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Abstract—“THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD”. In this work, we obtain performance guar-
antees for modified-CS and for its improved version, modified-
CS-Add-LS-Del, for recursive reconstruction of sparse signal
sequences from noisy measurements. Under mild assumptions,
and for a realistic signal change model, we show that the support
recovery error of both algorithms is bounded by a time-invariant
and small value at all times. The same is also true for the
reconstruction error. Under a slow support change assumption,
our results hold under weaker assumptions on the number
of measurements than what simple compressive sensing (basis
pursuit denoising) needs. Also, the result for modified-CS-add-
LS-del holds under weaker assumptions on the signal magnitude
increase rate than the result for modified-CS. Similar results were
obtained in an earlier work, however the signal change model
assumed there was very simple and not practically valid.

I. INTRODUCTION

Starting with the seminal papers of Candes et al and
Donoho [1], [2] there has been a large amount of recent
work on sparse recovery/ compressed sensing (CS). Since
2008, the problem of recursively recovering a time sequence
of sparse signals, with slowly changing sparsity patterns has
also been extensively studied [3], [4], [5], [6], [7], [8], [9],
[10]. In [7], the authors study a multiple measurement vector
(MMV) version of the recursive recovery problem and obtains
conditions under which the support of the sparse signals can
be exactly tracked over time in the noise-free case.

A key assumption introduced in [3] and empirically veri-
fied in [4], is that for many natural signal/image sequences,
the sparsity pattern (support in the sparsity basis) changes
slowly over time. In [6], the authors exploited this fact to
reformulate the above problem as one of sparse recovery with
partially known support and introduced a solution approach
called modified-CS. Given the partial support knowledge T ,
modified-CS tries to find a signal that is sparsest outside of
T among all signals that satisfy the data constraint. Exact
recovery conditions were obtained for modified-CS and it was
argued that these are weaker than those for simple CS (basis
pursuit) under the slow support change assumption. Other
related ideas for support recovery with prior knowledge about
the support entries, that appeared in parallel, include [11], [12].

Error bounds for modified-CS for noisy measurements were
obtained in [13] and [14]. However, when modified-CS is
used for recursive reconstruction, the most important question
is, under what conditions can we obtain time-invariant error
bounds, i.e. show error stability over time? In [14], we first

answered this question for modified-CS and for an improved
version of modified-CS which we called “modified-CS with
add-LS-del”. However, the signal model assumed in [14] was
highly simplified. For example, it assumed that the magnitude
of a newly added coefficient to the support increased at the
exact same rate at all times and for all new coefficients. A
similar assumption was made for the magnitude to decrease
before it got removed from the support. For typical sequences,
neither of these assumptions holds in practice.

Contribution. In this work, we obtain conditions for error
stability of modified-CS and modified-CS-Add-LS-Del for a
realistic signal change model that allows different rates of
magnitude increase and decrease at different times and for
different coefficients. Unlike [14], it also allows different
numbers of coefficients to get added or removed at different
times. We verify that our model is indeed valid for MRI
image sequences. For the above signal change model, under
mild assumptions (enough number of measurements and large
enough initial magnitude or large enough rate of magnitude
increase) we show that the support recovery error of both
algorithms is bounded by a time-invariant and small value
at all times. The same is also true for the reconstruction
error. Under a slow support change assumption, we argue that
our results hold under weaker assumptions on the number of
measurements than what simple compressive sensing (basis
pursuit denoising) needs. Also, the result for modified-CS-
add-LS-del holds under weaker assumptions on the signal
magnitude increase rate than the result for modified-CS.

A. Notation and Problem Definition

We let [1,m] := [1, 2, . . .m]. We use T c to denote the
complement of a set T w.r.t. [1,m], i.e. T c := {i ∈ [1,m] :
i /∈ T }. We use |T | to denote the cardinality of T . Also, ∅
denotes the empty set. The set operations ∪, ∩, \ have their
usual meanings (recall that A \ B := A ∩ Bc).

