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ABSTRACT

In recent work, we studied the problem of causally reconstructing
time sequences of spatially sparse signals, with unknown and slow
time-varying sparsity patterns, from a limited number of linear “in-
coherent” measurements. We proposed a solution called Kalman
Filtered Compressed Sensing (KF-CS). The key idea is to run a re-
duced order KF only for the current signal’s estimated nonzero co-
efficients’ set, while performing CS on the Kalman filtering error to
estimate new additions, if any, to the set. KF may be replaced by
Least Squares (LS) estimation and we call the resulting algorithm
LS-CS. In this work, (a) we bound the error in performing CS on the
LS error and (b) we obtain the conditions under which the KF-CS
(or LS-CS) estimate converges to that of a genie-aided KF (or LS),
i.e. the KF (or LS) which knows the true nonzero sets.
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1. INTRODUCTION

In recent work [1], we studied the problem of causally reconstruct-
ing time sequences of sparse signals, with unknown and slow time-
varying sparsity patterns, from a limited number of noise-corrupted
“incoherent” measurements. We proposed a solution called Kalman
Filtered Compressed Sensing (KF-CS). With the exception of CS [2]
and of [3], most other work [4, 5] treats the entire time sequence of
signals/images as a single spatiotemporal signal and performs CS to
reconstruct it. This is a non-causal solution and also has high com-
putational cost. On the other hand, if the number of observations
is small, performing CS [2] at each time (simple CS) incurs much
larger error than KF-CS, see Fig. 1. Potential applications of KF-
CS include making dynamic MRI real-time (causal and fast enough)
[4, 6]; real-time video imaging using a single-pixel camera [5]; or
real-time tracking of temperature, or other, time-varying fields using
sensor networks that transmit random projections of the field [7].

In this work, in Sec. 2, we describe a simple modification of
KF-CS [1] and introduce its non-Bayesian version, Least Squares
(LS)-CS. Ourkey contributionsare: (a) in Sec. 3, we bound the
error in performing CS on the LS error in the observation and com-
pare it with that for performing CS on the observation (simple CS),
and (b) in Sec. 4, we obtain the conditions under which the KF-CS
(or LS-CS) estimate converges to that of a genie-aided KF (or LS).
Simulation comparisons are given in Sec. 5.

Problem Definition. The problem definition is the same as in
[1]. Let (zt)m×1 denote the spatial signal of interest at timet and
(yt)n×1, with n < m, denote its noise-corrupted observation vector
at t. The signal,zt, is sparse in a given sparsity basis (e.g. wavelet)
with orthonormal basis matrix,Φm×m, i.e. xt , Φ′zt is a sparse
vector (onlySt << m elements ofxt are non-zero). The observa-
tions are “incoherent” w.r.t. the sparsity basis of the signal, i.e.

yt = Axt + wt, A , HΦ, E[wt] = 0, E[wtw
′
t] = σ2

obsI (1)
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and allSt-column sub-matrices ofA “approximately orthonormal”,
i.e. δSt < 1 [2, eq. (1.3)].wt is independent ofxt and is i.i.d,∀t.

LetNt denote the the support set ofxt, i.e. the set of its non-zero
coordinates and letTt , N̂t denote its estimate. Also, let∆t denote
the undetected nonzero set at timet, i.e. ∆t , Nt \Tt−1 and let∆̂t

denote its estimate. ThusTt = Tt−1 ∪ ∆̂t. Let St , |Nt| where
|.| denotes the size of a set. Also, for any setT , let (v)T denote the
|T | length sub-vector containing the elements ofv corresponding to
the indices in the setT . For a matrixA, AT denotes the sub-matrix
obtained by extracting the columns ofA corresponding to the indices
in T . We use the notation(Q)T1,T2 to denote the sub-matrix ofQ
containing rows and columns corresponding to the entries inT1 and
T2 respectively.T c denotes the complement ofT w.r.t. [1 : m], i.e.
T c , [1 : m] \ T . φ refers to the empty set.′ denotes transpose.
Them ×m matrix IT is defined as follows:(IT )T,T = I whereI
is a |T |-identity matrix while(IT )T c,[1:m] = 0, (IT )[1:m],T c = 0.

