], Y = [�2:25;�1:60] Y = [�0:68; 0:35] and v = �3:2 (simulated from N (0;� )). (a): Region R ,
and the point f = v which lies inside it. (b)-(e): The regions A \ A , Z \ A , Z \ A , and Z \ Z , along with the computed minimum value of
max  (v ) in the four regions (1.79, 1642.6, 403.7, 4771.4). The final value of � is the minimum of these four values, i.e., � = 1:79. (f): Mesh plot of
E as a function of v . Note the two dominant modes. (g): Contours of [rE ] = 0 and [rE ] = 0 (obtained using the contour command to find the
zero level set of [rE ] , j = 1; 2). The contours have many points of intersection (points where rE = 0), i.e., many stationary points. (h): Contours of
[rL] = 0 and [rL] = 0 for L computed with � = � = 0:9� . The contours have only one point of intersection which is a minimum. (i): Contours
of [rL] = 0, j = 1; 2 for � = � = 1:1� . There are three intersection points (two are minima).

Corollary 3: Consider model (20) with . Corol-
lary 1 applies with the following substitutions: ,

, , , ,
, is the

largest convex region in the neighborhood of where
is convex as a function of .

We demonstrate how to verify the conditions of Corollary 3
using a temperature tracking example. We use numerical (fi-
nite difference) computations of gradients. Here, needs to be
chosen carefully, depending on the resolution of the discretiza-
tion grid of . It should be just large enough1 so that one does
not miss any stationary point of .

1) Example 4: Consider Example 1. Assume that
and OL follows (24) with (linear sensors)
and . Also, let . In Fig. 2, we
demonstrate how to verify the conditions of Corollary 3 . Let

, i.e., . Assume that and
. Assume a given value of , and of (given

in the figure caption). Note that ,
are “far” compared to and, hence, the OL is multi-
modal. Fig. 2(f) plots . Fig. 2(g) plots the contours of

, (the points where the red and blue con-
tours intersect are the stationary points of ).

Verification of condition 2 is shown in Fig. 2(a). Next, we
show the steps for computing . For ,

1If � is too small, [rE ] may transition from a value smaller than ��
to a value larger than +� (or vice versa) over one grid point, and this region
will not be included inZ (even if [rD] has the same sign as [rE ] ), thus,
getting a wrong (too large) value of � . If � is larger than required, the region
Z may be bigger than needed, thus giving a smaller value � than what can
actually be allowed.

is a subset of and is a union of the 4 regions:
, , , , shown in Fig. 2(b)–(e). The

computed value of the minimum of in each
region is also given in the titles. The final is the
minimum of these 4 values. Contours of and of

computed for and are
shown in Fig. 2(h), (i). Notice that when ,
they intersect at only one point, i.e., at only one point
(one stationary point). When , there are
three stationary points (and two are minima).

B. Choosing the “Multimodal” States,

Corollary 3 gives a unimodality condition that needs to be
verified separately for each particle and each at each . An
exact algorithm to do this would be to begin by checking at each
, for each , if Theorem 1 holds with . Keep increasing

and doing this until find a for which Corollary 3 holds
conditioned on . This can be done efficiently only if
can be computed analytically or using some efficient numerical
techniques. That will be the focus of future research. But, as dis-
cussed earlier, PF-EIS works even if unimodality of
holds for most particles at most times, i.e., it holds w.h.p.

We use the temperature tracking problem of Example 1 to
explain how to choose . For a given , we would like to
choose that makes it most likely for to
be unimodal. Given , , is a linear function of .
If were also a one-to-one function of , then one could
equivalently find conditions for unimodality of , which
is easier to analyze. For an approximate analysis, we make it
a one-to-one function of by adding a very small variance
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(compared to that of any ) noise, , along , i.e., given
, set . Now,

is a one-to-one and linear function of . This also
makes a nondegenerate pdf.

