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The Problem

• Partially Observed and Nonlinear System: ObservationsYt are noisy

nonlinear functions of the stateXt

Yt = ht(Xt) + wt, wt: observation noise

• The system model (dynamics ofXt) can also be nonlinear:

Xt = ft(Xt−1) + nt, nt: system noise

• Given the observationsY1, Y2, ...Yt, detect, as quickly as possible, if
a change occurred in the dynamics ofXt

– Parameters of changed system unknown

– Change can be slow or sudden
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An Application: Detect Changes in Landmark Shape Dynamics

• Observation: Vector of observed object locations (Configuration)

• State: [Shape, Translation, Scale, Rotation, Velocities]

• Observation model:ht : S ×R
2 ×R

+ ×S0(2) → R
2k, Gaussian noise

• System model:

– Gauss-Markov model on shape velocity, parallel transportedto

tangent space of the current shape

– Gauss-Markov model on group action velocities

• Detect changes in shape using posterior distribution of shape given
observed object locations
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Notation

Yt−1 Yt

qt

gt−1
gt

Xt−1 Xt

• Prior: Given no observations,Xt ∼ pt(.)

• Posterior:Xt|Y1:t ∼ πt(.)

• Superscripts: 0 (unchanged system),c (changed system)

• X0
t ∼ p0

t (.), Xc
t ∼ pc

t(.)
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Exact Solution to Optimal Filtering

• t=0: Posterior ofX0 given no observations is its prior,π0|0 = p0

• Bayes’ rule applied to system and observation model att:

Prediction dist. πt|t−1(dxt) =

∫

xt−1

qt(xt|xt−1)πt−1(dxt−1)dxt

Filtering dist. πt(dxt) =
gt(Yt|xt)πt|t−1(dxt)
∫

x
gt(Yt|x)πt|t−1(dx)

• System & observation model linear, Gaussian: Kalman filter

• Any general system: approx. solution using a Particle Filter
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Particle Filter: Basic Idea

• Sequential Monte Carlo method, approx. true filter as numberof
Monte Carlo samples (“particles”), N → ∞

• GivenπN
t−1, perform importance sampling/ weighting, followed by

resampling to approx. the Bayes’ recursion:πN
t

πN
t|t−1

π̄t πN
t

Resample

wi
t ∝ gt(Yt|x̃

i
t)

Weight

x̃i
t ∼ qt

πN
t−1

Importance Sample

Yt
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Existing Work: Change Detection in Nonlinear Systems

• Fully observed state(no observation noise,ht invertible)

– CUmulative SUM, generalized CUSUM, negative log likelihood

• Partially observed state

– Known change parameters

∗ CUSUM usest + 1 particle filters att [Azimi-Sadjadi et al’02]

– Unknown change parameters: few existing solutions

∗ generalized CUSUM not tractable[Andrieu et al’2004]

∗ Tracking Error [Bar-Shalom]

∗ negative Log Likelihood of Observations (OL)
∗ Fail to detect slow changes

Modified CUSUM for Unknown Change Detection 7



Change Detection Statistics[Vaswani, ACC’2004]

• Expected (negative) Log Likelihood of state (ELL)

ELL(Y1:t) = E[− log p0

t
(Xt)|Y1:t] = Eπt

[− log p0

t
(X)]

• For sudden changes, can use

– (negative) log of Observation Likelihood (OL)

OL(Y1:t) = − log pY(Yt|Y1:t−1) = − log Eπt|t−1
[gt(Yt|X)]

– Tracking Error [Bar-Shalom]

TE = ||Yt − Ŷt||
2, Ŷt = E[Yt|Y1:t−1] = Eπt|t−1

[ht(X)]

– OL ≈ TE (to first order) for white Gaussian observation noise
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Change Detection Algorithm

Particle Filter

(Observation)

πN
t−1

πN
t

YesYes

πN
t|t−1

x̃i
t ∼ qt

wi
t ∝ gt(Yt|x̃

i
t)

π̄t
N

Change (Slow)Change (Sudden)

ELL > ThELL?OL > ThOL?

Yt
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An Example: Evaluating the statistics

Consider,Yt = X3
t + wt, Xt = Xt−1 + nt, nt ∼ N (0, σ2

sys)

• Prior state dist.: p0
t (x) = 1√

2πtσ2
e
− x2

2tσ2
sys

• Using particle filtering estimate of posteriors, evaluate

ELLN
t (Y1:t) =

1

N

N
∑

i=1

x
(i)
t

2

tσ2
sys

+ const,

OLN
t (Y1:t) = − log

1

N

N
∑

i=1

exp
−(Yt − (x̃

(i)
t )3)2

2σ2
obs

,

TEN
t (Y1:t) = (Yt −

1

N

N
∑

i=1

(x̃
(i)
t )3)2

• Note thatOL ≈ TE (to first order)
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Evaluating p0

t

• If state space dynamics is linear/Gaussian: easy

– If dynamics of the part of state space used to detect the change is
linear/Gaussian: easy

• If the normal system is stationary: assume a parametric form ofp0,

use a training data seq. to learn parameters

– In general, can assume piecewise stationarity ofp0
t

• If no training data is available butp0
0 and system noise are Gaussian:

linearizefτ (Xτ ), ∀τ to approx.p0
t by a Gaussian
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Detectable Changes Using ELL

• Kerridge inaccuracy, K(p1 : p2): second term of KL divergence

• ELL(Y1:t) = −Eπt
[log p0

t (X)] = K(πt : p0
t )

• Average ELL of unchanged observations: differential entropy of the

state att, h(p0
t )

