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ABSTRACT

In this work, we develop algorithms for tracking time sequences of
sparse spatial signals with slowly changing sparsity patterns, and
other unknown states, from a sequence of nonlinear observations
corrupted by (possibly) non-Gaussian noise. A key example of the
above problem occurs in tracking moving objects across spatially
varying illumination changes, where motion is the small dimensional
state while the illumination image is the sparse spatial signal satis-
fying the slow-sparsity-pattern-change property.

Index Terms— particle filtering, compressed sensing, tracking

1. INTRODUCTION
We study the problem of tracking (causally estimating) a time se-
quence of sparse spatial signals with slowly changing sparsity pat-
terns, as well as other unknown states, from a sequence of nonlinear
observations corrupted by (possibly) non-Gaussian noise. In many
practical applications, the unknown state can be split into a small
dimensional part and a spatial signal (large dimensional part). The
spatial signal is often well modeled as being sparse in some domain.
For a long sequence, its sparsity pattern can change over time, al-
though the changes are usually slow. A key example of the above
problem occurs in tracking moving objects across spatially varying
illumination changes, e.g. persons walking under a tree (different
lighting falling on different parts of the face due to the leaves block-
ing or not blocking the sunlight and this pattern changes with time
as the leaves move) or in indoor sequences with variable lighting. In
all these cases, one needs to explicitly track the motion (small di-
mensional part) as well as the illumination “image” (illumination at
each pixel in the image), which is the spatial signal satisfying the
slow-sparsity-pattern-change property [see Sec 4].

Related Work. In recent years, starting with the seminal pa-
pers of Candes, Romberg, Tao and of Donoho [1, 2] there has been a
large amount of work on sparse signal recovery / compressive sens-
ing (CS). The problem of recursively recovering a time sequence
of sparse signals, with slowly changing sparsity patterns and signal
values, from linear measurements has also been extensively studied
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

For tracking problems that need to causally estimate a time
sequence of hidden states, Xt, from nonlinear and possibly non-
Gaussian measurements, Yt, the most common and efficient solu-
tion is to use a particle filter (PF). The PF uses sequential impor-
tance sampling [16] along with a resampling step [17] to obtain
a sequential Monte Carlo estimate of the posterior distribution,
fXt|Y1:t

(xt|y1:t), of the state Xt conditioned on all observations up
to the current time, Y1:t. In our problem, part of the state vector is a
discrete spatial signal and hence very high dimensional. As a result,
in this case, the original PF [17] will require too many particles
for accurate tracking and hence becomes impractical to use. As
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explained in [18], the same is essentially true for most existing PF
algorithms. Efficient PFs such as PF-Doucet[16], Gaussian PF [19],
Gaussian sum filters or Gaussian sum PF [20] also cannot be used for
the following reason. The first two implicitly assume that the pos-
terior conditioned on the previous state, fXt|Yt,Xt−1

(xt|yt, xt−1),
is unimodal most of the time. The second two assume a linear, or
at least, a unimodal observation model. In many problems, e.g. the
illumination-motion tracking problem, neither assumption holds.
For similar reasons, the extended Kalman filter (KF), the unscented
KF, the interacting multiple mode filter or Gaussian mixture filters
[21] also cannot be used.

Rao-Blackwellized PF (RB-PF) [22, 23], PF with posterior
mode tracking (PF-MT) algorithm [24, 25, 26] and later works
such as [27, 28, 29, 30] are possible solutions for large dimen-
sional tracking problems. RB-PF requires that conditioned on the
small dimensional state vector, the state space model be linear and
Gaussian. This often does not hold. PF-MT relaxes this and only
requires that, conditioned on the previous state and a small dimen-
sional state vector, the posterior of the rest of the state vector be
unimodal most of the time. However, neither RB-PF nor PF-MT
exploits the sparsity of the spatial signal to be tracked. The same is
true for [27, 28, 29, 30], as well as for works that introduce efficient
resampling strategies [31, 32].

