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Abstract— We study the problem of reconstructing a sparse
signal from a limited number of its linear projections when
a part of its support is known. This may be available from
prior knowledge. Alternatively, in a problem of recursively
reconstructing time sequences of sparse spatial signals, one may
use the support estimate from the previous time instant as the
“known” part of the support. The idea of our solution (modified-
CS) is to solve a convex relaxation of the following problem: find
the signal that satisfies the data constraint and whose support
contains the smallest number of new additions to the known
support. We obtain sufficient conditions for exact reconstruction
using modified-CS. These turn out to be much weaker than those
needed for CS, particularly when the known part of the support
is large compared to the unknown part.

I. I NTRODUCTION

Consider the problem of recursively and causally recon-
structing a time sequence of sparse spatial signals (or images)
from a sequence of observations, when the current observation
vector contains a limited (less-than-Nyquist) number of linear
projections of the current signal. The observation vector is
assumed to be incoherent with respect to the sparsity basis of
the signal/image [1], [2]. Important applications includereal-
time (causal and recursive) dynamic MRI reconstruction [3],
[4], real-time single-pixel video imaging [5] or real-timetime-
varying spatial field estimation using sensor networks [6].

Since the introduction of compressive sensing (CS) in recent
work [1], [7] the static version of the above problem has
been thoroughly studied. But, with the exception of [8], [9],
most existing solutions for the time series problem are non-
causal or batch solutions with very high complexity since they
jointly reconstruct the entire video by first collecting allthe
observations. The alternative solution - separately doingCS
at each time (simple CS) - is causal and low complexity, but
requires many more measurements for accurate reconstruction.

In recent work [10], [11], we studied the causal recon-
struction problem from noisy measurements and proposed
a solution called Kalman filtered CS and its non-Bayesian
version, least squares CS (LS-CS). Our solutions used the
empirically observed fact that thesparsity pattern (support
set of the signal) changes slowly over time. The key idea of
LS-CS was to replace CS on the observation by CS on the LS
observation residual computed using the previous estimateof
the support. Kalman filtered CS replaced the LS residual by the
Kalman filter residual. The reason LS-CS, or Kalman filtered
CS, significantly outperformed simple CS was that the signal
minus its LS estimate (computed using the previous support
estimate) contains much fewer significantly nonzero elements

than the signal itself. But note that its exact sparsity size(total
number of nonzero coefficients) is larger/equal to that of the
signal. Since the number of measurements required for exact
reconstruction is governed by the exact sparsity size, one thing
we were not able to achieve was exact reconstruction using
fewer (noiseless) measurements than those needed by CS.

Exact reconstruction using fewer measurements is the focus
of the current work. The idea of our solution (modified-CS)
is to modify CS for problems where part of the support is
known (in the time sequence case, it is the estimated support
from the previous time instant). Denote the known part of
the support byT . Modified-CS solves anℓ1 relaxation of
the following problem: find the signal that satisfies the data
constraint and whose support contains the smallest number of
new additions toT (or in other words the support set difference
from T is smallest). We derive sufficient conditions for exact
reconstruction using modified-CS. These turn out to be much
weaker than the sufficient conditions required for simple CS.
Experimental results showing greatly improved performance
of modified-CS over simple CS are also shown.

Notice that the same idea also applies to a static reconstruc-
tion problem where we know a part of the support from prior
knowledge. For example, consider MR image reconstruction
using the wavelet basis as the sparsifying basis. If it is known
that an image has no (or very little) black background, all
(or most) elements of the lowest subband of its wavelet
coefficients will be nonzero. In this case, the setT is the set
of indices of the lowest subband coefficients.

A. Problem Definition

We measure ann-length vectory where

y = Ax (1)

We need to estimatex which is a sparsem-length vector with
m > n. The support ofx, denotedN , can be split asN =
T ∪ ∆ \ ∆d whereT is the “known” part of the support,∆d

is the error in the the known part and∆ is the unknown part.
In a static problem, the supportT is available from prior

knowledge, e.g. it may be the set of the lowest subband wavelet
coefficients. Typically there is a small black background in
an image, so that only most (not all) lowest subband wavelet
coefficients will be nonzero. The indices of the lowest subband
coefficients which are zero form∆d. For the time series
problem,y ≡ yt andx ≡ xt with support,Nt = T ∪∆ \∆d.
Here T := N̂t−1 is the support estimate fromt − 1. Also,
∆d := T \ Nt is the set of indices of elements that were



nonzero att − 1, but are now zero while∆ := Nt \ T is the
newly added coefficients at timet. Both ∆, ∆d are typically
much smaller than|T |. This follows from the empirical
observation that sparsity patterns change slowly [11], [4].