For a vector, v, and a set, T , vT denotes the |T | length
sub-vector containing the elements of v corresponding to the
indices in the set T . ∥v∥k denotes the ℓk norm of a vector v.
If just ∥v∥ is used, it refers to ∥v∥2. Similarly, for a matrix
M , ∥M∥k denotes its induced k-norm, while just ∥M∥ refers
to ∥M∥2. M ′ denotes the transpose of M and M† denotes the
Moore-Penrose pseudo-inverse of M (when M is full column
rank, M† := (M ′M)−1M ′). Also, MT denotes the sub-matrix
obtained by extracting the columns of M corresponding to
indices in T .



At all times, t > 0, we assume the following observation
model:

yt = Axt + wt, ∥wt∥ ≤ ϵ

where xt is an m length sparse vector with support set Nt,
i.e. Nt := {i : (xt)i ̸= 0}; yt is the n < m length
observation vector at time t; and wt is the observation noise.
Our algorithms need more measurements at the initial time,
t = 0. We use n0 to denote the number of measurements used
at t = 0 and we use A0 to denote the corresponding n0 ×m
measurement matrix, i.e. at t = 0, we have

y0 = A0x0 + w0, ∥w0∥ ≤ ϵ

Our goal is to recursively estimate xt using y1, . . . yt. By
recursively, we mean, use only yt and the estimate from t−1,
x̂t−1, to compute the estimate at t.

The S-restricted isometry constant (RIC) [15], δS , for the
matrix, A, is the smallest real number satisfying

(1− δS)∥c∥2 ≤ ∥AT c∥2 ≤ (1 + δS)∥c∥2 (1)

for all sets T ⊂ [1,m] of cardinality |T | ≤ S and all real
vectors c of length |T |. The restricted orthogonality constant
(ROC) [15], θS1,S2 , is the smallest real number satisfying

|c1′AT1

′AT2c2| ≤ θS1,S2∥c1∥ ∥c2∥ (2)

for all disjoint sets T1, T2 ⊂ [1,m] with |T1| ≤ S1, |T2| ≤ S2

and S1 + S2 ≤ m, and for all vectors c1, c2 of length |T1|,
|T2| respectively.

In this work, δS , θS1,S2 always refer to the RIC, ROC for
the measurement matrix A which is used at t > 0. If we refer
to the RIC of any other matrix, e.g. A0, we use δS(A0).

We use α to denote the support estimation threshold used
by modified-CS and we use αadd, αdel to denote the support
addition and deletion thresholds used by modified-CS with
add-LS-del.We use N̂t to denote the support estimate at time
t. To keep notation simple, we avoid using the subscript t
wherever possible.

Definition 1 (Tt, ∆t, ∆e,t): We use Tt := N̂t−1 to denote
the support estimate from the previous time. This serves as the
predicted support at time t. We use ∆t := Nt \ Tt to denote
the unknown part of Tt and ∆e,t := Tt \ Nt to denote the
“erroneous” part of Tt.
With the above definition, clearly, Nt = Tt ∪∆t \∆e,t.

Definition 2 (T̃t, ∆̃t, ∆̃e,t): We use T̃t := N̂t to denote the
final estimate of the current support; ∆̃t := Nt \ T̃t to denote
the “misses” in N̂t and ∆̃e,t := T̃t \Nt to denote the “extras”.

The sets Tadd,∆add,∆e,add are defined in Definition 3 which
is given in the next section.

If two sets B, C are disjoint, we just write D∪B\C instead
of writing (D ∪ B) \ C, e.g. Nt = Tt ∪∆t \∆e,t.

We refer to the left (right) hand side of an equation or
inequality as LHS (RHS).

Remark 1: The reason we need the bounded noise assump-
tion is as follows. When the noise is unbounded, e.g. Gaussian,
all error bounds for CS and, similarly, all error bounds for
modified-CS hold with ”large probability” [4], [16], [17], [18].
To show stability, we need the error bound for modified-CS

to hold at all times, 0 ≤ t ≤ ∞ (this, in turn, is used to
ensure that the support gets estimated with bounded error at
all times). Clearly this is a zero probability event.