Contributions. (1) In this work, we exploit the fact that in
most large dimensional tracking problems, at any given time, the
large dimensional state vector is usually a spatial signal that is sparse
in some dictionary/basis and at most times satisfies slow-sparsity-
pattern-change, to propose a PF based tracking algorithm called Par-
ticle Filtered Modified-CS (nonlinear) or PaFiMoCS-nl. Unlike [3,
4, 6, 9, 15] which only solve the linear measurements’ model case,
PaFiMoCS-nl is designed for tracking problems with highly non-
linear, and possibly non-Gaussian, observation models that result in
frequently multimodal observation likelihoods. Many visual track-
ing problems, e.g. tracking moving objects across spatially varying
illumination change [18, 33], fit into this category. We introduced
PaFiMoCS to approximately compute the causal minimum mean
squared error estimate of sparse signal sequences from linear Gaus-
sian measurements in [15]. In this work, we design PaFiMoCS-nl
for recovering sparse signal sequences from nonlinear/non-Gaussian
measurements and we develop an improved PaFiMoCS-nl algorithm
for very large sized problems.

(2) Our experiments with the dictionary of Legendre polynomi-
als (henceforth referred to as the Legendre dictionary) are the first to
demonstrate that for many videos with significant illumination vari-
ations, the illumination image is approximately sparse in this dic-
tionary. Also, its sparsity pattern includes many of the higher order
Legendre polynomials, and may not include all the lower order ones
(as was assumed in earlier works [34, 33, 18]). Moreover, over time,
the sparsity pattern usually changes quite slowly [see Sec 4)]. We
have explained in the long version [35] why we pick this dictionary



and not something simpler like Fourier.
Notation. The probability density function (PDF) or probabil-

ity mass function (PMF) of a random variable (r.v.) Y is denoted by
fY (y) while the conditional PDF of of r.v. Y given another r.v. X is
denoted by fY |X(y|x). We use E[Y ] for expectation. The subscript

t denotes the discrete time index. The notation Zt
i.i.d.∼ f(z) means

that the sequence of r.v.’s Z1, Z2, . . . Zt, . . . are independent and
identically distributed (i.i.d.) with PDF or PMF f(z). The notation
S ∼ Ber(T, p) means that the set S contains any element of the set
T with probability p (and does not contain it with probability 1− p)
independent of all other elements of T . The notation N (a;µ,Σ)
denotes the value of a Gaussian PDF with mean µ and covariance
matrix Σ computed at a. The notationX ∼ N (µ,Σ) means that the
r.v. X is Gaussian distributed with mean µ and covariance matrix Σ.

For a set T , T c := {i : i /∈ T}; ∪ and ∩ denote set-union and
set-intersection respectively; set difference, T1 \ T2 := T1 ∩ T c2 ;
and |T | denotes its cardinality. For a vector b, ‖b‖k denotes its `k
norm and (b)T denotes the sub-vector containing the elements of b
with indices in T . Also, (.)> denotes transpose. The notation vec(.)
converts a matrix into a vector by cascading the rows and � denotes
the Hadamard product.

2. THE PROBLEM AND STATE TRANSITION MODELS
The goal is to recursively recover a time sequence of states, Xt,
from noise-corrupted and nonlinear measurements, Yt, whenXt can
be split into two parts,

1. a small dimensional part, Ut, and

2. a large dimensional part, Lt, with the following property: Lt
is a spatial signal, that is sparse in some known dictionary,
and its sparsity pattern usually changes slowly over time.

Mathematically, this means the following. The state Xt can be split

as Xt =

[
Ut
Lt

]
where (Ut)nu×1 is a small dimensional state vector

and (Lt)nl×1, with nl � nu, is a discrete spatial signal that is
sparse in some known dictionary, Φ, i.e.

Lt = ΦΛt, (1)

where (Λt)nλ×1 is a sparse vector with support set Tt, i.e.

