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Principal Components Null Space Analysis
for Image and Video Classification

Namrata Vaswani, Member, IEEE, and Rama Chellappa, Fellow, IEEE

Abstract—We present a new classification algorithm, principal
component null space analysis (PCNSA), which is designed for
classification problems like object recognition where different
classes have unequal and nonwhite noise covariance matrices.
PCNSA first obtains a principal components subspace (PCA
space) for the entire data. In this PCA space, it finds for each class
“ ,” an -dimensional subspace along which the class’ intraclass
variance is the smallest. We call this subspace an approximate
null space (ANS) since the lowest variance is usually “much
smaller” than the highest. A query is classified into class “ ” if its
distance from the class’ mean in the class’ ANS is a minimum. We
derive upper bounds on classification error probability of PCNSA
and use these expressions to compare classification performance
of PCNSA with that of subspace linear discriminant analysis
(SLDA). We propose a practical modification of PCNSA called
progressive-PCNSA that also detects “new” (untrained classes).
Finally, we provide an experimental comparison of PCNSA and
progressive PCNSA with SLDA and PCA and also with other
classification algorithms—linear SVMs, kernel PCA, kernel
discriminant analysis, and kernel SLDA, for object recognition
and face recognition under large pose/expression variation. We
also show applications of PCNSA to two classification problems
in video—an action retrieval problem and abnormal activity
detection.

I. INTRODUCTION

WITHIN the last several years, many algorithms have been
proposed for object and face recognition problems; for

a detailed survey, see [3] and [4]. While much progress has
been made toward recognizing faces under small variations in
lighting and pose, reliable techniques for more extreme varia-
tions and for the more difficult image classification problems
like object recognition have proved elusive. For classification
problems like face recognition, different classes have similar
class covariance matrices (in particular, similar directions of
low and high intraclass variance; see Fig. 5) while, for prob-
lems like object recognition (for example, the COIL database;
see Fig. 4), the different classes can have very different class co-
variance matrix structures. As an extreme case of this situation,
the minimum variance direction of one class could be a max-
imum variance direction for another. We propose, in this paper,
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a subspace based classification algorithm, called principal com-
ponents null space analysis (PCNSA), for this situation of un-
equal covariance matrices.

A. Related Work

The two linear subspace algorithms to which PCNSA is most
closely related are principal component analysis (PCA) [5] and
subspace linear discriminant analysis (SLDA) [6], but these are
both optimal for problems with similar directions of minimum
and maximum variance (made precise in Section I-B). PCA [5]
yields projection directions that maximize the total scatter but
do not minimize the within class variance of each class and also
sometimes retains directions with unwanted large variations due
to variation in lighting etc. linear discriminant analysis (LDA)
[7] encodes discriminatory information by finding directions
that maximize the ratio of between class scatter to within-class
(or intraclass) scatter. In subspace LDA (SLDA) [6], PCA and
LDA are combined to yield a classification algorithm for face
recognition which uses PCA first for dimensionality reduction
and then LDA. Subspace LDA is also used in [8] for view based
image retrieval. Independent component analysis (ICA) [9] is a
generalization of PCA which searches for a linear transforma-
tion to express the given data as a linear combination of statis-
tically independent source variables, but like PCA, ICA is actu-
ally optimal for data representation and not classification, and,
hence, we do not discuss it in this work.

A support vector machine (SVM) [10] is another linear two
class classifier which finds a separating hyperplane between the
training data of the two classes such that the “margin” (worst
case distance of either class from the separating hyperplane) is
maximized, while keeping all training data correctly classified.
For data which is not strictly linearly separable, it finds the hy-
perplane that maximizes a sum of the number of points correctly
classified and the margin. Many strategies to extend SVMs to
multiclass classification have been proposed. In [11], the au-
thors use the rules of a tennis tournament to classify 32 objects
from the COIL-100 database. We compare results of PCNSA
with that of [11] in Section VII-A.

Note that, even though PCNSA utilizes linear subspaces for
classification, its classification boundaries are not hyperplanes,
i.e., the set where is
defined in (5) is not a hyperplane. The reason for this is that
the PCNSA classification distance defined in (5), unlike other
linear algorithms, uses different subspaces for different classes.
Two other subspace based classification algorithms which also
share this property are BiasMap [12] and multispace KL (MKL)
[13]. BiasMap [12] performs a class specific LDA for a two class
problem, i.e., for the set of “positive” samples it finds a direction
that maximizes their distance from the “negative” samples and
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minimizes their within class variance. We discuss in Section V
the relation between MKL and our algorithm and how our error
probability analysis can be extended to analyze MKL.

Several nonlinear classification methods have been proposed
in the literature. In [14], Murase and Nayar propose a repre-
sentation of object appearance in the PCA space parameterized
by pose and illumination. Each object class is represented in
the PCA space by a B-spline interpolated manifold. A query
image is recognized based on the manifold that it is closest to
in the PCA space. Mao and Jain [15] describe neural network
algorithms for PCA, LDA, Sammon’s nonlinear projection, and
nonlinear discriminant analysis. Kernel PCA [16] and Kernel
discriminant analysis (KLDA) [17]–[19] use the “kernel trick”
[17] to transform nonlinearly separable data into a higher di-
mensional space, called the “feature space,” where it becomes
linearly separable. The feature space, , obtained by the map-
ping , may even be infinite dimensional, but since
PCA or LDA projections can be written as inner products, these
can be evaluated without explicitly projecting the data into the
feature space [16], [17]. We define a kernel PCNSA method in
Section VI-C and compare its performance with kernel LDA and
kernel PCA in Section VII.