II. MODIFIED-CS AND MODIFIED-CS-ADD-LS-DEL

Modified-CS was introduced in [6] as a solution to the
problem of sparse reconstruction with partial and possibly
erroneous knowledge of the support. It tries to find a signal
that is sparest outside of the known support among all signals
satisfying the data constraint. For a time sequence of sparse
signals, we use the support estimate from the previous time
as known support. This was studied in [14]. We summarize
the algorithm in Algorithm 1. In Algorithm 1, we use thresh-
olding to compute the current support estimate. However, as
explained in [14], the modified-CS estimate is biased towards
zero along T c and may be biased away from zero along T
and this causes single step thresholding to be less accurate. To
address this issue, in [14], we introduced a three step add-LS-
delete procedure for support estimation. Similar ideas were
also used earlier in [3] and [19], [20] in related contexts.
We summarize the resulting algorithm called “modified-CS-
add-LS-del” in Algorithm 2. In add-LS-del, one uses a small
addition threshold αadd; followed by LS estimation on the new
support; and finally a larger threshold αdel applied to the LS
estimate to delete elements. αadd needs to be just large enough
to ensure that ATadd is well conditioned.

Algorithm 1 Modified-CS
For t ≥ 0, do

1) Simple CS. If t = 0, set Tt = ∅ and compute x̂t,modcs

as the solution of

min
β

∥(β)∥1 s.t. ∥y0 −A0β∥ ≤ ϵ (3)

2) Modified-CS. If t > 0, set Tt = N̂t−1 and compute
x̂t,modcs as the solution of

min
β

∥(β)T c
t
∥1 s.t. ∥yt −Aβ∥ ≤ ϵ (4)

3) Estimate the Support. Compute T̃t as

T̃t = {i ∈ [1,m] : |(x̂t,modcs)i| > α} (5)

4) Set N̂t = T̃t. Output x̂t,modcs. Feedback N̂t.

Definition 3 (Define Tadd,t,∆add,t,∆e,add,t): The set Tadd,t is
the support estimate obtained after the support addition step
in Algorithm 2. The set ∆add,t := Nt\Tadd,t denotes the set of
missing elements from Tadd,t and the set ∆e,add,t := Tadd,t\Nt

denotes the set of extras in it.
The following lemma bounds the modified-CS error at t.
Lemma 1 (modified-CS error bound): Let x be a sparse

vector with support N and let y := Ax + w with ∥w∥ ≤
ϵ. Also, let ∆ := N \ T and ∆e := T \ N . Let x̂modcs

denote the solution of (4). If δ|T |+3|∆| < (
√
2 − 1)/2, then

∥x − x̂modcs∥ ≤ C1(|T | + 3|∆|)ϵ ≤ 8.79ϵ, where C1(S) ,
4
√
1+δS

1−(
√
2+1)δS

.



Algorithm 2 Modified-CS-Add-LS-Del
For t ≥ 0, do

1) Simple CS. If t = 0, set Tt = ∅ and compute x̂t,modcs

as the solution of (3).
2) Modified-CS. If t > 0, set Tt = N̂t−1 and compute

x̂t,modcs as the solution of (4).
3) Additions / LS. Compute Tadd,t and the LS estimate using

it:

Ât = {i ∈ [1,m] : |(x̂t,modcs)i| > αadd}
Tadd,t = Tt ∪ Ât (6)

(x̂t,add)Tadd,t =ATadd,t
†yt, (x̂t,add)T c

add,t
= 0 (7)

4) Deletions / LS. Compute T̃t and LS estimate using it:

R̂t = {i ∈ Tadd,t : |(x̂t,add)i| ≤ αdel}
T̃t = Tadd,t \ R̂t (8)

(x̂t)T̃t
=AT̃t

†yt, (x̂t)T̃ c
t
= 0 (9)

5) Set N̂t = T̃t. Feedback N̂t. Output x̂t,modcs.