The nonzero coefficients’ setNt changes slowly over time. For
the currently nonzero coefficients ofxt, (xt)Nt , we assume a spa-
tially i.i.d. Gaussian random walk model, while the rest of the coef-
ficients remain constant, i.e.

x0 = 0, xt = xt−1 + νt, νt ∼ N (0, Qt), Qt = σ2
sysINt (2)

whereνt is temporally i.i.d.. The current nonzero set,Nt, is un-
known∀t. Our goal is to recursively get the best estimates ofNt and
xt (or equivalently of the signal,zt = Φxt) usingy1, . . . yt.

2. KALMAN FILTERED CS AND LEAST SQUARES CS

We describe a simple modification of KF-CS [1] and introduce Least
Squares CS. Let̂xt|t−1, x̂t, Kt andPt|t−1, Pt denote the predicted
and updated state estimates at timet, the Kalman gain and the pre-
diction and updated error covariances given by the KF in KF-CS
(since KF-CS does not always use the correct value ofQt, Pt|t−1 or
Pt are not equal to the actual covariances ofxt− x̂t|t−1 or xt− x̂t).

2.1. Modified Kalman Filtered Compressed Sensing (KF-CS)
KF-CS can be summarized as running a KF for the system in (1), (2)
but with Qt replaced byQ̂t = σ2

sysITt . The new additions, if any,
are estimated by performing CS on the Kalman filtering error,ỹt,f .

At time t, we first run a “temporary” Kalman prediction and
update step usinĝQt = σ2

sysITt−1 , i.e. we compute

Kt,tmp = (Pt−1 + Q̂t)A
′(A(Pt−1 + Q̂t)A

′ + σ2
obsI)−1

x̂t,tmp = (I −Kt,tmpA)x̂t−1 + Kt,tmp yt (3)

Let T , Tt−1. The filtering error is

ỹt,f , yt −Ax̂t,tmp = A∆t(xt)∆t + AT (xt − x̂t)T + wt (4)

As explained in [1], if the filtering error norm is large, there is a need
to estimate∆t. One can rewritẽyt,f as ỹt,f = Aβt + wt, where
βt , [(xt − x̂t)T , (xt)∆t , 0(T∪∆t)c ] is a “sparse-compressible”



Algorithm 1 Kalman Filtered Compressive Sensing (KF-CS)

Initialization: Setx̂0 = 0, P0 = 0, T0 = φ (if unknown) or equal to the known support. Fort > 0, do,

1. Temporary Kalman prediction and update. Implement (3) usinĝQt = σ2
sysITt−1 .

2. Compute Additions using CS. Compute the KF error,̃yt,f , yt −Ax̂t,tmp. Check ifFEN , ỹ′
t,fΣ−1

fe,tỹt,f > αfe. If it is,

(a) Do CS onỹt,f followed by thresholding, i.e. computê∆t using (5), (6). The new estimated support isTt = Tt−1 ∪ ∆̂t.

3. Kalman prediction and update. Implement (7) usinĝQt = σ2
sysITt .

(a) (KF-CS with final LS): IfTt 6= Tt−1, implement (7) usinĝQt = ∞ITt , i.e. setx̂t = (A′
Tt

ATt)
−1A′

Tt
yt and(Pt)Tt,Tt =

(A′
Tt

ATt)
−1σ2

obs, (Pt)T c
t ,: = 0, (Pt):,T c

t
= 0.

4. Compute Deletions. If Tt == Tt−1 · · · == Tt−k (nonzero set has not changed for long enough, i.e. w.h.p. KF stabilized),

(a) Check for “zero” coefficients, i.e. computê∆Z = {i ∈ Tt :
∑t

τ=t−k′+1(x̂τ,i)
2/k′ < αz} with k′ < k. SetTt ← Tt \ ∆̂Z .

Set(x̂t)∆̂Z
= 0. Set(Pt)∆̂Z ,[1:m] = 0 and(Pt)[1:m],∆̂Z

= 0.

