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ABSTRACT

In previous work, we developed the lllum-PF-MT, which isRfe
MT idea applied to the problem of tracking temporally andtsdby
varying illumination change. In many practical problemie trate
at which illumination changes varies over time. For e.g. wlse
car transitions from shadow to sunlight or vice-versa theeraf il-
lumination change is much higher than when it is in shadownor i
sunlight. One way to model illumination change in such pzof is
using a Gaussian random walk model with two values of thegdan
covariance - a large covariance when a “transition” is deted and

a much smaller one when “no transition” is detected. But t@ us
such a model, one needs to first detect the transition. Tmsitian

is a natural one and so it happens gradually (unlike a suddanual
dimming of the light in the room) and thus existing changed#in
statistics which are designed only for sudden changes aablarto
detect the transition. In this paper, we propose to use tleerrdy
proposed generalized ELL (gELL) idea which uses the tragestl
of the change to detect it and hence detects such partiabkéble
changes very quickly. Since gELL detects much before |dsaosf
occurs, one is able to transition to the “transition” modeh@ back
without ever losing track. Also, for the first time, we denticis
the use of gELL in combination with the PF-MT algorithm whigh
more stable to model change than the original PF.

1. INTRODUCTION

Tracking illumination changes of moving objects is a chadieg
problem. In absense of illumination changes, motion of &l ridp-
ject moving in front of a camera can be tracked using a 3 difnaas
vector consisting of x-y translation and uniform scale orengen-
erally using a 6 dimensional affine model as in Condensafiprif
illumination changes over time, but is constant in spacen thne
extra dimension gets added. But if different regions of geatex-
perience different lighting conditions (e.g. a face wityhli falling at
different angles on different parts of the face, usuallyges when
light source is near the object, invalidating assumptidsmuapoint
light sources at infinity), the maximum dimension of illuration
change is equal to the number of image pixels. Of course,dhie v
ability is never that large, and as been demonstrated inquework
[2], usually a 3 to 7 dimensional basis suffices for modelihgnii-
nation, but even that will increase the total state spacexsion to

somewhere between 9-16. It is well known that as state space d

mension increases, number of particles required to traiclgEsPF
increases [3]. This makes PF impractical for dimensiorgelathan
7 or 8. But, as shown in [4], the conditional posterior ofrillination
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change (conditioned on motion and previous state) is ususai-
modal and narrow so that the conditional posterior of illnation
can be replaced by a Dirac delta function at its posterioranadth
little error. Furthermore, this mode computation is verficednt,
since it turns out to be the solution of a regularized leasbrep
problem. This one step, reduces the importance samplingrdim
sion to 3 instead of 10, drastically reducing the number ofigas
required. The idea, called lllum PF-MT, was demonstratedun
recent paper [4].Now, in certain problems, the rate at wlilich
mination changes varies over time. For e.g. when a car transi
from shadow to sunlight or vice-versa the rate of illumioatchange
is much higher than when it is in shadow (see the first row of Fig
1). One good way to model illumination change in such prolsiésn
using a Gaussian random walk model with two values of theghan
covariance - a large covariance (or in effect a weak priorgnvh
“transition” is detected and a much smaller covariancerifieom
training data) when “no transition” is detected. Note tlsatice the
transition itself from small to large covariance happenadgally
(since it is a natural one), even though to keep our modelmgls,
we use a single change point to model it. Since the transiioot

a sudden one (e.g. as would happen if the light in a room was man
ually suddenly dimmed to a third of its original value), eweithout
any correction step, the PF-MT algorithm is able to pastisdack

it. Such changes which get partially tracked (are not suédeugh)
are usually missed by loss-of-track based statistics ssidtaaking
error [5] or averaged likelihood [6] or score function (s&@ for

a survey of sudden change detection methods using parttelesYi
Note that the tracking error plots in the last columns of Féglimiss
the change.

But, the ELL statistic [8, 9] was designed for detecting e¢yac
such gradual changes. It uses the partially tracked paheathiange
to detect it and hence is able to detect gradual transitiarchrbetter
than existing statistics [5, 6, 7]. In fact, it detects mueffobe loss of
track. Now, in problems, such as ours, where the nominal frisde
nonstationary and has continuously increasing prior stateance,
the sensitivity of ELL reduces with time. In this paper, werdm-
strate the use of a recently proposed generalization of Ehlled
gELL [9] (which was developed for detecting changes in natist-
ary nominal models), to detect the changes in the rate ahillation
change. Also, unlike ELL, the gELL is able to detect a seqaasfc
changes, for e.g., in our case, the increase the decredsediange
covariance as shown in Fig. 1, last column.

Note that this is the first application where gELL (and not EELL
is used for change detection (so far only one proof-of-cphsam-
ulation was shown in [9]). In addition, we successfully destoate
the use of gELL not only to detect illumination model chaniget
also to increase illumination change covariance to a laagjeevivhen
the transition is detected, and then reduce it to its orlgialae when
gELL again goes below a threshold. Since gELL detects mueh be



fore loss of track occurs, one is able to transition to the neodel
and back without ever losing track (see Figure 1). Also, fierfirst
time, we demonstrate the use of gELL in combination with the P
MT algorithm - in past work [9, 10], ELL was used in combinatio
with only the original PF [11]. This is important because MF-
(and also some other PFs such as [12]) importance samplg asin
density that depends on the current observation. For thgore PF-
MT is much more stable to model changes than original PFjs.e.
able to partially track them better than original PF. Thigt f2duces
the delay in the detection using gELL compared to using it wiig-
inal PF.