B. Problem Formulation

Consider a -dimensional data sample from class (de-
note class by ). Then

(1)

where and are the class conditional mean and co-
variance of . For high-dimensional data-like images, the real
dimensionality of data (with noise removed) is much smaller
than . Thus, we first perform PCA which, as explained below,
attempts to remove directions with only noise and retain direc-
tions with large between class variance [6]. PCA takes data from
all classes as a single sample set and evaluates the common
mean, , and common covariance matrix, . It chooses
the leading eigenvectors of as the principal component
subspace (PCA space). Given that the data sample, , belongs
to class , its projection in the -dimensional PCA space with
projection matrix, , is distributed as

where

(2)

In this paper, we address the classification problem for the
most general class covariance matrices (unequal, nonwhite) in
the PCA space with eigenvalue decomposition
where is the matrix of eigenvectors arranged in decreasing
order of eigenvalues and is the diagonal matrix of eigen-
values. We propose an algorithm called PCNSA, which first per-
forms PCA on the entire data set and, then, for each class , finds
the directions of least within class covariance.

1) Need for PCA: The total scatter matrix
can be written as [17] where

is the average within class covariance ma-
trix and
is the between class covariance. PCA finds the principal eigen-
vectors of . Under the assumption that the total within

class variance is much smaller than the between class vari-
ance, these are also approximately the principal eigenvectors
of , i.e., PCA approximately finds directions along
which is maximized. Thus, in PCA
space, [with defined in (2)] is the
maximum over all possible choices of .1 Since

, this also
implies that the average is large in the PCA space or
that means are well separated in PCA space. Note that while the
assumption of within class variance being much smaller than
between class variance may not hold in all directions, linear
separability requires it to hold in some directions at least. By
keeping enough PCA projections, one ensures that the PCA
space does contain directions of large between class variance.
One way to ensure this would be to keep taking more PCA
directions until the total between class variance in the PCA
space is more than a certain percentage of the total between
class variance.

2) Relation to LRT: The likelihood ratio test (LRT) [20]
(maximum likelihood solution) for this problem is to choose
the class as

(3)

The PCA distance, is equivalent to the
LRT under the assumption that (which implies that

, i.e., principal eigenvectors of every class covariance
matrix are the same as the PCA directions and have equal eigen-
values). Also, SLDA approximates the LRT when and

is ill conditioned (has an approximate null space). Thus, both
PCA and SLDA are suited for classification problems where
classes have similar within class variance directions.

Assuming that the within class covariance matrices, , are ill
conditioned (happens very often in real applications), the domi-
nant terms in the LRT expression (3) are those along the trailing
eigenvectors of . Hence, under this assumption,

where is defined in (5).

C. Paper Organization

The rest of the paper is organized as follows. The PCNSA
algorithm and assumptions required for it are discussed in Sec-
tion II. Bounds on its classification error probability are derived
in Section III. These error probability bounds are used to com-
pare performance of PCNSA with that of SLDA2 in Section IV.
We also discuss conditions under which PCNSA would out-
perform SLDA and when it would fail. The connection with
Multispace KL [13] is discussed in Section V. New class detec-
tion and some modifications of PCNSA are discussed in Sec-
tion VI. Experimental results on image and video classifica-
tion problems—object recognition, face recognition under large
pose variations, action video retrieval, and abnormal activity de-
tection—are given in Section VII. Performance of PCNSA is
compared with that of SLDA, PCA, SVMs, kernel PCA, and
SLDA. Conclusions and future directions are discussed in Sec-
tion VIII.

1�� in the PCA space is actually zero, i.e., �� =W (�� � �� ) = 0.
2In the entire paper, we use SLDA and LDA interchangeably both always

refer to SLDA.
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II. PRINCIPAL COMPONENTS NULL SPACE ANALYSIS

PCNSA first performs PCA on the entire data for dimension-
ality reduction and to retain directions of large between class
variance [6] (discussed above in Section I-B). In PCA space, it
finds for each class , an -dimensional subspace along which
the class’ intraclass variance is smallest. We call this subspace
the approximate null space (ANS) of class since for most ap-
plications, the lowest variance(s) are usually “much smaller”
than the highest (the class covariance matrix is usually ill condi-
tioned). A query is classified into class if its distance from the
class’ mean in the class’ ANS is a minimum. We first discuss
below the assumptions required for PCNSA to work as a classi-
fication algorithm (have low classification error probability) and
then provide the stepwise algorithm.

A. Assumptions

1) For all classes , the class covariance matrix, , has
a high enough condition number, i.e.,

(where and are the maximum
and minimum eigenvalues of ), with large. This en-
sures that an approximate null space (ANS) exists. The
within class covariance matrix is ill conditioned for most
real classification problems.

2) Any class is linearly separable from all other classes
in its own ANS. A sufficient condition for this is:

The distance between class means in the ANS space of
any class , denoted by , is at least times the square
root of times the maximum eigenvalue of any other
class , i.e., .
Here, is the dimension of the ANS of class .

Note that, as we shall see later, for low error probability, we
either need to be large (say ) or we need to be
large (e.g., , can also work).

B. Algorithm [1]

1) Obtain PCA Space: Evaluate the sample mean, and
covariance, of the training data of all classes taken
together as one sample set. Obtain the PCA projection
matrix, whose columns are the leading
eigenvectors of . We discuss the choice of in Sec-
tion VII-A.

2) Project the training data samples of each class into PCA
space. Evaluate for each class , the class mean, , and
the class covariance, in PCA space.

3) Obtain Class ANS: Evaluate the approximate null space,
, for each class as the trailing eigenvec-

tors of (choose so that the eigenvalues in ANS
satisfy, , ), where

. Assumption 1 ensures that it exists.
4) Obtain Valid Classification Directions in ANS: Let

. A null space direc-
tion, , is a valid classification direction if

. If assumption 2 holds, it guarantees that
this is always possible to do for pairs of classes.3 Thus,

3Assumption 2 is equivalent to [(e (� � � )) �  � ] > 0.

Now, � > 0 implies that there exists at least one k for which � =
[(e (� �� )) � � ] > 0. Since � > e � e , this implies
that e is a valid direction.

the PCNSA projection matrix for class is
chosen as those columns, , of which satisfy

(4)

Note, in practice, the above may not be satisfied for any
one direction when the number of classes is large but it
is still possible to find a subset of directions that sat-
isfy assumption 2. This idea forms the basis of progresive
PCNSA discussed in Section VI-B.