Tt := support(Λt) = {j : (Λt)j 6= 0}. (2)

The nl × nλ dictionary matrix Φ can be tall, square or fat.
Notice that, if Tt and (Λt)Tt are known, thenLt is known. Thus,

one can as well let the state vector beXt = [U>t , T
>
t , (Λt)Tt

>]> or
for simplicity, justXt = [U>t , T

>
t ,Λ

>
t ]>. We will use this definition

of the state vector in the rest of this paper.
We assume that the observation vector, (Yt)m×1, satisfies

g(Yt, Ut, Lt) = Zt, Zt
i.i.d.∼ fZ(z) (3)

where Zt is the observation noise. For the above model, the obser-
vation likelihood, OL(Ut, Lt), can be written as

OL(Ut, Lt) := fYt|Ut,Lt(Yt|Ut, Lt) = fZ(g(Yt, Ut, Lt)) (4)

2.1. State Transition Models
In the absence of specific model information, one can adopt the fol-
lowing simple state transition models. For Tt, we assume that

Tt = Tt−1 ∪At \Rt, where

At
i.i.d.∼ Ber(T ct−1, pa), Rt

i.i.d.∼ Ber(Tt−1, pr) (5)

Here At denotes the set added to the support at time t, while Rt de-
notes the set that is removed from the support at time t. Each of them
is i.i.d. over time. Conditioned on Tt−1, At and Rt are independent
of each other. In most applications, it is valid to assume that the ex-
pected support size remains constant, i.e. E[|Tt|] = E[|Tt−1|] = s.
This is ensured by setting pr = (nλ − s)pa/s so that E[|At|] =
(nλ − s)pa = E[|Rt|] = spr . Also, slow support change means
that E[|Rt|] = E[|At|] is small compared to E[|Tt|] = s. This is
ensured by picking pa to be small compared with s/(nλ − s).

In the absence any of other model information, we assume the
following linear Gaussian random walk model on (Λt)Tt and Ut:

(Λt)Tt = (Λt−1)Tt + (νl,t)Tt , (νl,t)Tt
i.i.d.∼ N (0, σ2

l I)

(Λt)Tct = 0 (6)

Ut =Ut−1 + νu,t, νu,t
i.i.d.∼ N (0,Σu) (7)

The state transition prior corresponding to the above state mod-
els can be written as: STP(Xi

t ;X
i
t−1) := fXt|Xt−1

(Xi
t |Xi

t−1) =

STP(T it ;T it−1) STP(Λit; Λit−1, T
i
t ) STP(U it ;U

i
t−1) where

STP(T it ;T it−1) = p
|T it \T

i
t−1|

a (1− pa)nl−|T
i
t−1|−|T

i
t \T

i
t−1| ×

p
|T it−1\T

i
t |

r (1− pr)|T
i
t−1|−|T

i
t−1\T

i
t |, (8)

STP(Λit; Λit−1, T
i
t ) =N ((Λit)T it ; (Λit−1)T it , σ

2
l I), (9)

STP(U it ;U
i
t−1) =N (U it ;U

i
t−1,Σu). (10)

3. PARTICLE FILTERED MODIFIED-CS (NONLINEAR)
Particle Filtered Modified-CS (PaFiMoCS) is inspired by RB-PF
[23, 22] and PF-MT [24]. PF-MT [24] splits the state vector Xt
into Xt = [X>t,s, X

>
t,r]
> where Xt,s denotes the coefficients of a

small dimensional state vector, which can change significantly over
time, while Xt,r refers to the rest of the states (large dimensional)
which usually change much more slowly over time. PF-MT impor-
tance samples only on Xt,s, while replacing importance sampling
by deterministic posterior Mode Tracking (MT) for Xt,r and thus
significantly reducing the importance sampling dimension. PF-MT
can be applied to our problem if we replace (5) and (6) by (6) with
Tt = [1, 2 . . . nλ], i.e. we do not use the sparsity of Λt, and we let
Xt,s = Ut and Xt,r = Λt. However, since PF-MT does not exploit
the sparsity or slow sparsity pattern change of Λt, it is very likely
that it will result in a dense solution for Λt, i.e. the energy will get
distributed among all components of Λt. This is a problem for ap-
plications where Λt is indeed well approximated by a sparse vector
with changing sparsity patterns. An alternative could be to assume
(6) on a selected fixed subset of Λt, i.e. fix Tt = T0. For example,
if Φ is the Fourier basis or a Legendre dictionary, one would pick
the first few components as the set T0. This was done in [18] for
illumination. This approach works if most energy of Lt does indeed
lie in the lower frequency (or lower order Legendre) components,
but fails if there are different types of high-frequency (higher order
Legendre) spatial variations in Lt over time1. For many of the video
sequences we experimented with for motion tracking across illumi-
nation change, this latter assumption was true [see Sec 4], and as a
result PF-MT implemented this way also failed.