First consider the case where w.h.p. OL can be multimodal
as a function of temperature at only one node , for e.g.,

, , , , and either
or is many-to-one. Then

(27)

and the last two terms above are Gaussian (and, hence, strongly
log-concave) as a function of . If
is also strongly log-concave then (and, hence,

) will be strongly log-concave, and, hence, unimodal.
Now, will be strongly log-concave if the conditions
of Theorem 1 hold and if such that

Both this bound and the bound of Theorem 1 can only be com-
puted on the fly. A priori, will be most likely to be
log-concave if is chosen to ensure that is smallest.
Let where the set contains elements out of

and is fixed. Then, .
This ignores the variance of (valid since the variance is as-
sumed very small compared to all s). Thus, will be
smallest if is chosen as

(28)

When , this is equivalent to choosing
. Based on the above discussion, we

have the following heuristics.

Heuristic 1: If OL can be multimodal as a function of tem-
perature at only a single node, , and is unimodal as a function
of temperature at other nodes, select using (28).

Heuristic 2: If OL is much more likely to be multimodal as
a function of , compared to temperature at any other node
(e.g., if a sensor at is old so that its failure probability is much
larger than the rest), apply Heuristic 1 to that .

Heuristic 3: When is a set (not a single index), Heuristic
1 can be extended to select to minimize the spectral radius
(maximum eigenvalue) of the matrix .

Heuristic 4: If OL is equally likely to be multimodal as a
function of any (e.g., if all sensors have equal failure prob-
ability), then . Applying Heuristic 3, one would
select the largest variance directions of STP as .

Heuristic 5: If the probability of OL being multimodal is
itself very small, then can be used. In Example 1 with
all linear sensors, this probability is roughly .

Heuristic 6: For and all linear sensors, may be
chosen on-the-fly as (larger
the difference, the more likely it is for OL to be multimodal at
that ). If the maximum itself is small, set .

We show an example now. Consider Example 4 with
, ,

(using MATLAB notation). By Heuristic 5, the probability of
OL being multimodal is about 0.65 which is not small. So we
choose ( ). By Heuristic 2, we choose
since OL is multimodal as a function of with probability
0.64, while that for or together is 0.02 (much smaller).
Applying (28) for , we get .

V. PF-EIS-MT: PF-EIS WITH MODE TRACKER

For any PF (including efficient PFs such as PF-EIS or
PF-Doucet), the effective particle size [4], [6] reduces with
increasing dimension, i.e., the required for a given tracking
accuracy increases with dimension. This makes all PFs imprac-
tically expensive for LDSS problems. We discuss one possible
solution to this problem here.

A. PF-EIS-MT and PF-MT Algorithm

Consider the LDSS model (20). To apply PF-EIS, we split the
state into , such that is unimodal w.h.p. condi-
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tioned on . As explained earlier, this is ensured if the eigen-
values of are small enough to satisfy (19). Now, because of
the LDSS property, can further be split into
so that the maximum eigenvalue of the covariance of the STP of

is small enough to ensure that there is little error in ap-
proximating the conditional posterior of by a Dirac delta
function at its mode. We call this the MT approximation of IS,
or IS-MT. We refer to as the “effective”
state and to as the “residual” state. We explain
IS-MT in detail later.

In PF-EIS, we IS from its STP, and we EIS
from where , are defined in (2). Let

and . This is equiv-

alent to first sampling and then
sampling where

(29)

Now, from (29), . Also, since lies in a locally
convex region of , i.e.,
(by Theorem 1), . This implies that ,
which is a square submatrix of , is also nonnegative
definite. Thus

(30)

If the maximum eigenvalue of is small enough, any sample
from will be close to w.h.p. So we can
set with little extra error (quantified in the next
subsection). The algorithm is then called PF-EIS-MT. It is sum-
marized in Algorithm 3. A more accurate, but also more expen-
sive modification (need to implement it on-the-fly) would be
do MT on the low eigenvalue directions of . A simpler, but
sometimes less accurate, modification is PF-MT (summarized in
Algorithm 4). In PF-MT, we combine with and im-
portance sample the combined state from
its STP (or in some cases is empty), while performing
MT on .