5) Classification: Project the query into the PCA space
as . PCNSA chooses the query
class to be where

(5)

III. TWO CLASS CLASSIFICATION ERROR PROBABILITY

We obtain the error probability bound for classification using
PCNSA for a two class problem. We first evaluate the error prob-
ability assuming Gaussian distributed classes (each class has a
Gaussian class conditional distribution) and a one-dimensional
(1-D) ANS per class so that . We then show
how this can be extended to the general case of Gaussian dis-
tributed classes and -dimensional ANS per class. We discuss
in Section III-C how the error probability analysis can be ex-
tended to non-Gaussian distributions. The two class error prob-
ability expressions can be used to obtain a union bound [20] for
the multiclass error probability.

A. One-Dimensional ANS Per Class, Gaussian Distributions

We assume a Gaussian class conditional distribution of the
query in this and the next subsection. Define as the event
that error occurs given query (class ). The average
error probability assuming that both classes are equally likely,
is . Using PCNSAs class specific
metric defined in (5), the error event is

(6)

Since, ANS is 1-D, and
is a scalar. Then, we have the following theorem [1], [2].

Theorem 1: The error probability is upper bounded
as

(7)
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where (8)

and (9)

and is the cdf of a standard normal random variable.
Symmetric expressions can be obtained for .

Proof: See Appendix

B. -Dimensional ANS Per Class, Gaussian Distributions

In this case, and are -dimensional ma-
trices. The error upper bounds are stated in the theorem below.

Theorem 2: Let

and (10)

and let the eigenvalue decomposition of be .
Then, defining and where
is component-wise magnitude, the error probability is
upper bounded as

(11)

Symmetric expressions can be obtained for .
Proof: See Appendix.

C. Extension to Non-Gaussian Distributions

The analysis for 1-D ANS can be extended to the case of non-
Gaussian distributions.4 Assume that the distribution of has

4The M -dimensional ANS analysis is more difficult to extend because it
hinges on the assumption that dependent Gaussian variables can be made inde-
pendent by a linear transformation.

mean , and has covariance matrix . Let be the cumu-
lative distribution function (cdf) and the probability distri-

bution function (pdf) of , i.e.,
it is the cdf of after location normalization to zero mean
and scale normalization to unit variance. Similarly, let and

be the cdf and pdf of .
Then,

. Also, is defined as ex-
plained in the Appendix (proof of Theorem 1), with replaced
by . Using (30), we get

if
if

(12)

where

(13)

(14)

where and are defined in (8). If the distribution is sym-
metric about zero, the two different cases in the equation above
will be equal. If is symmetric then the last two terms of (13)
and of (14) add up to (like in the Gaussian case).
If and are unimodal and not heavy tailed, and the assump-
tions of Section II-A are true, the error probability bound can be
shown to be small (by repeating the analysis of Section IV-B).

IV. COMPARISON WITH SUBSPACE LDA (SLDA)

We first explain the Subspace LDA algorithm and its classifi-
cation error probability in the next subsection. A qualitative and
quantitative performance comparison of PCNSA with SLDA is
given in Section IV-B. We also compare the training data size re-
quirement, ability to detect untrained classes and computational
complexity in later subsections.

A. Subspace Linear Discriminant Analysis (SLDA)

As discussed in Section I, SLDA [6] first computes a PCA
space for the training data of all classes taken together as one
sample. In PCA space, it performs linear discriminant analysis,
i.e., it computes the most discriminant directions as

(15)

where and . The
solution of (15) is obtained by finding the principal eigenvectors
of the generalized eigenvalue problem , and,
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Fig. 1. � is the angle between the line AB and the Y axis in (a) and between AB and the X axis in (b). Case 1 with ANS directions (Y axis) of both classes
coinciding is shown in (a). Case 2 where the Y axis is ANS for class 1 and maximum variance direction for class 2; vice versa for the X axis, shown in (b).
(a) Case 1 ( = 0 ) with � � 0 . (b) Case 2 ( = 90 ) with � � 45 .

hence, the maximum number of LDA directions for a class
problem is limited by the rank of which is . The LDA
classification metric is

(16)

The error event for a two class problem (1-D ) is
. The error probability follows di-

rectly using Gaussian hypothesis testing [20]:

where

(17)

This results has also been discussed in [21]. Now, the above
analysis can also be extended to situations where , and,
hence, have a non-Gaussian distribution. Let

have a cdf and
pdf . Then for nonsymmetric distribution, we have two
cases: If ,

. If , then
. If the distribution is symmetric about the

origin, then both cases are equal. Once again, unimodal and
not heavy tailed is required for small error.

B. Classification Performance Comparison

We analyze the error probability expressions (7) and (17).
First, note that in (7), the second term reduces very fast as
increases, e.g., if , and
if , . Now, in (7), if , and
also (for ) tend to zero, the lower and upper
limits of the first integral tend to each other, and, hence, the
first term tends to zero. Choosing , the second term,
and, hence, the total error probability bound is of the order of

, but if this does not hold, i.e., if either of or
are of the order of or (ANS space does not

exist for either class), then choosing makes the first
term of (7) comparable to the LDA error expression (17). In this
situation, to make (7) zero, one requires and to go
to infinity. Also, for (17) to go to zero, and need to
go to infinity.

SLDA evaluates to maximize the between class
variance in the PCA space, while also minimizing the average
within class variance, so that is large. Also, assump-
tion 2 (step 4 of the algorithm in Section II-B) ensures that

(large)5 while assumptions 1 and 2 together (steps
3 and 4 of the algorithm) ensure that
(small).6 Thus, PCNSA error will be small if either is large
or is large.

We now discuss some example situations which demonstrate
when PCNSA outperforms SLDA and vice versa. First, we
make some assumptions to reduce the number of variables to
analyze. We consider the two situations shown in Fig. 1 and
study the error probability variation as the angle is varied
between zero and , and the logarithm of the condition
number is varied between 3 and 7.