3.1. PaFiMoCS-nl: Particle Filtered Modified-CS (nonlinear)
To address the above limitation, one can utilize the sparsity and slow
sparsity pattern change of the large dimensional state vector, Lt, in

1Higher order Legendre polynomials roughly correspond to higher fre-
quency spatial variations of intensity.



Algorithm 1 PaFiMoCS-nl: PF Modified-CS (nonlinear)

Input: Yt, Output: U it , T it ,Λit, wit. For all t ≥ 0 do

1. For each particle i: sample U it ∼ N (0,Σu)

2. For each particle i: set T it = T it−1 ∪ Ait \ Rit where Ait ∼
Ber((T it−1)c, pa) and Rit ∼ Ber(T it−1, pr).

3. For each particle i: mode track Λt with imposing slow spar-
sity pattern change, i.e. compute Λit as the solution of (11)
with OL(.) as defined in (4).

4. For each particle i: update T it as T it := {j : |(Λit)j | > α}.
5. For each particle i: compute the weights as follows

wit ∝ wit−1 OL(U it ,ΦΛit) STP(Λit; Λit−1, T
i
t )

where OL(.) is defined in (4) and STP(Λit; Λit−1, T
i
t ) is de-

fined in (10). Resample and reset weights to 1/npf .

a PF-MT type framework as follows. We let Xt,s = [Ut, Tt] and
Xt,r = Λt. In the importance sampling step, we sample U it and
T it from their state transition priors given in Sec 2.1. Motivated by
modified-CS [6], we add a term of the form ‖ΛTc‖1 with T = T it
in the mode tracking cost function, i.e. it computes Λit by solving

min
Λ
C(Λ), C(Λ) :=− log OL(U it ,ΦΛ) + β

‖(Λ− Λit−1)T it ‖
2
2

2σ2
l

+γ‖Λ(T it )c‖1 (11)

where OL(.) is defined in (4). Solving (11) is a tractable approxi-
mation to trying to find the vector Λit that is sparsest outside the set
T it (i.e. the vector with the smallest number of new support addi-
tions to T it ) among all vectors Λ that satisfy the observation model
constraint (often referred to as the data constraint) and are “close
enough” to the previous estimate, (Λit−1)T it . Thus solving (11) en-
sures that the support of the solution, Λit, does not change too much
w.r.t. the predicted support particle T it . The larger the value of γ, the
smaller will be the support change. A second change that we have
w.r.t. the original PF-MT idea is that we threshold on Λit in order
to get an updated estimate of the support Tt. We summarize the re-
sulting algorithm in Algorithm 1. We refer to it as Particle Filtered
Modified-CS-nonlinear (PaFiMoCS-nl).

3.2. PaFiMoCS-nl-slow-support-change: PaFiMoCS-nl for
very large problems with slow support changes
For certain problems with very large sized spatial signals, Lt, the
support size of its sparse coefficients vector, Λt, can also be very
large. In these situations, if we keep Tt as part of the importance
sampling state Xt,s, it will require a large number of particles, thus
making the algorithm impractical. However, if the support changes
slowly enough, then we can include Tt as part of Xt,r , i.e. we
let Xt,s = Ut and Xt,r = [Tt,Λt]. With this, the mode track-
ing step would ideally have to compute Λit, Ait and Rit by solving
minΛ,A,R C(Λ, A,R), where

C(Λ, A,R):=− log OL(U it ,ΦΛ) + β
‖(Λ− Λit−1)T it−1

‖22
2σ2

l

−|A| log
pa

1− pa
− |R| log

pr
1− pr

(12)

and setting T it = T it−1 ∪ Ait \ Rit. But the above minimization will
require a brute force approach of checking all possible sets A and