The IS-MT approximation introduces some error in the
estimate of (error decreases with decreasing spread of

). But it also reduces the sampling dimension from
to (significant reduction for large

dimensional problems), thus improving the effective particle
size. For carefully chosen dimension of , this results
in smaller total error, especially when the available number
of particles is small. This is observed experimentally, but
proving it theoretically is an open problem. We say that the
IS-MT approximation is “valid” for a given choice of if
it results in smaller total error than if it were not used.

B. IS-MT Approximation

We quantify the error due to IS-MT. If we did not use the
MT approximation, . But using MT,
we set . Let the eigenvalue decomposition of

and let be its eigen-
value. Let . For an , we bound the
probability of using Chernoff bounding

(31)

(32)

where , , and . The first
inequality follows by applying Markov inequality, the second
follows because and (32) follows because

which follows from (30). Now, (32) holds for any
and, thus

(33)

Rewriting
and

applying L’Hospital’s rule, we get .
Note that, if instead of (32), we applied to (31), we
would get . Thus, we
have Theorem 2.

Theorem 2: Consider any HMM model (satisfying
Assumption 1) and assume that the conditions of The-
orem 1 hold. Let . Then

and also
, i.e., con-

verges in probability to in the Euclidean norm as
and also as .

Remark 1: Even if the conditions of Theorem 1 do not hold
(inequality (30) does not hold), we can still prove Theorem 2
if we assume that (actually
is only an approximation to ). The result
will then follow by using the conditional variance identity [30,
Theorem 4.4.7], to show that .

In summary, PF-EIS-MT can be used if is
unimodal w.h.p. and the largest eigenvalue of is small
enough to ensure the validity of IS-MT. A sufficient condition is

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 11:39 from IEEE Xplore.  Restrictions apply.



4592 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

that the largest eigenvalue of be small enough. The choice
of is governed by the tradeoff between the increase in error
due to IS-MT and the decrease due to reduced IS dimension.
This will be studied in future work.

C. Choosing the MT-Residual States,

We first choose an , for the EIS step using the uni-
modality heuristics discussed earlier in Section IV-B. Then we
split into and so that IS-MT is valid for .
Then PF-EIS-MT can be implemented with the chosen ,

, . Alternatively, one can implement PF-MT (faster)
with , . For a given value of
, , two approaches can be used to choose . The first is

offline and finds the largest so that . The
second is online, i.e., at each , for each particle , it finds
so that .

Heuristic 7: Begin with and keep reducing its
value. For each value of , choose the states with the
smallest values of (so that is smallest) as

. With this choice, compute and check if it is
smaller than . If it is smaller, then stop, else reduce by 1
and repeat the same steps. A second approach is to do the same
thing on-the-fly, using .

D. Connection With Rao–Blackwellized PF (RB-PF)

WefirstdiscusstheconnectionofPF-MTtoRB-PF.PF-MTcan
be interpretedasanapproximationof theRB-PFof[9].TheRBPF
of [9] is applicable when the state vector can be split as

with the following property: has any general
nonlinear or non-Gaussian state space model; but conditioned on

, has a linear Gaussian state space model. Thus, the
RB-PF of [9] importance samples from its STP but applies
the Kalman recursion to compute the conditional prediction and
posterior densities (both are Gaussian) of conditioned on
eachparticle .TheOLofeachparticle , iscomputed
by marginalizing over the prediction density of .

PF-MT can be understood as an approximation to the RB-PF
in the following sense: replace the “nonlinear” part of the state
space by , i.e., , and the “linear” part by ,
i.e., . In PF-MT, the conditional prediction and pos-
terior densities of (conditioned on ) are assumed to be
unimodal (not necessarily Gaussian), but narrow. In general, it
is not possible to marginalize over any unimodal density. But if
the product of the STP of and the OL given is narrow
enough to be approximated by its maximum value times a Dirac
delta function at its unique maximizer, PF-MT can be interpreted
as an RB-PF. In that case, the conditional posterior of is also
approximated by a Dirac delta function. Thus, we have Theorem
3.

Theorem 3: PF-MT (Algorithm 4) is RB-PF (Algorithm 1 of
[9]) with the following approximation at each :

(34)

With the above approximation, the following also holds:

(35)

The proof is a simple exercise of simplifying RB-PF expressions
using (34) and, hence, is omitted.