In our proposed solution, we computêx by assuming that
the support ofx containsT . Whenn is large enough for exact
reconstruction (i.e. the conditions of Theorem 1 hold),x̂ = x
and sox̂ can be used to computeN (and∆d if needed).

We assume that the measurement matrix,A, is “approxi-
mately orthonormal” for sub-matrices containingS = (|T | +
2|∆|) or less columns, i.e. it satisfies theS-RIP [2].

Notation: We use′ for transpose. The notation||c||k denotes
the ℓk norm of the vectorc. For a matrix,||M || denotes its
spectral norm (inducedℓ2 norm). We use the notationAT

to denote the sub-matrix containing the columns ofA with
indices belonging toT . For a vector, the notation(β)T forms
a sub-vector that contains elements with indices inT .

The S-restricted isometry constant [2],δS , for a matrix,A,
is defined as the smallest real number satisfying

(1 − δS)||c||22 ≤ ||AT c||22 ≤ (1 + δS)||c||22 (2)

for all subsetsT ⊂ [1 : m] of cardinality |T | ≤ S and all
real vectorsc of length |T |. S-RIP means thatδS < 1. A
related quantity, the restricted orthogonality constant [2], θS,S′ ,
is defined as the smallest real number that satisfies

|c1
′AT1

′AT2
c2| ≤ θS,S′ ||c1||2||c2||2 (3)

for all disjoint setsT1, T2 ⊂ [1 : m] with |T1| ≤ S and
|T2| ≤ S′ and withS + S′ ≤ m, and for all vectorsc1, c2 of
length |T1|, |T2| respectively. By settingc1 ≡ AT1

′AT2
c2 in

(3), it is easy to see that||AT1

′AT2
|| ≤ θS,S′ .

II. M ODIFIED COMPRESSIVESENSING (MOD-CS)

Our goal is to find the sparsest possible signal estimate
whose support containsT and which satisfies the data con-
straint (1), i.e. we would like to find âx which solves

min
β

||(β)T c ||0 subject toy = Aβ (4)

whereT c := [1 : m] \ T denotes the complement ofT .
As is well known, minimizing theℓ0 norm has combi-

natorial complexity. We propose to use the same trick that
resulted in compressive sensing. We replace theℓ0 norm by
the ℓ1 norm, which is the closest norm toℓ0 that makes the
optimization problem convex, i.e. we solve

min
β

||(β)T c ||1 subject toy = Aβ (5)

A. Recursive Reconstruction of Signal Sequences

Consider the recursive reconstruction problem wherey ≡ yt

and x ≡ xt with supportN ≡ Nt. The known part of the
support,T = N̂t−1. In this case, at each time,t, we solve
(5) and denote its output bŷxt,modCS. The support att, N̂t is
computed by thresholdinĝxt,modCS, i.e.

N̂t = {i ∈ [1 : m] : (x̂t,modCS)
2
i > α} (6)

Fig. 1. Modified-CS for time sequence reconstruction

where α is a small threshold (ideally zero). With this we
automatically estimatê∆ = N̂t \ T and ∆̂d = T \ N̂t.

A block diagram of our proposed approach is given in
Fig. 1. Note that att = 1, we perform CS and use enough
observations for CS to give exact reconstruction.

III. E XACT RECONSTRUCTIONRESULT

We first study theℓ0 version and then the actualℓ1 version.

A. Exact Reconstruction:ℓ0 version of modified-CS

Consider theℓ0 problem, (4). Using a rank argument similar
to [2, Lemma 1.2] we can show the following

Proposition 1: Given a sparse vector,x, whose support,
N = T ∪ ∆ \ ∆d, where∆ andT are disjoint and∆d ⊆ T .
Consider reconstructing it fromy := Ax by solving (4). The
true signal,x, is its unique minimizer ifδ|T |+2|∆| < 1.
Compare this with [2, Lemma 1.2]. Since theℓ0 version of CS
does not use the knowledge ofT , it requiresδ2|T |+2|∆| < 1
which is much stronger.