R and will thus have complexity that is exponential in the support
change size. Thus, it cannot be solved in any reasonable time. How-
ever, we can instead compute Λit by solving

min
Λ
C(Λ), C(Λ) :=− log OL(U it ,ΦΛ) + β

‖(Λ− Λit−1)T it−1
‖22

2σ2
l

+γ‖Λ(T it−1)c‖1 (13)

and then threshold on Λit to get the current support particle T it . Since
pa < 0.5 and pr < 0.5, the last two terms of (12) are increasing
functions of |A| and |R|. If the last term of (12) were ignored, doing
the above can be interpreted as its convex relaxation: it helps to find
the vector Λit with the smallest number of support additions to T it−1,
i.e. the smallest |Ait|, while also keeping the first two terms small.

Since the support set Tt is now a part of Xt,r , we also need to
include a term proportional to its state transition prior in the weight-
ing step, i.e. we need to also multiply by (8) in the weighting step.
We summarize the resulting algorithm in Algorithm 2. We refer to it
as PaFiMoCS-nl-slow-support-change.

Algorithm 2 PaFiMoCS-nl-slow-support-change

Input: Yt, Output: U it , T it ,Λit, wit. For all t ≥ 0 do

1. For each particle i: sample U it ∼ N (0,Σu)

2. For each particle i: compute Λit as the solution of (13) with
OL(.) as defined in (4). Compute T it := {j : |(Λit)j | > α}.

3. For each particle i: compute the weights as follows

wit ∝ wit−1OL(U it ,ΦΛit) STP(Λit; Λit−1, T
i
t ) STP(T it ;T it−1)

where OL(.) is defined in (4), STP(Λit; Λit−1, T
i
t ) is defined

in (10) and STP(T it ;T it−1) is defined in (8). Resample and
reset weights to 1/npf . Increment t and go to step 1.

4. APPLICATION: ILLUMINATION-MOTION TRACKING
We show how visual tracking across spatially varying illumination
change is an example of the general problem studied here. The state
in this case consists of the nu × 1 motion state, Ut, which is the
small dimensional part, and the nl×1 illumination “image” (written
as 1-D vector), Lt. We use a template-based tracking framework,
similar to the one in [18, 33], with a simple three-dimensional mo-
tion model, that only models x-y translation and scale, i.e. Ut =
[uxt , u

y
t , st]

> where st refers to scale and uxt and uyt refer to x and
y translation. Thus nu = 3. The illumination image, Lt is rep-
resented in the Legendre dictionary. Thus, our final state vector is
Xt = [U>t , T

>
t ,Λ

>
t ]> where Ut is the nu × 1 motion state; Λt is

the nλ × 1 Legendre coefficients’ vector of illumination; and Tt is
the support set of Λt. The observation model is taken from [18].

The initial template is denoted by I0. We use ROI(Ut) to denote
the region-of-interest (ROI) in the current image. It is obtained by
scaling and translating the pixel locations of the original template I0.
The pixels outside the ROI, i.e. those in ROI(Ut)c, are assumed to be
due to clutter. We model them as being i.i.d. uniformly distributed
between zero and 255. Thus, the current image Yt satisfies

Yt(ROI(Ut))=vec(I0) + ΦΛt + Zt, Zt ∼ N (0, σ2
oI),

Yt(ROI(Ut)c)=Zt,c, (Zt,c)i
i.i.d.∼ Unif(0, 255) (14)

where “i.i.d.” means i.i.d. over i and t, ROI(Ut) is defined in [35,



(a) support size (b) support change size (c) support membership for outdoor-walking seq

Fig. 1. (a) The size of the 99%-support of the Legendre coefficients’ vector, Λt, as a ratio of the length of Λt, i.e. |Tt|
nλ

is plotted against time.

(b) The number of additions, |Tt\Tt−1|
|Tt| , and removals, |Tt−1\Tt|

|Tt| , from this support set as a ratio of the support size are plotted against time.
(c) We show the entries of the support set Tt at various times t. We shade in black the squares corresponding to indices that are contained in
Tt, while leaving blank the indices that are not in Tt. The x-axis is time and the y-axis is the indices from 1 to nλ = 41.