For PF-EIS-MT, replace by and by
in the earlier discussion. Also, importance sam-

pling from the STP in case of RB-PF is replaced by EIS.

VI. RELATION TO EXISTING WORK

We discuss here the relation of our algorithms to existing
work. The problem of estimating temperature at a large number
of locations in a room using a network of sensors is also studied
in [14] and [15]. Their focus is on modeling the spatio-tem-
poral temperature variation using an RC circuit, estimating its
parameters, and using the model for predicting temperature at
unknown nodes. They assume zero sensor failure probability
and observation noise (usually valid when sensors are new) and,
hence, do not require tracking. In a practical system, one can use
[14] when sensors are new and reliable, but track the tempera-
ture using PF-EIS-MT (and the models estimated using [14])
when sensors grow older and unreliable.

For multimodal OL or STP, if there are only a few modes
at known mode locations, the Gaussian Sum PFs (GSPF-I or
GSPF-II) of [31] can be used. All examples shown in [31]
have a one-dimensional process noise, and thus effectively a
one-dimensional state. As dimension increases, the number
of mixands that need to be maintained by GSPF-I increases
significantly. We compare PF-EIS with GSPF-I in Fig. 3.
GSPF-II defines a mixand about each possible mode of OL or
of STP, followed by resampling to prune insignificant modes.
The possible number of OL modes increases with dimension,
even though for a given observation, it is highly unlikely that
all modes appear. For example, in case of tracking temperature
at 50 nodes with 2 sensors per node, each with nonzero failure
probability, the maximum number of possible OL modes at any
time is . Another work that also approximates a multimodal
pdf by a mixture density is [32].

The independent partition PF (IPPF) of [33] and the
IPPF-JMPD of [34] propose efficient PFs for multiple target
tracking. There the motion model of different targets is inde-
pendent, while the OL is coupled when the targets are nearby
(because of correspondence ambiguity between observations
and targets). The main idea of IPPF is to resample indepen-
dently for each target when the targets are significantly far
apart (their OLs are roughly independent). In our work, and
also in other LDSS problems, this cannot be done since the
temperature (or other state) dynamics of different nodes is
coupled (temperature change is spatially correlated).

The main idea of MT was first introduced by us in [29] and
first generalized in [2], [35], and [1]. The work of [36] which
proposes a “PF using gradient proposal” is related to [29]. The
MT step can also be understood as Rao-Blackwellization [27],
[9] if the approximation of Theorem 3 holds. Another recent
PF that also performs approximate marginalization, but only
on the stable directions of the state space, is [21]. This can be

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 11:39 from IEEE Xplore.  Restrictions apply.



VASWANI: PF FOR LARGE-DIMENSIONAL STATE SPACES 4593

Fig. 3. Comparing RMSE, out-of-track % and N of PF-EIS (black-4) with that of PF-Doucet (red-*), PF-Orig (magenta-o) and GSPF-I (magenta -+). RMSE
at time t is the square root of the mean of the squared error between the true C and the tracked one (N -particle PF estimate of [C jY ]). Out-of-track % is the
percentage of realizations for which the norm of the squared error exceeds an in-track threshold (2–4 times of total observation noise variance). In-track threshold
for (a) was 48, for (c) was 20, and for (b) was 12. We averaged over 90 Monte Carlo simulations in (b) and (c) and over 40 in (a). Note C refers to the starting
value of C .

made more efficient by using the EIS idea on the unstable direc-
tions. Many existing algorithms may be interpreted as special
cases of PF-EIS-MT, for, e.g., PF-Original is PF-EIS-MT with

, PF-Doucet is PF-EIS-MT with , and the
approximate “posterior mode tracker” of [18] is approximately
PF-EIS-MT with .

There is a fundamental difference between MT and the com-
monly used idea of replacing the PF estimate of the posterior
by a Dirac delta function at the highest weight particle (or at the
mode of the PF posterior estimate), as in [17], or doing this for a
subset of states, as in [37]. The latter can be understood as an ex-
treme type of resampling which will automatically occur in any
PF if the largest weight particle has much higher weight than
any other particle. It still requires IS on the entire state space to
first get the PF estimate of posterior.