B. Exact Reconstruction: modified-CS

We do not solve (4) but itsℓ1 relaxation, (5). Just like in CS,
the sufficient conditions for this to give exact reconstruction
will be slightly stronger. We show the following.

Theorem 1 (Exact Reconstruction):Given a sparse vector,
x, whose support,N = T ∪ ∆ \ ∆d, where ∆ and T are
disjoint and∆d ⊆ T . Consider reconstructing it fromy := Ax
by solving (5).x is its unique minimizer ifδ|T |+|∆| < 1 and
if a(2|∆|, |∆|, |T |) + a(|∆|, |∆|, |T |) < 1, where

a(S, S′, |T |) :=
θS′,S +

θS′,|T | θS,|T |

1−δ|T |

1 − δS − θ2
S,|T |

1−δ|T |

(7)

To understand the above condition better and relate
it to the corresponding CS result [2, Theorem 1.3],
let us simplify it. a(2|∆|, |∆|, |T |) + a(|∆|, |∆|, |T |) ≤
θ|∆|,2|∆|+θ|∆|,|∆|+

θ2
2|∆|,|T |

+θ2
|∆|,|T |

1−δ|T |

1−δ2|∆|−
θ2
2|∆|,|T |
1−δ|T |

. A sufficient condition for

this is θ|∆|,2|∆| + θ|∆|,|∆| +
2θ2

2|∆|,|T |+θ2
|∆|,|T |

1−δ|T |
+ δ2|∆| < 1.

Further, a sufficient condition for this isθ|∆|,|∆| + δ2|∆| +
θ|∆|,2|∆| + δ|T | + θ2

|∆|,|T | + 2θ2
2|∆|,|T | < 1. To get a condition

only in terms ofδS ’s, use the fact thatθS,S′ ≤ δS+S′ . A suffi-
cient condition is2δ2|∆|+δ3|∆|+δ|T |+δ2

|T |+|∆|+2δ2
|T |+2|∆| <

1. Further, notice that if|∆| ≤ |T | and ifδ|T |+2|∆| < 1/5, then
2δ2|∆| + δ3|∆| + δ|T | + δ2

|T |+|∆| + 2δ2
|T |+2|∆| < 4δ|T |+2|∆| +

δ|T |+2|∆|(3δ|T |+2|∆|) ≤ (4 + 3/5)δ|T |+2|∆| < 23/25 < 1.
Corollary 1 (Exact Reconstruction):Given a sparse vector,

x, whose support,N = T ∪ ∆ \ ∆d, where ∆ and T are



disjoint and∆d ⊆ T . Consider reconstructing it fromy := Ax
by solving (5).x is its unique minimizer ifδ|T |+|∆| < 1 and
θ|∆|,|∆| + δ2|∆| + θ|∆|,2|∆| + δ|T | + θ2

|∆|,|T | + 2θ2
2|∆|,|T | < 1.

This holds if2δ2|∆| +δ3|∆| +δ|T | +δ2
|T |+|∆| +2δ2

|T |+2|∆| < 1.
This, in turn, holds if|∆| ≤ |T | andδ|T |+2|∆| < 1/5.

Compare the above with the requirement for CS:
2δ2(|T |+|∆|) + δ3(|T |+|∆|) < 1 which holds if δ3(|T |+|∆|) <
1/3. It is clear that if|∆| is small compared to|T |, δ|T |+2|∆| <
1/5 is a much weaker requirement.

C. Proof of Theorem 1

For the proof of Theorem 1, we use an approach similar to
that used to prove [2, Theorem 1.3]. Suppose that we want
to minimize a convex functionJ(β) subject toAβ = y and
that J is differentiable. The Lagrange multiplier optimality
condition requires that there exists a Lagrange multiplier, w,
s.t. ∇J(β) − A′w = 0. Thus forx to be a solution we need
A′w = ∇J(x). In our case,J(x) = ||xT c ||1 =

∑

j∈T c |xj |.
Thus (∇J(x))j = 0 for j ∈ T and (∇J(x))j = sgn(xj) for
j ∈ ∆. For j /∈ T ∪ ∆, xj = 0. SinceJ is not differentiable
at 0, we require that(A′w)j = Aj