1) Simplifying Assumptions: We assume a two-dimensional
PCA space and each class having a 1-D ANS and one direc-
tion of maximum variance. Also, we assume that the eigen-
values of covariance matrices of both classes are equal, i.e.,

and . We
take . With these assumptions, the error
probability expressions can be reduced to a function of three
variables: the condition number, , the angle
between and , denoted by and the angle made by the
vector (line joining the means) with , denoted by .
In two dimensions these two angles automatically fix the angle
between the direction of and .

We study the variation of error probability as a function of
and for two extreme values of , (case 1) and
(case 2). We show that PCNSA works well in both these extreme

5Since � = N � N < � (by definition of maximum eigenvalue),
we have � =� = jN (� � � )j=� > jN (� � � )j= � . Thus,
assumption 2 implies that � =� >  .

6� =� >  and jN (� � � )j= � >  together imply
that ( � =jN (� � � )j) = ( � =� ) <(1=

p
  ).
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Fig. 2. Average probability of error as a function of � for different values of condition number R for (a) Case 1 and (b) Case 2. As can be seen the LDA, error
probability does not vary much with R in either case (curves for all R values are coincident) and also does not degrade much as � ! 90 .

cases as long as the assumptions of Section II-A are satisfied and
fails completely when they are not.

2) Qualitative Comparison: We first provide a qualitative
comparison of the two cases using Fig. 1(a) and (b)

for small . In both figures, the condition number
is set to a large value (assumption 1 of Section II-A). We

have in Fig. 1(a) and in Fig. 1(b), both being
far from (assumption 2 of Section II-A satisfied). Case 1
with , shown in Fig. 1(a) is a best case scenario for both
PCNSA and LDA since axis is the ANS direction for both
classes and the common LDA direction is also close
to the axis. Thus, the variances of both classes along
are small; hence, LDA works very well. Also variances of both
classes along the common ANS direction ( axis) are small
and the distance between class means along the axis is large.
Hence, the performance of PCNSA will also be very good in
this case.

However, for case 2 with , shown in Fig. 1(b), the
maximum variance direction of one class coincides with the
ANS of the other. This is the worst case for LDA but PCNSA
works very well in this case. In fact, this case demonstrates the
need for the PCNSA algorithm. Here, the axis is ANS di-
rection for class 1, but a maximum variance direction for class
2 and vice versa for axis. Thus, is along the direc-
tion (direction AB in the figure). Along , both
classes have a large enough variance. So, LDA has a high error
probability in this case. The region for the LDA error event

is the region of ellipse 1 to the right of line PR and for
it is the region of ellipse 2 below line PR, but PCNSA

still works well because the integration region for is only
those parts of ellipse 1 that are closer to (point B) along
( axis) than to (point A) along ( axis) and similarly
for . Thus, the error region is the small overlap region of
the two ellipses (region PQRS) for both and .

3) Quantitative Comparison—Error Probabilities as a Func-
tion of and : In case 1 , .
Using the simplifying assumptions and definitions (8),

, and .
The condition number of either class’ covariance matrix is

. Substituting in (7), we get

(18)

and the same expression for so that
. We also evaluate using (17). MATLAB

is used to evaluate for different values of and . Both
and are plotted in Fig. 2(a), for

, and . This is a best case scenario
for both SLDA and PCNSA as long as is bounded away from

(distance between class means along both classes’ ANS is
nonzero). We have for both NSA and LDA

but

while (19)

i.e., when tends to , PCNSA fails completely while the
performance of LDA degrades gracefully.7

Now, in case 2 , , i.e.,
and . So while

. Again using the simplifying
assumptions and (8), and

. This gives

(20)

7The LDA limit is an approximate numerically evaluated value.
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For LDA,
so that is along ,

i.e., . Thus, we have

(21)

The expressions for for both PCNSA and LDA have the
“ ” replaced by “ .” Case 2, as also discussed earlier, is the
worst case for LDA. The average error probabilities are plotted
in Fig. 2(b). The LDA error probability in this case converges to
a nonzero value which depends on , i.e., we get [using (21)]

(22)

The above limit is approximately the LDA curve (dotted line)
shown in Fig. 2(b). PCNSA still works very well in this case,
i.e., we have [using (20)]

(23)

although the rate of convergence is much slower than in case
1. Note that, in this case, converges to zero even for

or . This is because variance of class 2 along
ANS-1 and vice versa is large. Hence, in (7), even when ,
for , we get . In Case 1 on the other
hand, , and, hence, it relies on the term going to
infinity to minimize error.

4) Discussion: Thus, from the above analysis, we conclude
that PCNSA fails for small values of (no approximate null
space) or when the distance between class means projected
along ANS becomes small . We have included
checks in steps 3 and 4 of our algorithm to avoid these two
situations.

C. Comparing Size of Training Data

In real applications, the model is never exact and so the ANS
calculation is never exact. Finding the approximate null space
directions requires a large amount of training data to correctly
find directions along which there is almost no variation. The
size of the training data set per class should be at least two to
three times the dimension of the PCA space to correctly estimate
the lowest eigenvalues (and corresponding eigenvectors) of the
class covariance matrix. SLDA can do with lesser training data
and PCA requires the least. This fact has been observed exper-
imentally and is plotted in Fig. 3. Note the figure is for a fa-
cial feature matching problem [22] where training and test data
was very different. On the other hand, for the object recognition
applications (Section VII-A), even for 36 training samples per
class, PCNSA outperformed SLDA and PCA.

D. Comparing “New” (Untrained) Class Detection Ability

Since PCNSA defines a class specific metric, “new” (un-
trained) classes can be detected most easily using PCNSA.
When a query belongs to a trained class its distance from the

Fig. 3. Error probability variation with reduced training data sizes per class.

class mean along that class’ approximate null space is a very
sharp minimum while a query belonging to a new class will
have no such sharp minimum. This idea has been used in Sec-
tion VI-A to design a new class detection algorithm. Detecting
new classes is more difficult with LDA because trained classes
may not have very sharp minimum distances from their own
class means along the LDA directions.