Proof: The proof follows using approach of [17]. It is given
in the Appendix of [21].

The following lemma bounds the simple CS error.
Lemma 2 (CS error bound [17]): Let x be a sparse vector

with support N and let y := Ax+ w with ∥w∥ ≤ ϵ. Let x̂cs

denote the solution of (4) with T = ∅. If δ2|N | < (
√
2−1)/2,

then ∥x− x̂cs∥ ≤ C1(2|N |)ϵ ≤ 8.79ϵ.

III. SIGNAL CHANGE MODEL

The algorithms described above do not assume any signal
change model. But to obtain error bounds over time, we need
a model for signal change. Briefly, our model assumes the
following. At any time the signal vector xt is a sparse vector
with support set Nt of size S or less. At most Sa elements get
added to the support at each time t and at most Sa elements
get removed from it. A new element j gets added at time tj
at an initial magnitude aj,t and its magnitude increases for the
next dj,t ≥ dmin time units. Notice that dj,t can be ∞ too,
i.e. there is no maximum limit on how large a coefficient can
become. For element j, the magnitude increase at time t is
rj,t with rmin ≤ rj,t ≤ rmax. Also, at each time t at most Sa

elements out of the “large elements” set (the set of elements
with magnitude at least amin+dminrmin) leave the set and begin
to decrease. These elements keep decreasing and get removed
from the support in at most b time units. As demonstrated
in Section V, the above assumptions are practically valid for
MRI sequences. We specify our model precisely below.

Signal Model 1: Assume the following.
1) At the initial time, t = 0, the support set, N0, contains

S0 nonzero elements, i.e. |N0| = S0.
2) At time t, Sa,t elements are added to the support. A new

element j gets added to the support at initial magnitude
aj,t

1 and its magnitude increases at rate rj,t for the next

1aj,t is nonzero only when xj begin to get added at time t.

dj,t
2 time units.

3) We define the “large set” as Lt := {j : |(xt)j | ≥
amin + dminrmin}. Elements in Lt−1 either remain in Lt

(while increasing or decreasing or remaining constant)
or decrease enough to leave Lt. We assume that at
time t, Sd,t elements out of Lt−1 decrease enough to
leave Lt−1, i.e. |Lt−1 \ Lt| = Sd,t. All these elements
continue to keep decreasing and become zero (removed
from support) within at most b time units. Also, at time
t, Sr,t elements out of these decreasing elements are
removed from the support.

4) We assume that 0 ≤ Sa,t ≤ Sa, 0 ≤ Sd,t ≤ Sa, 0 ≤
Sr,t ≤ Sa, rmin ≤ rj,t ≤ rmax, amin ≤ aj,t ≤ amax and
dj,t ≥ dmin.

5) The support size at any time t, St := |Nt| ≤ S.
• As we explain below, St ≤ S holds if S0 ≤ S and∑t

τ=1 Sa,τ ≤
∑t−b

τ=1 Sd,τ .
• More simply, St ≤ S also holds if S0 ≤ S; for

1 ≤ t ≤ b, Sa,t = Sr,t = 0, Sd,t = Sa and for
t > b, Sa,t = Sr,t = Sd,t = Sa

Let At := Nt \ Nt−1 denote the newly added set and
let It := {j : |(xt)j | > |(xt−1)j |} denote the set of
increasing elements. Condition 2 implies that (i) |At| = Sa,t;
(ii) if j ∈ At−t0 (i.e. if xj is added at t − t0) for a
t0 ≤ dmin, then |(xt)j | = aj,t−t0 +

∑t
τ=t−t0+1 rj,τ ; and (iii)

At ⊆ It ∩ It+1 · · · ∩ It+dmin .
Let Rt := Nt−1 \Nt denote the newly removed set and let