′w = w′Aj lie in the
subgradient set ofJ(xj) at 0, which is the set[−1, 1]. In
summary, we need aw that satisfiesw′Aj = 0 if j ∈
T, w′Aj = sgn(xj) if j ∈ ∆, and, |w′Aj | ≤ 1, if j /∈ T∪∆.
We show below that by using the above conditions but with
|w′Aj | ≤ 1 replaced by|w′Aj | < 1 for j /∈ T ∪ ∆, we get
a set of sufficient conditions to ensure thatx is the unique
solution of (5).

Lemma 1:The sparse signal,x, with support as defined in
Theorem 1, is the unique minimizer of (5) ifδ|T |+|∆| < 1 and
if we can find a vectorw satisfying

1) w′Aj = 0 if j ∈ T
2) w′Aj = sgn(xj) if j ∈ ∆
3) |w′Aj | < 1, if j /∈ T ∪ ∆

Proof. Standard convex arguments give that there is at least
one minimizer of (5). We need to prove that, if the conditions
of the lemma hold, any minimizer,β, of (5) is equal tox.
Sincex also satisfies the data constraint,

||(β)T c ||1 ≤ ||(x)T c ||1 :=
∑

j∈∆

|xj | (8)

for any minimizerβ. Take aw that satisfies the conditions of
the lemma. Recall thatx is zero outside ofT ∪ ∆. Then,

||(β)T c ||1 =
∑

j∈∆

|xj + (βj − xj)| +
∑

j /∈T∪∆

|βj |

≥
∑

j∈∆

|xj + (βj − xj)| +
∑

j /∈T∪∆

w′Ajβj

≥
∑

j∈∆

sgn(xj)(xj + (βj − xj)) +
∑

j /∈T∪∆

w′Ajβj

=
∑

j∈∆

|xj | +
∑

j∈∆

w′Aj(βj − xj) +
∑

j /∈T∪∆

w′Ajβj

+
∑

j∈T

w′Aj(βj − xj)

= ||xT c ||1 + w′(Aβ − Ax) = ||xT c ||1 (9)

Now, the only way (9) and (8) can hold simultaneously is
if all inequalities in (9) are actually equalities. Consider the
first inequality. Since|w′Aj | is strictly less than 1, for all
j /∈ T ∪ ∆, the only way

∑

j /∈T∪∆ |βj | =
∑

j /∈T∪∆ w′Ajβj

is if βj = 0 for all j /∈ T ∪ ∆.
Since bothβ and x solve (5),y = Ax = Aβ. Sinceβj =

0 = xj for all j /∈ T∪∆, this means thaty = AT∪∆(β)T∪∆ =
AT∪∆(x)T∪∆ or that AT∪∆((β)T∪∆ − (x)T∪∆) = 0. Since
δ|T |+|∆| < 1, AT∪∆ is full rank and so the only way this can
happen is if(β)T∪∆ = (x)T∪∆. Thus any minimizer,β = x,
i.e. x is the unique minimizer of (5). This proves the claim.�

Next, we begin by developing a lemma (Lemma 2) that
constructs aw which satisfiesAT

′w = 0 and ATd

′w = c
for any given vectorc and any setTd disjoint with T of size
|Td| ≤ S. The lemma also bounds|Aj

′w| for all j /∈ T∪Td∪E
whereE is called an “exceptional set”. Finally, we use this
lemma to find aw that satisfies the conditions of Lemma 1.

Lemma 2:Given the known part of the support,T , of size
|T |. Let S, S′ be such thatδ|T |+S < 1 and|T |+S +S′ ≤ m.
Let c be a vector supported on a setTd, that is disjoint with
T , of size|Td| ≤ S. Then there exists a vectorw s.t. Aj

′w =
cj , ∀ j ∈ Td, andAj

′w = 0, ∀ j ∈ T . Also, there exists an
exceptional setE, disjoint with T ∪ Td, of size |E| < S′ s.t.