VII. SIMULATION RESULTS

We used root mean squared error (RMSE) of the PF approxi-
mation of the MMSE state estimate (from its true value) and per-
centage of out-of-track realizations to compare the performance
of PF-EIS with that of PF-Original (PF-EIS with ) [3]
and PF-Doucet (PF-EIS with ) [6] in Fig. 3. The number

of particles ( ) was kept fixed for all PFs in a given comparison.
We also show the RMSE plot of GSPF-I [31] with total number
of particles (number of mixtures times number of particles per
mixture) roughly equal to . In Fig. 4, we show superior per-
formance of PF-MT and PF-EIS-MT over PF-EIS, PF-Doucet,
PF-Original and PF-Orig- -dim (dimension reduced original
PF, i.e., original PF run on only the first dimensions).

Note that for multimodal posteriors, the RMSE at the current
time does not tell us if all significant modes have been tracked
or not. But, if a significant mode is missed, it will often result
in larger errors in future state estimates, i.e., the error due to
the missed mode will be captured in future RMSEs. In many
problems, the goal of tracking is only to get an MMSE state
estimate, and not necessarily view all the modes, and in these
cases RMSE is still the correct performance measure. If a missed
posterior mode does not result in larger future RMSEs, it does
not affect performance in any way.2 Of course, the increase in
error due to a missed mode may occur at different time instants
for different realizations and hence the average may not always
truly reflect the loss in tracking performance.

2The true posterior is unknown. The only other way to evaluate if a PF is
tracking all the modes at all times, is to run another PF with a very large number
of particles and use its posterior estimate as the true one.
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Fig. 4. Comparing PF-MT (blue- ) in (a) and PF-EIS-MT (blue-+) in (b) with PF-Doucet (red-*), PF-EIS (black-4), PF-Orig (magenta-o) and PF-Orig-K dim
(magenta-�). In (a),M = 10 was used.X = v was used for both PF-EIS and PF-MT. Averaged over 50 simulations. PF-MT has best performance. In (b),
we test the robustness to error in the failure probability parameter. M = 5 was used. We used X = v , X = v for PF-EIS-MT. X = v was
used for PF-EIS. Averaged over 100 simulations. PF-EIS-MT is the most robust when N = 50 particles were used (available N is small). If N = 100 particles
are used, PF-EIS is the most robust (not shown).

Evaluating PF-EIS: We first explain a typical situation where
PF-Doucet fails but PF-EIS does not. This occurs when the STP
is broad and the OL is bimodal (or in general, multimodal) with
modes that lie close to each other initially, but slowly drift apart.
PF-Doucet uses gradient descent starting at to find the
mode. When is multimodal, it approximates by a Gaussian
about the mode in whose basin-of-attraction the previous par-
ticle (i.e., ) lies. At , particles of are generated
from the initial state distribution and so there are some particles
in the basin-of-attraction of both modes. But due to resampling,
within a few time instants, often all particles cluster around one
mode. If this happens to be the wrong mode, it results in loss
of track. In contrast, PF-EIS samples from its STP, i.e., it
generates new particles near both OL modes at each , and so
does not lose track.

All plots of Fig. 3 simulated Example 1 with . Model
parameters used for each subfigure are given in the table in
Fig. 3(d). The example of Fig. 3(a) is a special case of Ex-
ample 4 . It has sensor nodes; sensors per
node; all linear sensors and “temperature-independent failure,”
i.e., . Temper-
ature change followed a random walk model, i.e., . By
Heuristic 2, we choose since OL is multimodal as a func-
tion of with much higher probability than at other nodes
(we simulate an extreme case). Applying (28) for , we get

. This was used for PF-EIS. As can be seen, RMSE
for PF-EIS was smaller than for PF-Doucet and so were the
number of “out of track” realizations. GSPF-I [31] with
mixtures and particles per mixture (a total of 56 parti-
cles) and PF-Original had much worse performance for reasons
explained earlier (used inefficient importance densities).