5. Output Tt, x̂t and the signal estimate,̂zt = Φx̂t. Incrementt and go to the first step.

signal with a “large” or “non-compressible” nonzero part,(xt)∆t ,
and a “small” or “compressible” nonzero part,(xt − x̂t)T . The
Dantzig selector (DS) [2] followed by thresholding can be applied to
detect the “non-compressible” nonzero part as follows:

β̂t = arg min
β
||β||1, s.t. ||A′(ỹt,f −Aβ)||∞ ≤ λmσobs (5)

∆̂t = {i ∈ T c
t−1 : β̂2

t,i > αa} (6)

whereλm ,
√

2 log m andαa is the addition threshold. Thus, the
estimated support set at timet is Tt = T ∪ ∆̂t = Tt−1 ∪ ∆̂t.

Next we run the Kalman prediction/update usingQ̂t = σ2
sysITt :

Pt|t−1 = Pt−1 + Q̂t, Kt = Pt|t−1A
′(APt|t−1A

′ + σ2
obsI)−1

Pt = (I −KtA)Pt|t−1

x̂t = (I −KtA)x̂t−1 + Ktyt (7)

with initializationP0 = 0[1:m],[1:m], x̂0 = 0[1:m].

Remark 1 For easy notation, in (3),(7) we write the KF equations
for the entirext. But actually we are running a reduced order KF
for only the coefficients inT (T ≡ Tt−1 for (3) andT ≡ Tt for (7).

2.1.1. Deleting Zero Coefficients

If the addition threshold,αa, is not large enough, occasionally there
will be some false additions (coefficients whose true value is zero
but they wrongly get added due to error in the CS step). Also, there
may be coefficients that actually become and remain zero. All such
coefficients need to be detected and removed fromTt to prevent un-
necessary increase in|Tt|. Increased|Tt| implies smaller minimum
eigenvalue ofA′

Tt
ATt and thus increased estimation error. The in-

crease is especially large ifA′
Tt

ATt is close to becoming singular.
One possible way to detect if a coefficient,i, is zero is to check if

the magnitude of its estimates in the last few time instants is small,
e.g. one can check if

∑t

τ=t−k′+1(x̂τ,i)
2/k′ < αz. This scheme

would be fairly accurate (small enough false alarm and miss proba-
bilities), if the estimation error,eτ,i = xτ,i − x̂τ,i is small enough,
for all τ ∈ [t − k′ + 1, t]. If we check for zeroing only whenTt

has not changed for long enough (w.h.p. this implies that all past
additions have been detected, i.e.Tt = Nt, and the KF forTt

has stabilized), the variance ofeτ,i would be approximately equal
to (Pt)i,i < σ2

obs/λmin(A′
T AT ), i.e. it would be small enough.

When a coefficient,i, is detected as being zero, we remove it
fromTt, we set̂xt,i = 0 and we set(Pt)i,[1:m] = 0, (Pt)[1:m],i = 0.
We summarize the entire KF-CS algorithm in Algorithm 1.

2.2. Least Squares CS: Non-Bayesian KF-CS
In applications where training data is not be available to learn the
prior model parameters required by KF-CS, one can use a non-
Bayesian version of KF-CS i.e. replace the KF in KF-CS by Least
Squares (LS) estimation. The LS step is also faster than the KF step.

3. ANALYZING CS ON LS ERROR (LSE)

Let T , Tt−1 and∆ , ∆t = Nt \ Tt−1. The true nonzero sets
at any time,Nt, are assumed to be non-random. ButT = Tt−1

is a random variable since its value depends onyt−1 andTt−2 (or
equivalently ony1:t−1). We useE[·] to denote expectation w.r.t. all
random quantities (y1:t, x1:t at time t) while usingE[·|y1:t−1] to
denote the expected value conditioned ony1:t−1. Conditioned on
y1:t−1, the setT , and hence also the set∆ = Nt \ T , is known.

The key difference between simple CS and LS-CS is that simple
CS applies (5) onyt = Axt + wt to estimate the|Nt|-sparse signal,
xt, while LS-CS applies (5) on the LS error (LSE),ỹt,f := yt −
Ax̂t,tmp = Aβt+wt to estimateβt := xt−x̂t,tmp, wherex̂t,tmp =
(A′

T AT )−1A′
T yt. βt = [(xt − x̂t,tmp)T , (xt)∆, 0T∪∆c ] =

(A′
T AT )−1A′

T (A∆(xt)∆ + wt), (xt)∆, 0T∪∆c ] is what we call
a “sparse-compressible” signal: it is|T ∪∆|-sparse but, if the spar-
sity pattern changes slowly enough, it is compressible alongT . We
use this idea to bound the error in CS on LSE and to show that if the
sparsity pattern changes slowly enough, the CS-LSE error bound is
much smaller than that of simple CS.