|Aj
′w| ≤ a(S, S′, |T |)√

S′
||c||2 ∀j /∈ T ∪ Td ∪ E and

||AE
′w||2 ≤ a(S, S′, |T |)||c||2 (10)

where a(S, S′, |T |) is defined in (7). Also, ||w|| ≤
K(S, |T |)||c||2, where

K(S, |T |) :=

√
1 + δS

1 − δS − θ2
S,|T |

1−δ|T |

(11)

Proof. Any w that satisfiesAT
′w = 0 will be of the form

w = [I − AT (AT
′AT )−1AT

′]γ := Mγ (12)

We need to find aγ s.t.ATd

′w = c, i.e.ATd

′Mγ = c. Let γ =
M ′ATd

η. Thenη = (ATd

′MM ′ATd
)−1c = (ATd

′MATd
)−1c

(sinceMM ′ = M2 = M ). Thus,

w = MM ′ATd
(ATd

′MATd
)−1c = MATd

(ATd

′MATd
)−1c (13)

Consider a setT ′
d of size|T ′

d| ≤ S′ disjoint with T ∪Td. Then

||AT ′
d

′w||2 ≤ ||AT ′
d

′MATd
|| ||(ATd

′MATd
)−1|| ||c||2 (14)

Consider the first term from the RHS of (14).

||AT ′
d

′MATd
|| ≤ ||AT ′

d

′ATd
|| + ||AT ′

d

′AT (AT
′AT )−1AT

′ATd
||

≤ θS′,S +
θS′,|T | θS,|T |

1 − δ|T |
(15)

Consider the second term from the RHS of (14).

||(ATd

′MATd
)−1|| =

1

λmin(ATd

′MATd
)

(16)

Now, ATd

′MATd
= ATd

′ATd
−ATd

′AT (AT
′AT )−1AT

′ATd
.

This is the difference of two non-negative definite matrices. It



is easy to see that ifB1 andB2 are two non-negative definite
matrices, thenλmin(B1 − B2) ≥ λmin(B1) − λmax(B2). Let
B1 := ATd

′ATd
andB2 := ATd

′AT (AT
′AT )−1AT

′ATd
.

Then λmin(B1) ≥ (1 − δS). Also, λmax(B2) = ||B2|| ≤
||(ATd

′AT )||2

1−δ|T |
≤ θ2

S,|T |

1−δ|T |
. Thus,

||(ATd

′MATd
)−1|| ≤ 1

1 − δS − θ2
S,|T |

1−δ|T |

(17)

as long as the denominator is positive. Using (15) and (17) to
bound (14), we get

||AT ′
d

′w||2 ≤ a(S, S′, |T |) ||c||2 (18)

where a( ) is defined in (7). Notice thata( ) is a non-
decreasing function of all its arguments.

Define an “exceptional set”E as

E := {j ∈ (T ∪ Td)
c : |Aj

′w| >
a(S, S′, |T |)√

S′
||c||2} (19)

Notice that|E| must obey|E| < S′ since otherwise we can
contradict (18) by takingT ′

d ⊆ E.

Since |E| < S′ and E is disjoint with T ∪ Td, (18) holds
for T ′

d ≡ E. Finally, notice that

||w||2 ≤ ||MATd
(ATd

′MATd
)−1|| ||c||2

≤ ||M || ||ATd
|| ||(ATd

′MATd
)−1|| ||c||2

≤
√

1 + δS

1 − δS − θ2
S,|T |

1−δ|T |

||c||2 = K(S, |T |)||c||2 (20)

This proves the lemma.�

Proof of Theorem 1.Let us apply Lemma 2 iteratively to
make the size of the exceptional setE smaller and smaller. At
iteration zero, apply Lemma 2 withTd ≡ ∆ (so thatS ≡ |∆|),
cj ≡ sgn(xj), ∀ j ∈ ∆ (so that ||c||2 =

√

|∆|), and with
S′ ≡ |∆|. Call the exceptional setTd,1.Thus there exists aw1

and an exceptional setTd,1 s.t.