Another advantage of PCNSA over SLDA is that the PCNSA
class-specific metric does not require any knowledge of the
second class and so can be used for binary hypothesis testing
problems where the statistics of the alternate hypothesis
are not known. We have discussed its application to abnormal
activity detection (where “abnormality” is not characterized) in
Section VII-D.

E. Comparing Computational Complexity

The extra overhead for obtaining PCNSA or LDA subspace
in PCA space (highly reduced dimension data) is negligible
compared to the initial principal eigenvectors calculation done
on -dimensional data (for images is the total number of
pixels). Since training is done once and offline, this complexity
is not very critical while classification is an online process.
Query classification time is proportional to the number of inner
products (equal to total number of projection directions) to be
taken. For a K-class application, LDA requires a maximum of
“ ” -dimensional inner products and PCNSA using
ANS directions per class requires “ ” -dimensional inner
products (this assumes that PCNSA/LDA projection matrix
from original -dimensional space to SLDA or PCNSA space,

and have been precalculated). If
the principal component space is -dimensional, PCA classi-
fication requires “ ” -dimensional inner products. “ ” will
be larger than “ ” for most applications. If it is not, one
can first project the query to the principal component space (

-dimensional inner products) and then projecting to the ANS
space of each class will require negligibly small extra time
(“ ” extra -dimensional inner products, ). To sum-
marize, classification complexity for PCA is -dimensional
inner products which can be greater than or equal to that for
PCNSA ( , assuming M-dimensional ANS) but is
always greater than that for LDA .
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The computational complexity of any kernel method is “
” times more (where T is the total number of training samples).

Projecting a query into the KPCA space (PCA of feature space),
done using the kernel requires “ ” -dimensional inner
products instead of the usual one -dimensional inner product.

V. RELATION TO MULTISPACE KL [13]

Multispace KL [13] is a subspace based classification and
representation algorithm which appeared around the same time
as our conference paper [1] on PCNSA. When used for classifi-
cation, MKL can be thought of as a generalization of PCNSA. It
separates all classes into subsets of similar classes and for each
subset derives a principal component subspace representation.
For classification of a query, it first finds the subspace (subset)
from which the distance of the query is a minimum and in that
subspace finds the class mean that is closest to the query in Eu-
clidean norm. The distance from space defined in [13] is equiv-
alent to the distance in ANS space defined by us. In fact MKL is
exactly equivalent to performing null space analysis to choose
the nearest subspace (subset) and then using PCA to choose the
nearest class within the subset.

We can extend the error probability analysis of Section III
to evaluating the classification error probability of MKL. The
error in choosing the correct subspace is with ANS
dimension (Using notation from [13] where is the
subspace dimension and is the original data dimension). The
bound for this error, , for a two class problem is
given by (11). The error in classification within the subspace is
the error in classification using the Euclidean distance in PCA
space. Thus, classification error (given query belongs to class )
using MKL would be

Now, MKL has been applied to an image retrieval problem in
[13]. We can also use PCNSA for retrieval applications. We
show in Section VII-C, application of PCNSA to a video re-
trieval problem from a small database. For a large database re-
trieval application, using the MKL idea, we can select subsets of
classes with similar within-class covariance matrices and obtain
ANS for each subset (as in [13]). PCNSA can be used to choose
the subset to which the query is closest and LDA to classify
within the subset.

VI. NEW CLASS DETECTION AND PCNSA MODIFICATIONS

A. New Class Detection

A common problem in most classification applications is to
detect when a query does not belong to any of the classes for
which the classifier has been trained. In this paper we refer to
such a query as belonging to a “new” class. Since PCNSA uses a
class-specific metric, its ability to detect “new” classes is better.
We use the following idea to develop an algorithm for new class
detection: If distances from two or more classes are roughly
equal, we conclude that the query belongs to a “new” class. This
is because a query will have a very sharp minimum in its own
class’ ANS and if there is no such sharp minimum, then one

can say that it does not belong to any of the trained classes. We
classify a query as belonging to a “new” class if the minimum
distance is greater than a threshold times the distance
from any other class , i.e.,

(24)

or equivalently (25)

The value of governs the false alarm and miss probabilities. If
we define as the hypothesis that the query belongs to one of
the trained classes and as the hypothesis that it belongs to
an untrained (“new”) class, then false alarm is the event that the
algorithm decides in favor of (“new” class) when actually

is true (query comes from a trained class) [23]. The value
of can be set based on the requirements of the application, if
it can tolerate false alarms but is sensitive to misses, is set to
a small value. We vary the value of between 0 and 1 and plot
the ROC curves (plot of new class detection probability against
probability of false alarm, both evaluated experimentally) [20]
for the different algorithms in Section VII.

B. Progressive-PCNSA

Progressive-PCNSA is a modification of the PCNSA algo-
rithm which chooses the number of ANS directions on the fly.
In practice, when the number of classes is large, quite often,
there is no one single direction of the ANS of class which sat-
isfies assumption 2 of Section II-A for all . As a practical
solution to this problem, we vary the dimension of ANS of all
classes between a value to (choice of ,
discussed in Section VII-A) and evaluate the ratio given in the
left hand side of (25) for each value of . The stepwise classi-
fication procedure is as follows.

1) Vary ANS dimension from
. For each value of :

— evaluate for all classes using (5) and with
the trailing eigenvectors of ;

— find the minimum distance and the corre-
sponding class ;

— evaluate the ratio in the left hand side of (25).
2) Find the minimum value of the ratio and the corre-

sponding ANS dimension . If this minimum value
is less than , the class is the chosen class. If the
minimum value is greater than , then (25) is satisfied
and so the query is declared as coming from a new class.