• A sufficient condition for changes “detectable using ELL” (with
small Pf.a., Pmiss) [Vaswani’2004]:

K(pc

t
: p0

t
) − h(p0

t
) > 3

√

Var(ELLc) + 3
√

Var(ELL0)
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Modified CUSUM Algorithm

• Given a change detection statisticstat(τ), define

sum-stat(p, t) ,

t
∑

τ=t−p+1

stat(τ)

• Define the modified CUSUM statistic,CUSUM -stat(t), as

sup
1≤p≤t

(sum-stat(p, t) − EY 0
1:t

[sum-stat(p, t)])

• Change Time is

tchange = min{t : CUSUM -stat(t) > λ}
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Application to ELL and OL

• Definesum-ELL andsum-OL as above. Then

EY 0
1:t

[sum-OL(p, t)] =

t
∑

τ=t−p+1

h(Y 0
τ |Y

0
1:τ−1) = h(Y 0

t−p+1:t|Y1:t−p)

EY 0
1:t

[sum-ELL(p, t)] =

t
∑

τ=t−p+1

h(Xτ ) =

t
∑

τ=t−p+1

h(p0
τ )

• h denotes differential entropy

• Can also usejoint-ELL(p, t) = Eπt−p+1:t
[− log pt−p+1:t(X)]
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ROC Plots for Bearings only Tracking
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ROC Plots for Non-linear System Model
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ROCs for Slow Abnormal Activity Detection
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ELL Detects Tracking Error: Takes much longer
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Modified ELL

• Variance of p0
t usually increases witht: miss smaller changes

• Solution: Replacep0
t by π0

t|tnc
. It is assumed that no change has

occurred until tnc. Approx. π0
t|tnc

as:

– Evaluate a Gaussian or Gaussian mixture approx. toπ
0,N

tnc|tnc

– Linearizefτ (X), τ = tnc, ...t to approx. toπ0
t|tnc

• Useful to detect multiple changes in a long sequence
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Slow Changes: ELL v/s OL

• Slow Change gets tracked⇔ π
c,0,N

t|t ≈ π
c,c

t|t , same forπc,0,N

t|t−1

– Estimate of OL (ELL) close to OL (ELL) evaluated with changed
system model,

OL
c,0,N
t ≈ OL

c,c
t , ELL

c,0,N
t ≈ ELL

c,c
t

– Assume conditional entropies ofY 0
t given past and ofY c

t given past
are equal, thenE[OL

c,c
t ] = E[OL

0,0
t ] < ThOL

– OL does not detect.

– When change becomes detectable (ELL
c,c
t > ThELL) then

ELL
c,0,N
t > ThELL

– Change detected by ELL
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Sudden Changes: ELL v/s OL

• Sudden Change gets filtered out

– Filter starts following the system model, large error in posterior

– Large error in ELL estimate,E[ELL
c,0,N
t ] ≈ h(p0

t ) < ThELL

– ELL fails to detect

– Large ELL error implies large value of OL (proved)

– Change detected by OL

• Most changes are in between the two extremes

• ELL & OL complement each other for slow & sudden changes
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Complementariness of ELL and OL [Vaswani, ACC’2004]

Theorem. ELL approx. error,errc,0,N
t , is upper bounded by an increasing

function ofOLc,0,N
τ , tc ≤ τ ≤ t, i.e.

err
c,0,N
t ≤

t
∑

τ=tc

eOLc,0,N
τ ω1(σ

2
obs)ω2(ǫ

c,0
τ ) + const

Implication for a“detectable” change (true value of ELL large):

• OL fails to detect a change=⇒ ELL detects

• ELL fails to detect=⇒ OL detects
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Stability of ELL Error [Vaswani, ACC’2004]

Theorem. Average ELL approximation error iseventually monotonically
decreasing (and hence stable), for large enoughN if

- Change lasts for a finite time

- ft(Xt) continuous for all t

- π0 has compact support

- gt(Yt|x) (as a function of x) has compact support, for allYt

- The convergence of the bounded approx. of ELL is uniform in time

• Uses optimal filter stability results of [LeGland and Oudjane]

• Valid for anyunbounded function of state(not just ELL)

• Errorasymptotically stableunder stronger assumptions
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Extensions toCUSUM -ELL, CUSUM -OL

• ELL error stability result extends to sum-ELL as well and hence to
CUSUM -ELL

• For finite p (e.g.p ≤ 5), can show stability ofjoint-ELL, by defining
a new state spaceXt = Xt−p+1:t

• Use previous argument for slow changes:CUSUM -OL fails,
CUSUM -ELL detects

• Complementariness result: forCUSUM -ELL & CUSUM -OL
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Contributions

• ELL detects a change before loss of track (very useful). OL or
Tracking Error detect after partial loss of track.

• Complementary behavior of ELL & OL for slow & sudden changes

• Stability of the total ELL approximation error for large N

• Relation to Kerridge Inaccuracy and a sufficient condition for the
class of detectable changes using ELL[Vaswani, ACC’04]

• ELL error upper bounded by increasing function of “rate of
change”, increasing derivatives of all orders[Vaswani, ICASSP’04]
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Future Research

• Changed Parameter Estimation

• Practical implications of the “rate of change” bound result and the
stability result for particle filter design

• Applications and Performance Analysis

– Abnormal activity detection and activity segmentation

– Neural signal processing (changes in STRFs of auditory neurons)

– Acoustic tracking (changes in target motion model)

– Communications applications

∗ tracking slowly varying channels
∗ congestion detection in networks
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