We use the following definition of compressibility of the random
processβt = βt(xt, y1:t).

Definition 1 We say thatβt is compressibleif the maximum over
T of the average of(βt)

2
i , conditioned on past observations, is

smaller than the minimum average squared value of any cur-
rently nonzero component ofxt, i.e. if maxi∈T E[(βt)

2
i |y1:t−1] <

mini∈Nt E[(xt)
2
i ]. This is a valid definition sincemini∈Nt E[(xt)

2
i ] ≤

mini∈∆ E[(xt)
2
i ] = mini∈∆ E[(βt)

2
i ] for all choices∆ = ∆(y1:t−1).

Assumption 1 (model, algorithm) Assume that

1. yt, xt follow (1), (2); wt, νt are independent of each other
and over time; andwt has bounded support (e.g. truncated
Gaussian) with cutoffs at± λmσobs

maxi ||Ai||1
in all dimensions.



2. Nt−1 ⊆ Nt for all t andSt := |Nt| ≤ Smax.

3. The number of false additions is bounded, i.e.|Tt\Nt| ≤ Sfa

for all t. This implies that|Tt| ≤ St + Sfa ≤ Smax + Sfa.

4. δSmax+Sfa < 1. δS = δS(A) is defined in [2, eq. (1.3)].

Bounded measurement noise (Assumption 1.1) is usually valid. As-
sumption 1.3 is observed in all our simulations, as long as the ad-
dition thresholdαa is large enough. Assumption 1.4 quantifies the
required amount of incoherency of the measurement matrix w.r.t. the
sparsity basis. Consider Assumption 1.2. While this assumption is
not strictly true, it is observed (for medical image sequences) that it
is approximately true: the setNt \Nt−1, and the total setNt \N0,
are both small. Also, if we relax the definition of support to denote
any set containing all nonzero elements ofxt, then this is true.

Under the above assumptions, we can prove the following [8]:

Theorem 1 Assume that Assumption 1 holds. Letta = ta(t) denote
the last addition time before or att.

1. If |∆| is small enough to ensure that(t − ta + 1)σ2
sys ≥

θ2
|T |,|∆|

(1−δ|T |)
2 λmax(E[(xt)∆(xt)

′
∆|y1:t−1])+

σ2
obs

1−δ|T |
, thenβt :=

xt− x̂t,tmp is compressible.θS,S′ is defined in [2, eq. (1.5)].

2. The following bound on the CS-LSE error holds

E[||xt − x̂t,CSLSE ||22|y1:t−1] ≤ min
1≤S≤S∞

BCSLSE(S)

BCSLSE(S) := C2(S)Sσ2
obs + C3(S)

(|T |+ |∆| − S)

S
L0

L0 ,



































θ2
|T |,|∆|

(1−δ|T |)
2 E[||(xt)∆||2|y1:t−1]+

(|T |+ |∆| − S)
σ2

obs
1−δ|T |

if S ≥ |∆|

(
θ2
|T |,|∆|

(1−δ|T |)
2 + 1)E[||(xt)∆||2|y1:t−1]+

|T | σ2
obs

1−δ|T |
if S < |∆|

wherex̂t,CSLSE is the output of (5) with̃yt,f = yt−Ax̂t,tmp

andx̂t,tmp = (A′
T AT )−1A′

T yt.

Notice thatE[(xt)∆(xt)
′
∆|y1:t−1], and its trace,E[||(xt)∆||2|y1:t−1],

can be computed by running a genie-aided KF.
In [8], we also derive a bound on the unconditional CS-LSE

error, i.e. the error averaged over all values of the past observations,
under slightly stronger assumptions. We also discuss why the bound
on the CS-LSE error is much smaller than that on simple CS error.