C. Kernel PCNSA

Kernel PCNSA can be performed by performing Null
Space Analysis in KPCA space instead of the PCA space, i.e.,
K-PCNSA finds an Approximate Null Space of the KPCA
space. Now PCNSA requires the assumption that each class
can be linearly separated from all other classes in its own ANS.
The motivation for K-PCNSA (similarly to that for KPCA,
KDA, or KSLDA) is that this assumption may not be satisfied
in the PCA space of the data but by projecting the data into
a higher dimensional “feature” space and taking its principal
components, the assumption will (hopefully) be satisfied.
Progressive-PCNSA can be implemented similarly.
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D. Combining PCNSA and SLDA Using Error Probabilities

We propose to combine PCNSA and SLDA using the error
probability expressions derived in Sections III and IV-A. Since
the expressions are for two classes at a time, we use the tennis
tournament strategy described in [11] for classifying multiple
classes. The algorithm is as follows.

1) In the training stage, for every pair of classes .
— Evaluate the two class error probabilities using

PCNSA and SLDA and choose the algorithm with
smaller error probability.

— Also, store the corresponding SLDA direction,
, or the best PCNSA classification direc-

tions, , (obtained using step 4 of
Section II-B) for the class pair.

2) Given a query, the tennis tournament strategy [11] is as
follows. In the first round, the query is classified into
one of every pair of classes using the algorithm chosen
for the pair in the training stage. Thus, at the end of the
first round, the query belongs to one of
classes. In the next round, the same algorithm is repeated
to choose classes and so on. Thus,
after a total of rounds, the query is clas-
sified. The classification complexity of this algorithm is
only as much as that for PCNSA.

VII. EXPERIMENTAL COMPARISON

We have compared the performance of progressive-PCNSA
and PCNSA with that of PCA, SLDA, KPCA, KLDA,
K-SLDA, and SVMs for object recognition (COIL data-
base [24]) and face recognition under large pose varia-
tion (UMIST [25] and AT&T databases [26]). We experi-
mented with the following kernel choices—the Polynomial
kernel, , the Gaussian kernel,

and the recently proposed cosine
kernels [19]. A cosine kernel can be defined for any Mercer
kernel [17], , as and
is also shown to be a Mercel kernel [19]. The motivation for
this kernel comes from the fact that similarity measures based
on the cosine (normalized inner product) measurement should
be more reliable than the inner product measurement [19].

In all experiments, we treat one image (arranged as a column
vector) as one sample. We have also shown the superior per-
formance of PCNSA for new class detection by leaving a few
classes untrained and testing for data from those classes. There
are three kinds of classification errors.

— Misclassification error given : A query from trained
class gets wrongly classified as trained class , .

— False Alarm (Type I error) given : A query from any
“trained” class gets wrongly classified as “new.”

— Miss (Type II error) given : A query from
a “new” class gets wrongly classified as some
“trained” class. New class detection probability is

.

We varied the value of the new class detection threshold, , be-
tween 0 and 1 and plotted the ROC curves for different algo-
rithms. We also show application of PCNSA to action retrieval
and abnormal activity detection.

Fig. 4. Object recognition: Some samples from the COIL-100 database.

A. Image Classification: Object Recognition

We tested our algorithm on the Columbia Object Image Li-
brary (COIL-100) database [24] (shown in Fig. 4) which con-
tains 100 different objects and 72 views of each object taken
at five-degree-apart orientations. We compare the performance
of prog-PCNSA and PCNSA with that of linear SVMs [10],
[11], SLDA [6] and PCA [5] and also with KPCA [16], KDA
[17], [18], and KSLDA performed with Gaussian and Cosine
polynomial [19] kernels. To compare with SVM results on the
COIL-100 database, we repeated the experimental setup dis-
cussed in [11]. A set of 32 classes was chosen randomly and
20 such iterations were run every time choosing a different set.
36 of the 72 images of each class were used for training and the
other 36 for testing. The original 128 128 images were resam-
pled to 32 32. Under this setup, a 0% error is reported with
linear SVMs [11]. We show the misclassification error prob-
ability in Table I. As can be seen, Progressive-PCNSA had a
0.16% error while SLDA had a much higher 2.1% error. When
applying kernel methods, the best results for all algorithms were
obtained with the Gaussian kernel. We tried to implement both
KDA and KSLDA but KDA had an error of 89% even when
classifying between just ten classes, and, hence, we show re-
sults only with KSLDA.

For prog-PCNSA and PCNSA we used a 15-dimensional
PCA space. The PCA space dimension can be chosen by
retaining a large percentage, say 80%, of the total energy, but
since we need to find the trailing eigenvectors in PCA space,
we need PCA space to be small enough so that the training data
size per class is at least 2–3 times the PCA space dimension.
We choose the PCA space dimension to be so that the
training data size per class, . The SLDA results
were obtained with a 100-dimensional PCA space (larger
PCA space needed to be able to correctly estimate directions
of low average within class variance and high between class
variance) and 31 LDA directions. The SLDA results with a
15-dimensional PCA space were much worse with an error of
13.4% without kernels. For choosing the ANS dimension (for
simplicity, we used the same ANS dimension for all classes),
we ran a sequence of iterations to compare performance of
PCNSA for increasing ANS dimension. We show the plot in
Fig. 6. Based on this plot, we took for PCNSA
and and for prog-PCNSA.
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TABLE I
OBJECT RECOGNITION (COIL DATABASE, 32 CLASSES): MISCLASSIFICATION ERROR PROBABILITY. THE FIRST ROW SHOWS RESULTS WITHOUT USING ANY

KERNELS FOR ALL ALGORITHMS. THE SECOND AND THIRD ROWS SHOW RESULTS WITH THE COSINE POLYNOMIAL KERNEL OF DEGREE 10 AND THE

GAUSSIAN KERNEL. WE HAVE HIGHLIGHTED THE BEST KERNEL CHOICE FOR EACH ALGORITHM BY UNDERLINING AND SHOWING THE ERROR IN BOLD

Fig. 5. Face recognition databases: (a) 23 different face poses used for each face from the UMIST face database; (b) ten facial expressions used for each face
from the AT&T Cambridge face database (formerly, ORL face database).

Fig. 6. Plot showing variation in error probability (shown as a percentage) with varying ANS dimension for the object recognition problem.