In Fig. 3(b), we simulated “weakly temperature
dependent sensor failure,” i.e.,

. Also, sensor failure prob-

ability at node 1 was lower than in Fig. 3(a). Thus the
performance of all algorithms is better.

Fig. 3(c) used sensor per node and a squared sensor
at node 1, i.e., . All sensors had zero

failure probability, i.e., . Temperature change fol-
lowed a first order autoregressive model3 with . In this
case, OL is bimodal as a function of whenever is sig-
nificantly positive. This happens w.h.p when temperatures are
greater than (or less than ) which itself
happens very often. Also, often, the modes are initially nearby
and slowly drift apart as the magnitude of increases. As
explained earlier, this is just the situation that results in failure
of PF-Doucet. Performance of PF-Doucet is significantly worse
than that of PF-EIS (which used obtained by ap-
plying (28) for ). Note that we initiated tracking with an
initial known temperature of 5, so that there was a bias towards
positive temperature values and it was indeed possible to cor-
rectly track the temperature and its sign.

Using an anonymous reviewer’s suggestion, we also plot the
effective particle size, , for all the above examples in Fig. 5.

is equal to the inverse of the variance of normalized particle
weights [4]. Because of resampling at each , only mea-
sures the effectiveness of the current particles, and not how they
influence the future posterior estimates. will be high even
when most particles cluster around an OL mode which in future
turns out to be the wrong one, resulting in larger future RMSEs.
This is why PF-Doucet, which samples from the Laplace ap-
proximation to the “optimal” importance density (optimal in the
sense of minimizing the conditional weights’ variance) has the
highest , but not the smallest RMSE. This issue is most ob-
vious for the squared sensor case.

3This example is a difficult one because OL is almost always bimodal with
two equal modes. With a random walk model on v , even N = 100 particles
were not enough for accurate tracking using any PF.
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Fig. 5. Effective particle sizes (N ). Because of resampling at each t, N only measures the effectiveness of the current particles, and not how they influence
future posterior estimates. It is high even when most particles cluster around an OL mode which in future turns out to be the wrong one, resulting in larger future
RMSEs. PF-Doucet has highest N , but not lowest RMSE or out-of-track % (see Fig. 3).

Time Comparison: We used the MATLAB profiler to com-
pare the times taken by different PFs for tracking for 20 time
steps. GSPF-I took 1 second, PF-Original took 2 s, PF-EIS took
60.2 s, and PF-Doucet took 111.2 s. GSPF-I and PF-Original
took significantly lesser time since they do not use gradient de-
scent at all. Note also that the gradient descent algorithm used by
us was a very basic and slow implementation using the fminunc
function in MATLAB, thus, making PF-EIS or PF-Doucet more
slower than they would actually be. PF-Doucet takes more time
than PF-EIS because (a) it finds the mode on an dimensional
space, while PF-EIS finds mode only on an dimensional
space and (b) is very likely to be multimodal (many times the
initial guess particle may not lie in the basin-of-attraction of any
mode and so many more descent iterations are required).

Evaluating PF-MT and PF-EIS-MT: In Fig. 4, we compare
the performance of PF-MT and PF-EIS-MT with other PFs.
The model of Fig. 4(a) was similar to that of Fig. 3(a), but
with . We used , , and

, i.e., this was a PF-MT with and
. As can be seen from the figure, PF-MT out-

performs all other algorithms. It outperforms PF-EIS because
it importance samples only on a dim space, but per-
forms MT on the other nine dimensions (which have a narrow
enough conditional posterior) and so its effective particle size
is much higher [see Fig. 5(d)]. This is particularly important
when the available is small. PF-MT outperforms PF-Doucet
primarily because of the EIS step (approximated by MT). It is
much better than PF-Original again because of better effective
particle size (result of using EIS instead of IS from STP). Fi-
nally, it is significantly better than PF-K-dim because PF-K-dim
performs dimension reduction on nine states (all of which are
nonstationary) which results in very large error, while PF-MT
tracks the posterior mode on all these dimensions. Note that be-
cause of resampling, may also be very high when a PF is
completely out-of-track (all particles have very low but roughly
equal weights). This is true for PF-K-dim [Fig. 5(d)].