Aj
′w1 = sgn(xj), ∀ j ∈ ∆

Aj
′w1 = 0, ∀ j ∈ T

|Td,1| ≤ S′ ≡ |∆|
||ATd,1

′w1||2 ≤ a(|∆|, |∆|, |T |)
√

|∆|
|Aj

′w1| ≤ a(|∆|, |∆|, |T |), ∀j /∈ T ∪ ∆ ∪ Td,1

||w1|| ≤ K(|∆|, |T |)
√

|∆| (21)

At iteration n, apply Lemma 2 withTd ≡ ∆ ∪ Td,n (so that
S ≡ 2|∆|), cj ≡ 0, ∀ j ∈ ∆ and cj ≡ Aj

′wn, ∀ j ∈ Td,n

and withS′ ≡ |∆|. Call the exceptional setTd,n+1. Thus there

exists awn+1 and an exceptional setTd,n+1 that satisfy

Aj
′wn+1 = 0, ∀ j ∈ ∆

Aj
′wn+1 = Aj

′wn, ∀ j ∈ Td,n

Aj
′wn+1 = 0 ∀ j ∈ T

|Td,n+1| ≤ S′ ≡ |∆|
||ATd,n+1

′wn+1||2 ≤ a(2|∆|, |∆|, |T |)||ATd,n

′wn||

|Aj
′wn+1| ≤

a(2|∆|, |∆|, |T |)
√

|∆|
||ATd,n

′wn||

∀j /∈ T ∪ ∆ ∪ Td,n ∪ Td,n+1

||wn+1|| ≤ K(2|∆|, |T |)||ATd,n

′wn|| (22)

The last three equations above simplify to

||ATd,n+1

′wn+1||2 ≤ a(2|∆|, |∆|, |T |)na(|∆|, |∆|, |T |)
√

|∆|
|Aj

′wn+1| ≤ a(2|∆|, |∆|, |T |)na(|∆|, |∆|, |T |),
∀j /∈ T ∪ ∆ ∪ Td,n ∪ Td,n+1 (23)

||wn+1|| ≤ K(2|∆|, |T |)a(2|∆|, |∆|, |T |)n−1a(|∆|, |∆|, |T |)
√

|∆|
(24)

Now, assume thata(2|∆|, |∆|, |T |) < 1 and define

w :=

∞
∑

n=1

(−1)n−1wn (25)

Since a(2|∆|, |∆|, |T |) < 1, the above summation is abso-
lutely convergent and sow is a well defined vector. Also,

Aj
′w = sgn(xj), ∀ j ∈ ∆

Aj
′w = 0, ∀ j ∈ T (26)

ConsiderAj
′w = Aj

′ ∑∞
n=1(−1)n−1wn for somej /∈ T ∪∆.

If for a given n, j ∈ Td,n, then Aj
′wn = Aj

′wn+1 (gets
canceled by then+1th term). If for some other̃n, j ∈ Td,ñ−1,
thenAj

′wñ = Aj
′wñ−1 (gets canceled by thẽn − 1th term).

Also, sinceTd,n and Td,n−1 are disjoint,j cannot belong to
both of them. Thus,

Aj
′w =

∑

n:j /∈Td,n∪Td,n−1

(−1)n−1Aj
′wn, ∀j /∈ T ∪ ∆ (27)

Consider a givenn in the above summation. Sincej /∈
Td,n ∪ Td,n−1 ∪ T ∪ ∆, we can use (23) to get|Aj

′wn| ≤
a(2|∆|, |∆|, |T |)n−1a(|∆|, |∆|, |T |). Thus, forj /∈ T ∪ ∆,

|Aj
′w| ≤

∑

n:j /∈Td,n∪Td,n−1

a(2|∆|, |∆|, |T |)n−1a(|∆|, |∆|, |T |) (28)

If a(2|∆|, |∆|, |T |) < 1, this simplifies to

|Aj
′w| ≤ a(|∆|, |∆|, |T |)

1 − a(2|∆|, |∆|, |T |) , ∀j /∈ T ∪ ∆ (29)

Thus, if we can assume thata(2|∆|, |∆|, |T |) +
a(|∆|, |∆|, |T |) < 1, then we will have

|Aj
′w| < 1, ∀j /∈ T ∪ ∆ (30)

Thus, from (26) and (30), if a(2|∆|, |∆|, |T |) +
a(|∆|, |∆|, |T |) < 1 then, we have found aw that satisfies
the three conditions of Lemma 1. Applying Lemma 1, the
exact reconstruction claim of Theorem 1 follows.�
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(a) Fourier meas. (b) Gaussian meas.