In Fig. 7, we show the ROC curves to compare new class de-
tection ability of the algorithms without any kernel in Fig. 7(a),
with the Cosine polynomial kernel with in Fig. 7(b)
and the Gaussian kernel in Fig. 7(c). Thirty-two trained classes
and ten untrained (“new”) classes were used for testing. As can
be seen, prog-PCNSA has the best performance followed by
PCNSA, SLDA, and PCA. The results with and without ker-
nels are very similar.

B. Image Classification: Face Recognition

Face recognition has been discussed as an example of an “ap-
ples from apples” type application where LDA and PCNSA have
comparable performance. The algorithms were tested on two
standard face databases: the UMIST face database [25], which
consists of 22 images of each person, taken in different poses
and the AT&T Cambridge database (formerly the ORL data-
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Fig. 7. ROC curves (object recognition): Plots of probability of new class detection versus probability of false alarm for varying new class detection thresholds.
(a) No kernel. (b) Cosine polynomial: d = 10. (c) Gaussian: � = 4000.

TABLE II
FACE RECOGNITION (UMIST DATABASE, 15 CLASSES): MISCLASSIFICATION ERROR PROBABILITY. WE HAVE HIGHLIGHTED

THE BEST KERNEL CHOICE FOR EACH ALGORITHM BY UNDERLINING AND SHOWING THE ERROR IN BOLD

TABLE III
FACE RECOGNITION (AT&T CAMBRIDGE (FORMERLY ORL) DATABASE, TEN CLASSES): MISCLASSIFICATION

ERROR PROBABILITY. WE SHOW ONLY THE BEST KERNEL CHOICE FOR EACH ALGORITHM

Fig. 8. ROC curves (face recognition): plots of probability of new class detection versus probability of false alarm for varying new class detection thresholds: (a)
no kernel; (b) polynomial d = 2; (c) Gaussian, � = 4000.

base) [26].8 The face images can be downloaded from http://im-
ages.ee.umist.ac.uk/danny/database.html and http://www.uk.re-
search.att.com/facedatabase.html respectively. We show a few
samples of one face class from each database in Fig. 5. Also
note that the UMIST database had large pose variation because
of which the within class covariances of different classes were
different (and, hence, PCNSA performs better for this database)
while SLDA was better for the AT&T database. The “Leave two
out” strategy was adopted for testing and 40 such iterations were
run, each time choosing the two test samples from each class
randomly. Five new classes and 12 trained classes were taken

8The reason only these two databases were used is that they had enough
training data per class to obtain reliable ANS representations for each class.
When training data is small, performance of PCNSA deteriorates very fast.

for UMIST, while five new and ten trained classes were taken
for AT&T.

The misclassification error in the UMIST database is shown
in Table II. The best kernel choice for all algorithms except PCA
is the no kernel case, . Prog-PCNSA and PCNSA
have 0% error while SLDA has only a marginally higher error of
0.3%. For the AT&T database, we show in Table III results using
only the best kernel type for each algorithm. Here SLDA outper-
forms prog-PCNSA and PCNSA. The fact that the within-class
variation is very similar for all faces makes performance of LDA
superior. We have also plotted the ROC curves for the UMIST
database in Fig. 8. Here, prog-PCNSA and PCNSA have supe-
rior performance in all cases except in the Gaussian kernel case,
where performance of SLDA is also comparable.
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TABLE IV
RETRIEVING ACTIONS USING PCNSA IN TANGENT TO SHAPE SPACE: THE DISTANCES OF THE QUERY SEQUENCES (TOP ROW) IN ANS SPACE

OF TANGENT TO MEAN SHAPE ((27)) OF EACH OF THE 3 DATABASE SEQUENCES (IN LEFTMOST COLUMN) ARE SHOWN. THE BOLD AND

UNDERLINED DISTANCE IN EACH COLUMN CORRESPONDS TO THE CLOSEST MATCH TO QUERY

C. Video Classification: Action Retrieval

We show here an application of PCNSA to action retrieval
in a landmark shape dynamical framework proposed by us in
[27]–[29]. We represented a stationary shape activity by a mean
shape plus a linear dynamical model in the tangent space [30]
at the mean shape. The dynamics in tangent space is modeled
by a linear autoregressive (AR) model, ,

. The sequence of operations can be summarized as
follows:

(26)

where is the configuration vector (a complex vector containing
the x and y coordinates of the landmarks as the real and imaginary
parts) at time , is the preshape obtained after translation and
scale normalization of and is the Procrustes mean shape
[30] obtained after generalized Procrustes analysis [30] on the
preshapes. is the shape obtained after aligning the preshapes,

, to [30] and is the tangent coordinate of in the tan-
gent space at . Also, is the autoregression matrix, and

are the covariance matrices of and [27].
For representing actions, we used motion capture data (which

provides locations of 53 human joints in a set of frames) to
learn the shape dynamical models for three different actions—
“walking,” “brooming,” and “sitting.” Each joint location con-
stituted a landmark. For each action, we learnt the mean shape
and the -dimensional tangent space at the mean
shape. The PCA subspace of the tangent space of an action class
was obtained by projecting the training data from all classes
into the tangent space and evaluating the principal eigenvectors
of the covariance matrix. The AR model, ,

, was defined in this reduced dimensional PCA
space and an ANS of the noise covariance matrix was learnt and
used for classification. The entire algorithm is as follows.

1) For each class , learn the mean shape and tangent space
as summarized in (26).

2) For each class :
— project data from all classes into the tangent space of

class and learn a -dimensional PCA space
;

— project the training data of class into this PCA space,
to learn the Gauss-Markov model parameters, ,

, [27] in PCA space; project the autoregres-
sion matrix back into full tangent space to get

;
— learn by obtaining the trailing eigenvectors of

; combine both PCA and NSA projection ma-
trices to obtain .