4. CONVERGENCE TO GENIE-AIDED KF (OR LS)

Consider the genie-aided KF, i.e. the KF which knows the true
nonzero set,Nt, at eacht. It is the linear MMSE estimator ofxt

from y1, . . . yt if the nonzero sets,Nt’s, are known. It would be
the MMSE estimator (i.e. it would be the best estimator among all
possible estimators) if the observation noise were Gaussian instead
of truncated Gaussian. The genie-aided KF can be summarized as
running (7) withQ̂t = σ2

sysINt . In this section, we obtain condi-
tions under which the KF-CS estimate converges to the genie-aided
KF estimate in probability. As a corollary, we also get conditions for
LS-CS to converge to genie-aided LS.

We begin by giving Lemma 1 states that if the true nonzero
set does not change after a certain time, and if eventually it is cor-
rectly detected, then KF-CS converges to GA-KF. This is followed
by Lemmas 2 and 3 which prove that, if the addition threshold is
high enough, the probability of false addition is zero and the prob-
ability of correct set detection approaches one witht. Combining
these lemmas gives the final result.

Lemma 1 [8] Assume that there exists at0 s.t. ∀ t ≥ t0, Tt =
Nt = N∗ and assume thatδ|N∗| < 1. Consider KF-CS without the
deletion step, i.e. withαz = 0, and with the step 3a (KF-CS with
final LS) replacing step 3 ifTt 6= Tt−1. The difference in the KF-CS
and GA-KF estimates,dt , |x̂t,GAKF − x̂t|, converges to zero in
mean square and hence also in probability.

Assume that Assumption 1 holds. The bounded support assump-
tion on wt ensures that|A′

iwt| ≤ ||wt||∞||Ai||1 ≤ λmσobs, ∀i.
With this, the theorems of [2] can be directly modified to hold with
probability one. This helps prove the following.

Lemma 2 Assume that (i) Assumption 1 holds and thatδ2Smax +
δ3Smax < 1 (stronger incoherency requirement than earlier); and
(ii) in Algorithm 1, we setαa = B1 , C2

1λ2
mSmaxσ2

obs (C1 is
defined in [2, Thm. 1.1]). Then, at eacht, the following hold:

||xt − x̂t,tmp − β̂t||2 ≤ B1 , C2
1λ2

mSmaxσ2
obs (8)

∆̂t ⊆ Nt, and soTt ⊆ Nt, and soTt ∪∆t+1 = Nt+1 (9)

Proof: We prove this result by induction. At anyt, when solv-
ing (5), x̂t,tmp,i = 0, ∀i ∈ T c

t−1. The sparse vector to be es-
timated isβt , [(xt − x̂t,tmp)Tt−1 , (xt)∆t , 0Nc

t
]. First consider

the base case,t = 1. At t = 1, Tt−1 = T0 = φ (empty) and
so x̂1,tmp,i = 0, ∀i. Thusβ1 = x1 with nonzero set∆1 = N1.
Since|N1| ≤ Smax and since the observation noise,wt, satisfies
|A′

iwt| ≤ λmσobs, we can apply Theorem 1.1 of [2] to get (8) to
always hold att = 1.

Also, for anyi ∈ Nc
1 , x1,i = 0 and soβ̂2

1,i = (x1,i − β̂1,i)
2 ≤

||x1 − x̂1,tmp − β̂1||2 ≤ B1 (from (8)). Butαa = B1. Thus, from
(6), ∆̂1 ⊆ N1. ThusT1 , T0 ∪ ∆̂1 ⊆ N1. But N1 ⊆ N2. Thus,
T1 ⊆ N2. Since∆1 , N1 \ T0, this implies thatT1 ∪ ∆2 = N2.
Thus (9) also holds fort = 1. This proves the base case.

For the inductive step, assume that (9) and (8) hold fort − 1.
Thus,Tt−1 ∪∆t = Nt, which is the nonzero set forβt. But |Nt| ≤
Smax. Thus Theorem 1.1 of [2] can be applied to get (8) to hold for
t. Also, for anyi ∈ Nc

t , xt,i = 0 and soβ̂2
t,i = (xt,i − β̂t,i)

2 ≤
||xt − x̂t,tmp − β̂t||2 ≤ B1 = αa. Thus from (6),∆̂t ⊆ Nt. Thus
Tt , Tt−1 ∪ ∆̂t ⊆ Nt ⊆ Nt+1. Since∆t+1 , Nt+1 \ Tt, this
means thatTt ∪ ∆t+1 = Nt+1. Thus (9) holds fort. This proves
the induction step and thus the result holds.