Dt := Lc
t ∩ |{i : 0 < |(xt)i| < |(xt−1)i|}| denote the set of

decreasing elements. Condition 3 implies that (i) |Rt| = Sr,t;
(ii) Dt ⊆ Dt+1 ∪ Rt+1; (iii) |Dt| ≤

∑t
τ=t−b+1 Sd,τ ≤ bSa

and (iv)
∑t

τ=1 Sr,τ ≥
∑t−b

τ=1 Sd,τ .
Since St = St−1 + Sa,t − Sr,t = S0 +

∑t
τ=1 Sa,τ −∑t

τ=1 Sr,τ ≤ S0 +
∑t

τ=1 Sa,τ −
∑t−b

τ=1 Sd,τ , thus, St ≤ S

holds if S0 ≤ S and
∑t

τ=1 Sa,τ ≤
∑t−b

τ=1 Sd,τ .
Finally, notice that Nt = It ∪ Dt ∪ Lt.
In the above model, we only assume that all coefficients will

get removed in at most b time units. However, it can happen
that some coefficients get removed earlier than that and hence
it is fair to include this in the signal model. We do this below.

Signal Model 2: Assume Signal Model 1 with the following
extra assumptions.

• Out of the Sd,t elements that started decreasing at time
t, at least τ

bSd,t of them get removed by t+ τ for τ < b.
– Thus, at time t, the total number of decreasing

elements, |Dt| ≤ Sd,t+
b−1
b Sd,t−1+. . . 1

bSd,t−b+1 ≤
Sa(b+ 1)/2.

IV. TIME INVARIANT ERROR BOUNDS

A. Modified-CS result

For the above signal model, we can claim the following.
Theorem 1: Consider Algorithm 1. Assume that the noise

is bounded, i.e. ∥w∥ ≤ ϵ and that xt satisfies Signal Model 2.

2dj,t is nonzero only when xj begin to get added at time t.



Also, assume that the modified-CS error is spread out enough
so that

∥xt − x̂t∥∞ ≤ ζM√
Sa

∥xt − x̂t∥ (10)

for some ζM ≤
√
Sa.

If there exists a d0 ≤ dmin such that the following hold:
1) algorithm parameters

• α = ζM√
Sa

8.79ϵ,
2) number of measurements

• δ
S+3(

(b+1)
2 +d0+1)Sa

≤ (
√
2− 1)/2,

3) initial magnitude and magnitude increase rate
• the following holds

amin + d0rmin > α+ ζM√
Sa

8.79ϵ = ζM√
Sa

17.58ϵ,

4) at t = 0, n0 is large enough to ensure that |∆̃t| ≤
b+1
2 Sa + d0Sa, |∆̃e,t| = 0,

then, for all t,
1) |∆̃t| ≤ (b+1)

2 Sa + d0Sa, |∆̃e,t| = 0, |T̃t| ≤ S,
2) |∆t| ≤ (b+1)

2 Sa + d0Sa + Sa, |Tt| ≤ S, |∆e,t| ≤ Sa,
3) and ∥xt − x̂t∥ ≤ 8.79ϵ

Proof: See [21].
Theorem 1 claims that if xt satisfies Signal Model 2,

if enough number of measurement is available and if each
nonzero coefficient has either a large enough initial magnitude
or a large enough rate of magnitude increase, then the number
of misses and extras from current support estimate are bounded
by a time-invariant value. Also, the reconstruction error is
bounded by a time-invariant value. Notice that the above result
bounds the extras and misses by a constant times Sa. Under
the slow support change assumption, Sa ≪ St. Thus, in this
case, the support error sizes are much smaller than the support
size, making the above a meaningful result.