3) Classification: Given a test sequence:
— for each class , project the sequence into its tangent

space to obtain ;
— choose the most likely class as

where

(27)

Since stationarity is assumed, we were able to use a single
training sequence of each of the actions to learn the mean shape,
PCA space, AR model parameters, and ANS for each class.
We then used different instances of “walking,” “brooming” and
“sitting” actions as queries and attempted to retrieve the closest
action to the given action. We show the distances in Table IV.
The query actions were prowl-walk, two brooming sequences,
crawl, jog, two sitting sequences, three walking sequences,
and a sad-walk sequence. We have underlined the distance of
a query from its closest action. As can be seen from the table,
for all the five walk sequences, the “walk” action sequence is
correctly retrieved. Also for the two broom sequences and the
two sit sequences, the correct action is retrieved. For crawl,
which is a new class, the minimum distance (dmin) and second
largest distance (dmin2) are quite close, so using the new class
detection method given in (24) with , it gets classified
as a new class.

D. Video Classification: Abnormal Activity Detection

In [27], we have used a PCNSA based metric for abnormal
activity detection in a shape dynamical model framework
(discussed above in Section VII-C). A normal activity con-
sisting of a group of people deplaning and moving toward
the airport terminal was represented by a landmark shape
dynamical model (with each person forming a landmark). The
ANS matrix was learnt for the noise covariance
for a normal activity and the distance to activity metric was

. We observed
in [27] that this detected abnormality faster than both full Eu-
clidean distance and full Mahalonobis distance (log likelihood
under the AR model). The data dimension was originally quite
small (eight dimensional), and, hence, dimensionality reduc-
tion using PCA was not required for this application. Also, the
“abnormal” class was not characterized, so one could not use
PCA to increase between class variance. For the same reason
LDA could not be used for this application.

A normal and an abnormal activity frame are shown in
Fig. 9(a) and (b). Plots of the activity metric as a function of
time for normal activity and two kinds of abnormalities are
shown in Fig. 9(c). Note that this algorithm runs in realtime
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Fig. 9. (a) A “normal activity” frame with four people, (b) shape distorted by one person deviating from path, (c) detecting abnormal activities. The blue solid
and dotted plots are the activity metric for a normal activity as a function of time. The green—� plot for the abnormality shown in (b) and the red—o plot is for
abnormality introduced by one person stopping in the path. Both abnormalities were introduced at t = 5.

even with MATLAB code and, hence, can be used for real-time
video surveillance applications.

E. Other Applications

Another application to which we applied PCNSA was for
feature matching for image registration [22]. Image registration
is an important problem in many applications, one of which is
three-dimensional model alignment. The first and most difficult
step in image registration is obtaining feature correspondences
between two or more frames. In [31], correlation matching has
been used for obtaining correspondences. We replaced this cor-
relation match by distance in PCA, SLDA or PCNSA space.
Also new feature detection is very important here, since as the
face moves, new (previously occluded) features can appear. Re-
sults showing superior performance of PCNSA for this applica-
tion are shown in [22, Chapter 5].

Other possible applications of PCNSA are in content-based
image retrieval and digit recognition. For large database image
retrieval, a combination of PCNSA and SLDA can be used as a
robust alternative to just LDA: Choose subsets of classes which
have similar covariance matrices, use PCNSA to choose the
class subset and SLDA to classify within the subset (an idea
similar to MKL [13]).

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

A new algorithm called PCNSA was presented for classifi-
cation when different classes have unequal and nonwhite class
covariance matrices. Error probability expressions were derived
for PCNSA and its performance compared with subspace LDA
which is another algorithm for classification in colored noise.
Superior performance of PCNSA was shown for applications
with vastly different within-class covariance matrices like object
recognition, action retrieval or abnormal activity detection. Con-
ditions when PCNSA would fail—no ANS space or small inter-
class distance in ANS space or small training data set (inaccu-
rate ANS space estimation) were also discussed. Experimental
comparison with SLDA, PCA, SVMs, and kernel methods is
shown.

As part of future work, we plan to combine PCNSA and
SLDA using the algorithm described in Section VI-D. For large
number of classes, for example retrieval applications, one can

use ideas similar to [13] as discussed in Section V. Also, an al-
gorithm similar to Discriminant EM for LDA [32] can be used
to increase the size of the training data set. Queries which have
been reliably classified [i.e., have a low value of the ratio given
in (25)] can be used as training data and improved ANS esti-
mates can be obtained on the fly. There are many algorithms
for online eigenvector estimation as new data comes in, without
having to recalculate the covariance matrix. Since PCNSA uses
a very small dimensional PCA space, the cost of re-estimating
ANS would be small.

APPENDIX

PROOFS FOR SECTION III

Proof of Theorem 1

The error event is defined in (6). Now since ANS is as-
sumed 1-D, and is a
scalar. Using (2)

(28)

Now (29)

where is the cdf of an random variable and is
defined in (9). One can choose large enough so that is
small. For example, for , . Now, the error
event (defined in (6)) can be split as,9

(30)

Thus, . Now
. Using (2), we get

(31)

9Assume X 2 C everywhere.
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and . Using the definitions in
(8), we get

. Thus

(32)

Substituting for and using (29) and (9) and taking a
minimum over all value of [(32) is valid for all ,
and, hence, a tighter bound is obtained by taking a minimum
over ], we get the result.

Proof of Theorem 2

Error event is as defined in (6) with now given by (10).
It can be bounded using exactly the same logic as in (30). Thus,
we have

(33)
First consider . Define

(34)

where is diagonal. Then . Thus

(35)

This follows because , , implies that
. Thus, . Taking com-

plements on both sides we get (35).
By (34), the components of the vector are independent,

and, hence, the events are independent. Also,
where is defined in (29). Thus, using (35)

(36)

Now, consider . Define

(37)

then ( , defined in Theorem 2).
Using to diagonalize , we get ( , defined in Theorem
2)

(38)

Since is orthonormal,
( defined in Theorem 2) and so

(39)

Using the fact that implies that
, , we get

where

The events are independent since elements of the vector
are independent. Using (7),

where is the component of and is
the element of .

Thus

(40)

Finally, combining (33), (36), and (40) and substituting for
from (36), and taking a minimum over all , we

get the result.
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