Lemma 3 Assume that (i) Assumption 1 holds and thatδ2Smax +
δ3Smax < 1; (ii) in Algorithm 1, we setαa = B1 , C2

1λ2
mSmaxσ2

obs;
and (iii) all additions occur before a finite time,ta,max, i.e.
Nt = Nta,max , ∀t ≥ ta,max. Let N∗ , Nta,max . Then,
limt→∞ Pr(Tt+τ = Nt+τ = N∗, ∀τ ≥ 0) = 1

Proof: Since (i) and (ii) hold, Lemma 2 holds. For anyi ∈ ∆t,
x̂t,tmp,i = 0. Thus, (8) implies that(xt,i − β̂t,i)

2 ≤ B1 and so
|β̂t,i| ≥ |xt,i| −

√
B1. Thus, if |xt,i| >

√
B1 +

√
αa = 2

√
B1,

thenβ̂2
t,i > αa, i.e. i ∈ ∆̂t. In other words,Pr({i ∈ ∆̂t|x2

t,i >
4B1}) = 1. The same argument applies even if we consider all
i ∈ ∆t. Thus,Pr({∆t ⊆ ∆̂t}|{x2

t,i > 4B1 ∀i ∈ ∆t}) = 1.
But from (9) and (6),∆̂t ⊆ ∆t. Thus, if x2

t,i > 4B1, ∀i ∈
∆t, ∆̂t = ∆t and soTt , Tt−1 ∪ ∆̂t = Nt. Thus,Pr(Tt =
Nt|{x2

t,i > 4B1 ∀i ∈ ∆t}) = 1. Now, ∀t ≥ ta,max, Nt = N∗.
Thus fort > ta,max, Tt = N∗ implies that∆t+1 = φ. This implies
that∆̂t = φ and soTt+1 = Tt = N∗. Thus,Tt = N∗ implies that
Tt+k = N∗, ∀k ≥ 0. Thus, for allt > ta,max,

Pr(Tt+τ = N∗ ∀τ ≥ 0|{x2
t,i > 4B1 ∀i ∈ ∆t}) = 1 (10)



Now, x2
t,i ∼ N (0, (t − ti)σ

2
sys) whereti is the time at which ele-

menti got added. Note thatti ≤ ta,max. Thus,

Pr(x2
t,i > 4B1) ≥ 2Q(

√

4B1

(t− ta,max)σ2
sys

) (11)

whereQ is the Gaussian Q-function. Combining (10), (11) and using
the fact that the differentxt,i’s are independent,

Pr(Tt+τ = N∗ ∀τ ≥ 0) ≥
(

2Q(

√

4B1

(t− ta,max)σ2
sys

)

)Smax

(12)

Thus for anyǫ > 0, Pr(Tt+τ = N∗, ∀τ ≥ 0) ≥ 1 − ǫ if t ≥
ta,max + τǫ, τǫ , ⌈ 4B1

σ2
sys[Q−1(

(1−ǫ)1/Smax

2
)]2
⌉, where⌈.⌉ is the

greatest integer function. Thus the claim follows.�

Combining Lemma 3 with Lemma 1 we get the final result.

Theorem 2 Assume that (i) Assumption 1 holds and thatδ2Smax +
δ3Smax < 1; (ii) in Algorithm 1, we setαa = B1 , C2

1λ2
mSmaxσ2

obs;
and (iii) all additions occur before a finite time,ta,max, i.e.
Nt = Nta,max , ∀t ≥ ta,max. Consider KF-CS without the
deletion step, i.e. withαz = 0, and with the step 3a (KF-CS with
final LS) replacing step 3 ifTt 6= Tt−1. Then,dt , x̂t,GAKF − x̂t

converges to zero in probability, i.e. the KF-CS estimate converges
to the Genie-Aided KF estimate in probability, ast→∞.
Also, the LS-CS estimate converges to the Genie-Aided LS estimate,
in probability, ast→∞ (this follows directly from Lemma 3).