Corollary 1: Under Signal Model 1, the result of Theorem
1 changes in the following way: replace (b+1)

2 Sa by bSa

everywhere in the result.
Remark 2: In general, for any vector z, ∥z∥∞ ≤ ∥z∥2 with

equality holding only if z is one-sparse (exactly one element of
z is nonzero). If the energy of z is more spread out, ∥z∥∞ will
be smaller than ∥z∥2. There is no reason for the error xt−x̂t to
be one-sparse. The assumption, ∥xt − x̂t∥∞ ≤ ζM√

Sa
∥xt − x̂t∥

for some ζM ≤
√
Sa, just quantifies this. Notice that if ζM =√

Sa, then the inequality always holds.
Remark 3: Notice that in our signal model, an element j

can be added more than once.
Remark 4: Notice that condition 4 of Theorem 1 is not

restrictive. It is easy to see that it will hold if n0 is large
enough to ensure that δ2S ≤ 0.207.

Remark 5: In the signal model, we assume that only
elements out of the large set, Lt−1, can begin to decrease and
get removed. This is again an assumption made for simplicity.
As we can see from the proof, the result of the above theorem
will hold, even if this was not true, i.e. even if increasing
elements were allowed to begin to decrease. However the
assumption that once an element begins decreasing it gets
removed within b time units is essential.

B. Modified-CS-Add-LS-Del result

Theorem 2: Consider Algorithm 2. Assume that the noise
is bounded, i.e. ∥w∥ ≤ ϵ and that xt satisfies Signal Model 2.
Also, assume that

• the modified-CS error is spread out enough so that

∥xt − x̂t∥∞ ≤ ζM√
Sa

∥xt − x̂t∥ (11)

for some ζM ≤
√
Sa, and

• the LS step error is spread out enough so that

∥(xt − x̂t,add)Tadd,t∥∞ ≤ ζL√
Sa

∥(xt − x̂t,add)Tadd,t∥ (12)

for some ζL ≤
√
Sa.

If there exists a d0 ≤ dmin such that the following hold:
1) algorithm parameters

• αadd is large enough so that there are at most f false
adds at time t, i.e. |Ât \ Nt| ≤ f

• αdel = 1.12 ζL√
Sa

ϵ + 0.261ζLh, where

h2 = (b+1)
2 (αadd + ζM√

Sa
8.79ϵ)2 + (d0a

2
max +

amaxrmaxd0(d0 − 1) + r2max
d0(d0−1)(2d0−1)

6 ).
2) number of measurements

• δ
S+3(

(b+1)
2 Sa+d0Sa+Sa)

≤ 0.207

• δS+Sa+f ≤ 0.207
• θ

S+Sa+f,
(b+1)

2 Sa+d0Sa
≤ 0.207

3) initial magnitude and magnitude increase rate:

amin + d0rmin > max{αadd +
ζM√
Sa

8.79ϵ, 2αdel} (13)

4) at t = 0, n0 is large enough to ensure that |∆̃t| ≤
b+1
2 Sa + d0Sa, |∆̃e,t| = 0,

then
1) ∆̃t ⊆ Dt ∪ At ∪ At−1 . . .At−d0+1

2) |∆̃t| ≤ (b+1)
2 Sa + d0Sa, |∆̃e,t| = 0, |T̃t| ≤ S

3) |∆t| ≤ (b+1)
2 Sa + d0Sa + Sa, |Tt| ≤ S

4) and ∥xt − x̂t∥ ≤ 8.79ϵ

Proof: See [21].

C. Discussion

First let us compare Modified-CS with Modified-CS-Add-
LS-Del. Consider some simplifications to the signal model to
reduce the number of parameters. Suppose that Sa,t = Sr,t =
0, Sd,t = Sa for 1 ≤ t ≤ b, and Sa,t = Sr,t = Sd,t = Sa for
t > b. Also, let amin = rmin, amax = rmax, b = 3, d0 = 2 and
suppose that f = Sa.