In Fig. 4(b), we evaluate robustness to modeling error in
sensor failure probability. The tracker assumed failure prob-
ability . The observations were simulated using

. This simulates the situation where a sensor begins
to fail much more often due to some sudden damage to it. For
this problem, . We used , , and

, i.e., we implemented PF-EIS-MT. PF-EIS-MT
has the best performance when (available number of
particles is small) while PF-EIS has the best performance when
a larger , is used (not shown).

Note that or 10 is a large enough dimensional state
space if reasonable accuracy is desired with as low as or
100 particles. In practical scenarios (which are difficult to run
multiple Monte Carlo runs of) such as contour tracking [29],
[11] or tracking temperature in a wide area with large number
of sensors, the state dimension can be as large as 100 or 200
while one cannot use enough particles to importance sample on
all dimensions. The IS-MT approximation will be really useful
for such types of problems.

VIII. DISCUSSION AND FUTURE WORK

We have studied efficient importance sampling techniques for
PF when the OL is frequently multimodal or heavy-tailed and
the STP is broad and/or multimodal. The proposed PF-EIS al-
gorithm generalizes Doucet’s idea of sampling from a Gaussian
approximation to the optimal importance density, , when
is unimodal, to the case of multimodal .

Sufficient conditions to ensure unimodality of conditioned
on the “multimodal states,” , are derived in Theorem 1. The-
orem 1 can be extended to test for unimodality of any posterior.
Specifically, it can also be extended to problems involving static
posterior importance sampling. In its current form, it is very ex-
pensive to verify the conditions of Theorem 1 . But, based on it,
multiple heuristics to choose to ensure that conditioned
on is most likely to be unimodal have been proposed. An
unsolved research issue is to either find efficient numerical tech-
niques to verify the conditions of Theorem 1 on-the-fly or to
find ways to modify the result so that the selection can be done
a priori.

We have shown through extensive simulations that PF-EIS
outperforms PF-Doucet (PF-EIS with ) whenever is
frequently multimodal. But, in other cases, PF-Doucet has lower
error. An efficient algorithm (in terms of the required ) would
be to choose the dimension and direction of on-the-fly
using Heuristic 6.

Increasing for any PF increases its computational cost.
Once is large enough to satisfy unimodality w.h.p., the

required for a given error increases as dimension of
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is increased further (for, e.g., PF-Original had much higher
RMSE than PF-EIS for given ). But, computational cost per
particle always reduces as dimension of is increased (for,
e.g., PF-Original took much lesser time than PF-EIS which took
lesser time than PF-Doucet). For a given tracking performance,
if one had to choose to ensure minimal computational
complexity, then the optimal choice will be a higher dimen-
sional than what is required to just satisfy unimodality.
Finding a systematic way to do this is an open problem. On the
other hand, if the goal was to find a PF with minimal storage
complexity or to find a PF that uses the smallest number of
parallel hardware units (in case of a parallel implementation),
the complexity is proportional to . In this case, PF-EIS (or
PF-EIS-MT) with smallest possible “multimodal state” dimen-
sion would be the best technique.

As state space dimension increases, the effective particle size
reduces (variance of weights increases), thus, making any reg-
ular PF impractical for large dimensional tracking problems.
The posterior MT approximation to IS for the states whose con-
ditional posterior is narrow enough, is one way to tackle this
issue. The IS-MT approximation introduces some error in the
estimation of these states, but at the same time, it also reduces
the sampling dimension by a large amount, thus, improving ef-
fective particle size. For carefully chosen IS-MT directions, the
net effect is smaller total error, especially when the available
is small. An open issue is to find rigorous techniques to select
the IS-MT directions to ensure maximum reduction in error. A
related issue is to study the stability of PF-MT or PF-EIS-MT,
i.e., to show that the increase in PF error due to the IS-MT ap-
proximation at a certain time goes to zero with fast enough
and thus the net error due to IS-MT at all times is bounded. A
related work is [38] which analyzes the RB-PF. An interesting
open question is if Compressed Sensing [39] can be used to se-
lect the IS-MT directions and when. We have recently proposed
a related idea in [40].
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