The assumptionδ2Smax + δ3Smax < 1 is just stronger incoherency
requirement onA than Assumption 1. The assumption of all addi-
tions occurring before a finite time is a valid one for problems where
the system is initially in its transient state (nonstationary), but later
stabilizes to a stationary state. Alternatively, the above theorem can
be applied to claim that the KF-CS (or LS-CS) estimate stabilizes
to within a small error the GA-KF (or GA-LS) estimate, if additions
occur slowly enough, i.e. if the delay between two addition times is
long enough to allow it to stabilize [8].

5. SIMULATION RESULTS

Lemma 2 says that if the addition threshold was set high enough
(αa = B1 whereB1 is the CS error upper bound), then there would
be no false additions. But if we set the addition threshold very high,
then for the initial time instants, the KF-CS estimation error would
be large and it will do worse than simple CS. Thus, in practice, we set
αa lower, but we implement the false addition detection and removal
scheme described in Sec. 2.1.1. We evaluated its performance using
the following set of simulations. We simulated a time sequence of
sparsem=256 length signals,zt = xt which follow (2) withσ2

sys =
1 and nonzero sets,Nt−1 ⊆ Nt, ∀t satisfyingNt = N1, ∀t < 10,
Nt = N10, ∀10 ≤ t < 20, Nt = N20, ∀20 ≤ t < 30, Nt =
N30, ∀30 ≤ t < 100 and |N1| = 8, |N10| = 12, |N20| = 16,
|N30| = 20. ThusSmax = 20. The setN1 and all the additions
were generated uniformly at random from the remaining elements
out of [1 : m]. The measurement matrix,A = H was simulated as
in [2] by generatingn×m i.i.d. Gaussian entries (withn = 72) and
normalizing each column of the resulting matrix. The observation
noise variance wasσ2

obs = ((1/3)
√

16/n)2 (this is taken from [2])
and we simulated Gaussian noise (not truncated).

We implemented KF-CS withλm =
√

2 log2 m = 4, αa =

9σ2
obs, αfe = 2n, αz = σ2

obs, k = 5, k′ = 3. Since the observation
noise was not truncated, occasionally the addition step resulted in a
very large number of false additions, which madeA′

Tt
ATt singular
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Fig. 1. MSE plots comparison. Fig. 1(a): Large KF-CS error occurs
at and after the new addition times,t = 10, 20, 30. But once the
addition is detected, the error gradually reduces to that of GA-KF
(or slightly higher). The error of simple CS (labeled as CS) is much
larger (max value 45). Fig. 1(b): Simple CS error beyondt = 50
whenSt ≥ 26 than is much larger in the Fig. 1(a) (max value 425).

(or almost singular) resulting in large errors at all futuret. To prevent
this, we set a maximum value for the number of allowed additions:
we allowed at most(1.25n/ log2 m) largest magnitude coefficient
estimates larger thanαa to be added. Also, typically an addition
took 2-3 time instants to get detected. Thus we setσ2

init = 3σ2
sys

(σ2
init is used instead ofσ2

sys the first time a new coefficient gets
added). We simulated the above system 100 times and compared the
MSE of KF-CS with that of GA-KF and of simple CS (followed by
thresholding and least squares estimation as in Gauss-Dantzig [2]).

In a second set of simulations, shown in Fig. 1(b), we started
with S1 = 8 and for10 ≤ t ≤ 50, we added 2 new elements every 5
time units. ThusSmax = 26 = St, ∀ t ≥ 50. Note26 > n/3 = 24,
i.e. δ3Smax cannot be smaller than 1.

6. DISCUSSION AND ONGOING WORK

In this work, we introduced Least Squares CS and analyzed why
CS on the LS error in the observation will have lower error than CS
on the raw observations (simple CS), when sparsity patterns change
slowly enough. We also showed that if all additions occur before a
finite time, if the addition threshold is set high enough, if UUP holds
for Smax, and if the noise has bounded support, KF-CS (or LS-CS),
converge to the genie-aided KF (or LS) in probability. In ongoing
work, we are working on relaxing the first three assumptions used
in the above result. We are also working on developing KF-CS for
real-time dynamic MR imaging [6].
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