Fig. 2. (a) Reconstructing a32 × 32 sparsified cardiac image
(m = 1024) from n = 0.19m = 195 random Fourier measurements.
Support size|T ∪ ∆| = 107 and |T | = 64. Modified-CS achieved
exact reconstruction, while the CS reconstruction error (square root
of normalized MSE) was 13%. (b) Reconstruction usingn = 0.29m

random Gaussian measurements. Modified-CS achieved exact recon-
struction, while the CS reconstruction error was 34%.

IV. SIMULATION RESULTS

We first evaluated the static problem. The image used was a
sparsified32× 32 block (m = 1024) of a cardiac image. This
was obtained by taking a discrete wavelet transform (DWT) of
the original image block, retaining the largest 107 coefficients
(corresponds to99% of image energy) while setting the rest
to zero and taking the inverse DWT. A 2-level DWT served
as the sparsifying basis. We used its lowest subband as the
known part of the support,T . Thus, |T | = 64. Support size
|N | = 107. We show reconstruction from onlyn = 0.19m =
195 random Fourier measurements in Fig. 2(a). Modified-CS
achieved exact reconstruction, while CS reconstruction error
(square root of normalized MSE) was 13%. Notice that195 <
2|N | = 214, which is the minimumn necessary for exact
reconstruction using CS for a|N |-sparse vector. Comparison
for random-Gaussian measurements is shown in Fig. 2(b).

Next, we evaluated the time sequence problem using a
sparsified cardiac image sequence created the same way as
above. Att = 1, we did simple CS and usedn = 0.5m = 256
random Fourier measurements. Fort > 1 we did modified-CS
and used onlyn = 0.16m = 164 measurements. The size of
the change in the support fromt− 1 to t, |∆| ≈ 0.01m = 10
or less. The support size,|Nt| ≈ 0.1m = 103. We show the
reconstruction results in Fig. 3(a). Simple CS (referred toas
CS in the figure) has very large (20-25%) error while modified-
CS gives exact reconstruction.

Finally, we evaluated modified-CS for a real cardiac se-
quence (not sparsified). In this case, the wavelet transformis
only compressible. The comparison is given in Fig. 3(b).

V. CONCLUSIONS ANDFUTURE WORK

We studied the problem of reconstructing a sparse signal
from a limited number of its linear projections when a part of
its support is known. This may be available from prior knowl-
edge. Alternatively, in a problem of recursively reconstructing
time sequences of sparse spatial signals, one may use the
support estimate from the previous time instant as the “known”
part of the support. We derived sufficient conditions for exact
reconstruction using our proposed solution - modified-CS - and
discussed why these are weaker than the sufficient conditions
required by simple CS. Experiments showing greatly improved
performance of modified-CS over simple CS are also given.

Future work includes (a) bounding the reconstruction er-
ror of modified-CS for compressible signals, (b) combining

5 10 15 20
0

0.1

0.2

0.3

0.4

time, t →

N
or

m
al

iz
ed

 E
rro

r →

 

 

CS

modified−CS

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frame

R
oo

t S
qu

ar
ed

 E
rr

or

 

 

CS
Modified−CS

(a) Sparsified seq, Fourier meas (b) Real seq, Gaussian meas

Fig. 3. (a) Exact reconstruction of a sparsified cardiac sequence
from only n = 0.16m random Fourier measurements (MR imaging).
Support size,|Nt| ≈ 0.1m. Simple CS (referred to as CS in the
figure) has very large (20-25%) error while modified-CS gives exact
reconstruction. (b) Reconstructing a real cardiac sequence fromn =

0.19m random Gaussian measurements. We plot the square root of
normalized MSE everywhere.

modified-CS with Least Squares CS [11] for the noisy mea-
surements case, and (c) developing Bayesian extensions which
also use knowledge of the previously reconstructed signal
values and analyzing their performance. (d) Whenever exact
reconstruction does not occur, an important question to answer
is when will the algorithm be stable over time, i.e. under what
conditions will the reconstruction error remain bounded. This
automatically holds for modified-CS for noiseless measure-
ments if the assumption of Theorem 1 holds at all times. It has
been shown to hold with high probability for LS-CS and KF-
CS for noisy measurements in [11] under strong assumptions.
Our goal would be to prove it for modified-CS for noisy
measurements under weaker assumptions.
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