The modified-CS result says the following. If
1) δS+15Sa ≤ 0.207,
2) 3rmin > ζM√

Sa
17.58ϵ,

then |∆̃t| ≤ 4Sa and |∆̃e,t| = 0.
The Modified-CS-Add-LS-Del result says the following. If
1) δS+15Sa ≤ 0.207,
2) 3rmin > αadd + ζM√

Sa
8.79ϵ and 3rmin > 2.24 ζL√

Sa
ϵ +

2.52θζLh, where h2 = 2(αadd +
ζM√
Sa

8.79ϵ)2 + 5r2max.



then |∆̃t| ≤ 4Sa and |∆̃e,t| = 0.
To get an idea of the values of ζM and ζL, we did simula-

tions based on Signal Model 1 with m = 200, S0 = 20, Sa,t =
2, Sd,t = 2, Sr,t = 2, b = 3, rj,t = 1, aj,t = 1; a random
Gaussian measurement matrix An×m with m = 200, n = 72;
and measurement noise, wt that was i.i.d. uniformly distributed
between ±c with c = 0.1266. Thus ϵ =

√
nc. We generated

500 realizations with the above parameters, and used both
algorithms for reconstruction. We got ζM = 0.93

√
Sa, ζL =

0.87
√
Sa. Similar or smaller values were obtained if m was

increased and S0, Sa increased linearly.
Notice that both modified-CS and modified-CS-add-LS-

del need the same assumptions on the number of measure-
ments. With the above values for ζM and ζL, modified-
CS needs rmin > 5.45ϵ. Modified-CS-Add-LS-Del needs
rmin > max{0.33αadd+2.72ϵ, 2.40ϵ+0.21αadd+0.34rmax}. If
rmax = 1.5rmin, this inequality gives rmin > 4.90ϵ+0.44αadd.
Thus, with αadd small enough, clearly modified-CS-add-LS-
del requires a weaker assumption on rmin. As explained earlier
and also in [14], αadd is a small threshold that is typically taken
to be proportional to the noise per signal element, e.g. in our
simulations, we took αadd = c/2 + r/16. Using c = ϵ/

√
n,

this means that αadd ≈ ϵ/
√
n. With this value for αadd, clearly

the mod-cs-add-LS-del condition is weaker.
To compare with the CS result given in Lemma 2, notice

that CS needs δ2S < 0.207, whereas both the modified-CS al-
gorithms only need δS+15Sa < 0.207. Under the slow support
change assumption, Sa ≪ S and in this case, the modified-CS
algorithms hold under a weaker restricted isometry condition
(potentially fewer number of measurements required).

V. MODEL VERIFICATION

We verified that two different types of MRI image sequences
– a larynx (vocal tract) MRI sequence and a brain functional
MRI sequence – do indeed satisfy Signal Model 1. Both are
discussed in [21]. Here we describe model verification for the
larynx sequence. We used a 10 frame sequence and extracted
out a 36x36 region of this sequence selected as the region
that includes the part where most of the changes were visible.
As shown in earlier work [6], this sequence is approximately
sparse in the 2D discrete wavelet transform (DWT) domain.
A two level db4 wavelet was used there. We computed this
2D DWT, re-arranged it as a vector and computed its 99.9%
energy support set. All elements not in this set were set to zero.
This gave us an exactly sparse sequence xt. Its dimension m =
362 = 1296. For this sequence, we observed the following.
The support size Nt satisfied |Nt| ≤ S = 113 for all t. The
number of additions from t−1 to t satisfied |Nt \Nt−1| ≤ 21
and the number of removals, |Nt−1\Nt| ≤ 26. Thus, Sa = 26.
Also, the initial nonzero value, aj,t, ranged from amin = 13
to amax = 37, the rate of magnitude increase, rj,t, ranged
from rmin = 1 to rmax = 37, and the duration for which the
increase occurred, dj,t, ranged from dmin = 1 to dmax = 4.
Also, the maximum delay between the time that a coefficient
began to decrease and when it was removed was b = 7.