Sec IV-A, equation (20)],

Φ,[vec(I0 � P0), ...., vec(I0 � P2d)], where

Pk(i, j)=


1 if k = 0

p k+1
2

(i) if k = 1, 3, 5, . . . (2d− 1)

p k
2

(j) if k = 2, 4, 6, . . . 2d

(15)

and pk(.) is the Legendre polynomial of kth order. Thus, Φ is an
nl × nλ matrix with nλ = 2d + 1. In our experiments, we used
d = 20, so that nλ = 41. As explained in [18], the above model is
frequently multimodal due to background clutter.

In the absence of any extra information about the motion, we
assume that Ut satisfies (7) with Σu being a diagonal matrix. As we
show below, the Legendre coefficients vector for illumination, Λt,
is an approximately sparse vector with support that usually changes
slowly over time. Hence, the models given in Sec 2.1 apply for Λt
as well, i.e. its support, Tt, satisfies (5) and Λt satisfies (6).

We used the video sequences shown in [35, Fig 1] to study spar-
sity pattern change of the illumination images over time. The first
video (outdoor-standing) is of a person standing under a tree on a
very windy day. As the leaves move, the illumination pattern on
her face changes with time. The second video (outdoor-walking)
is of a person walking under a tree with variable amounts of light
falling on various parts of her face as she moves under the moving
leaves. The third (indoor-walking) has a person walking along a cor-
ridor across a window. In a 20-frame sub-sequence of each video, we
hand-marked a rectangle around the person’s face in each frame. The
details of how we computed Lt, Λt and its approximate support set
Tt are explained in [35, Sec IV-C]. As can be seen from Fig 1(a), for
all videos, the support size is between 30-60% of the length of Λt,
nλ. Thus, Λt is indeed approximately sparse. Also, as can be seen
from Fig 1(b), except at a few time instants, the number of support
changes is usually under 35% of the support size. For the indoor-
walking sequence, at certain times (when the person moves towards
the window from a darker region of the corridor or vice versa), this
number is larger. From the support membership plot of Fig 1(c), we
can see that the support set does indeed contain many of the higher
order Legendre polynomials. Polynomials up to the 16th order are
present. Similar trends were seen also for the other two videos [35,
Fig 3]. This explains why PF-MT run with only a 7-dimensional Λt
(d = 3) as in [18] fails to track these sequences (see [35]).

5. RESULTS ON SIMULATED VIDEO SEQUENCES
We show only results on simulated videos here. Results on real
videos are shown in [35, Sec V-A]. Starting with a face tem-
plate, 50 video sequences of a moving target with spatially vary-
ing illumination change and background clutter were generated
using the state transition models of Sec 2.1 and the observation
model given in (14). Details in [35, Sec V-B]. Each sequence
was tracked using PaFiMoCS (Algorithm 1) and PaFiMoCS-slow-
support-change (Algorithm 2) with d = 20 as well as using PF-MT,
Auxiliary-PF [36] and PF-Gordon [17], using both d = 3 and
d = 20. All algorithms used 100 particles. In Fig 2, we plot
NMSE(t) :=

E[‖Ut−Ût‖22+‖Λt−Λ̂t‖22]

E[‖Ut‖22+‖Λt‖22]
against time. Here Ût and

Λ̂t are the weighted means of the particles of Ut and Λt respectively.
E[.] denotes the Monte Carlo average.

As can be seen, PaFiMoCS remains in track with stable and
small error throughout. PaFiMoCS-slow-support-change (PaFiMoCS-
SSC) also remains in track, but its errors are slightly larger because
occasionally the number of support changes was large. PF-MT-3
(the algorithm used in [18]) loses track because it assumes that only
the first 7 Legendre polynomials are sufficient to represent the illu-
mination image. However, we know from our simulation that the
support of the illumination vector is equally likely to contain any el-
ement from [1, 2, . . . 41] (not just the first 7). PF-MT-20 loses track
because it assumes that Λt is a dense vector, i.e. all of its 41 com-
ponents are part of the support at all times. Aux-PF-20, Aux-PF-3,
PF-Gordon-20 and PF-Gordon-3 lose track due to similar reasons
and because 100 particles is too less for these algorithms.

Fig. 2. Normalized mean squared error (NMSE) plot
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