VI. CONCLUSIONS
Under mild assumptions and for a realistic signal model,

we showed that both the support recovery errors of both
modified-cs and modified-cs-add-ls-del are bounded by a time-
invariant and small value at all times. We also argued that our
results hold under weaker assumptions on n than simple CS.
Also, typically, the modified-cs-add-ls-del holds under weaker
assumptions than the mod-cs result. Monte Carlo simulations
backing our conclusions are shown in [21].

REFERENCES

[1] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Info. Th., vol. 52(2), pp. 489–509, February 2006.

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Info. Th., vol. 52(4),
pp. 1289–1306, April 2006.

[3] N. Vaswani, “Kalman filtered compressed sensing,” in ICIP, 2008.
[4] N. Vaswani, “Least Squares CS-residual (LS-CS): Compressive Sensing

on Least Squares residual,” IEEE Trans. Sig. Proc., August 2010.
[5] A. Carmi, P. Gurfil, and D. Kanevsky, “Methods for sparse signal

recovery using kalman filtering with embedded pseudo-measurement
norms and quasi-norms,” IEEE Trans. Sig. Proc., pp. 2405–2409, April
2010.

[6] N. Vaswani and W. Lu, “Modified-cs: Modifying compressive sensing
for problems with partially known support,” IEEE Trans. Signal
Processing, September 2010 (shorter version in ISIT 2009).

[7] J. M. Kim, O. K. Lee, and J. C. Ye, “Exact Dynamic Support Tracking
with Multiple Measurement Vectors using Compressive MUSIC,” in
ArXiv preprint arXiv:1110.0378 [cs.IT], 2011.

[8] J. Ziniel, L. C. Potter, and P. Schniter, “Tracking and smoothing of time-
varying sparse signals via approximate belief propagation,” in Asilomar
Conf. on Sig. Sys. Comp., 2010.

[9] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally
correlated source vectors using sparse bayesian learning,” IEEE J. Sel.
Topics Sig. Proc., Special Issue on Adaptive Sparse Representation of
Data and Applications in Signal and Image Processing, vol. 5, no. 5,
pp. 912–926, Sept 2011.

[10] A. Charles, M. S. Asif, J. Romberg, and C. Rozell, “Sparsity penalties
in dynamical system estimation,” 2011.

[11] A. Khajehnejad, W. Xu, A. Avestimehr, and B. Hassibi, “Analyzing
weighted l1 minimization for sparse recovery with nonuniform sparse
models,” IEEE Trans. Sig. Proc., vol. 59, pp. 1985–2001, 2011.

[12] C. J. Miosso, R. von Borries, M. Argaez, L. Velazquez, C. Quintero, and
C. Potes, “Compressed sensing reconstruction with prior information by
iteratively reweighted least-squares,” IEEE Trans. Sig. Proc., vol. 57,
pp. 2424–2431, January 2009.

[13] L. Jacques, “A short note on compressed sensing with partially known
signal support,” Signal Processing, December 2010.

[14] N. Vaswani, “Stability (over time) of Modified-CS for Recursive Causal
Sparse Reconstruction,” in Allerton, 2010.

[15] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Info. Th., vol. 51(12), pp. 4203 – 4215, Dec. 2005.

[16] E. Candes and T. Tao, “The dantzig selector: statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35 (6), 2007.

[17] E. Candes, “The restricted isometry property and its implications for
compressed sensing,” Compte Rendus de l’Academie des Sciences, Paris,
Serie I, pp. 589–592, 2008.

[18] J. A. Tropp, “Just relax: Convex programming methods for identifying
sparse signals,” IEEE Trans. Info. Th., pp. 1030–1051, March 2006.

[19] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing:
Closing the gap between performance and complexity,” Preprint, 2008.

[20] D. Needell and J.A. Tropp., “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harmonic Anal., vol.
26, pp. 301–321, 2008.

[21] J. Zhan and N. Vaswani, “Time invariant error bounds for
modified-cs based sparse signal sequence recovery (long version),”
http://home.engineering.iastate.edu/ namrata/stability modcs ald.pdf.