2. STATE SPACE MODEL AND THE PROBLEM

We briefly describe below the state space model for illunibme&nd
motion change over time. This is taken from our previous wWdtk
where we introduced the PF-MT algorithm for illuminatiordamo-
tion tracking.

System Model: The state X, consists of a 3-dimensional mo-
tion vectoru; which contains x-y translation and scale, and @-
mensional illumination coefficients vector (illuminaties parame-
terized using a Legendre basis) as in [2], i%; = [u; Aj]’ The
system model is a random walk model on object motianand on
illumination coefficientsA; i.e.
= 1)
2

wherelly, x v, is @ diagonal covariance matrix (variance of indi-
vidual components ol) andh(.) denotes the pdf of.,, described
in [4].

Observation Model:Let T, denote the original template and let
M denote the number of pixels in it. The observation at timg;,
is the image at. It assumes the following image formation process:
the image intensities of the region that contains the opgeetillu-
mination scaled versions of the intensities of the origteahplate,
T, plus Gaussian noise. The region containing the objeceisttig-
inal template region scaled and translated using the dugtements

Ut + Vug, Vur ~ h(.)
A +vag, var ~N(0,10)

Ut+1

Aty

where||a||v £ a”V ' for a vectora and

Xo

)

The PF-MT algorithm for tracking using the above state space
model, when the illumination change covariantk,is a constant,
was proposed in [4]. It importance sampled on motion (sihbad a
large variance and multimodal state transition prior andesit often
resulting in a multimodal observation likelihood), whilede track-
ing on illumination (whose change covariance was much smnafid
the observation likelihood was mostly unimodal conditidoa mo-
tion). It is summarized in the first few steps of Algorithm 1.

In the current work, we consider the problem where the model
of (2) can change with time. In particuldd, can take two possible
values (small and large) and the time when the transitionésen
them happens is unknown. The goal is to detect when to chEnge
from small to large (for the shadow-light transition fralasd when
to change it back. The valué,,,,.;; is known (learnt from training
data), but the valugl;, . for the transition frames is not known.

Gi Ay, (Jut + ®)

3. DETECTING AND CHANGING THE SYSTEM MODEL

In many tracking applications, the system model parametersiot
time-invariant. For our problem, consider the random watidei on
illumination coefficients given in (2). As explained in theroduc-
tion, the rate of change of illumination over time (quantfiey the
illumination change covariance) is much larger when thetreansi-
tions from a shadowy region to a bright/sunlit region or wegsa
than when it is in a shadowy or bright region. One good model fo
this situation is (2) with a small noise covariance value mtiee car

is in the shadowy or the sunlit region, but a large noise dauae
value when it transitions from shadow to sunlight or viceseer

3.1. Computing Generalized-ELL (gELL) and gEL L-max

To use the above model for tracking, one first needs to be able t
detect the change time (the time when the illumination charw
variance needs to be increased or reduced), as quickly sibf@sTo

of u¢. The rest of the image (which does not contain the object) iy gig having to re-initialize the tracker, one would likedetect this

independent of the object intensity or “shape”, and hencetisised
in defining the observation likelihood. Thus we have thediwlhg
observation model:

X
Y; (Jut + [Yg

|) = 1 @A 401, v~ N0V) @)
where the notatior.]... denotes arranging a two dimensional ma-
trix as a column vector{V)arx as is a diagonal covariance matrix
(variance of individual pixel noise)®> contains the Legendre basis
directions as its column vectors (defined in (5) of [4]) and

fTO(PAt) = T0+To.*PAt,
N Xo—Zp 10
T = [Y0—§001] “)

where.x is the MATLAB notation,X, andY denote ther andy
coordinates of each point on the template apdind i, denote the
corresponding meand. and0 denote a vector of ones and zeros of
size M respectively. Thus the observation likelihood (OL) is:

p(Yi| X:) = p(Yi|ue, As) = 67"[G?t*fTo(PAt)]vecH%/ (5)

change before significant loss-of-track occurs. In [9], Expected
(negative) Log-Likelihood of state (ELL) statistic wasrimduced to
detect changes before they resulted in significant logsack. The
key idea was to use the “tracked part of the change” to detect i
Thus ELL requires the change to be partially tracked in otdele-
tect it and it often does not detect very sudden changesedhaltiin
immediate loss of track. Such sudden statistics do not dacour
problem, but if they do, tracking error [5] or averaged likebd [6]
can be used to also detect them in combination with ELL.

ELL can be interpreted as the Kerridge Inaccuracy (propodti
to Kullback-Leibler divergence) between the posteriohatturrent
time, 7. (X:) = p(X:|Y1..), and the prior state distribution &t
which is equal to the step ahead prediction distributiary, o (X:) =
p(X:). As explained in [9], ELL cannot detect multiple changes in
a sequence and its sensitivity reduces with time in manylenad
such as ours where the nominal model is nonstationary (bedae
variance ofp(X,) increases witlt). To handle this, a generalization
of ELL was defined in [9]. Generalized ELL (gELL) is the Kermel
Inaccuracy between, |, and theA < ¢ step ahead prediction distri-
bution,mu_A(Xt) = p(Xt|Y1:t—A)y i.e.

gELL(t,A) = _]E"rt\f,[_ IOgﬂ-ﬂi—A(Xi)] (7)



Note that gELL and ELL may be computed for the entire stateAlgorithm 1 Change Compensated Aux PF-MT.
X, or for a part of it. In our problem, we need to detect changesat eacht, do

in illumination and hence we compute gELL, defined in (7),yonl

for the posterior ofA;. Note, the same idea can also be used to de-

tect changes in x or y direction velocity of the object (intthase
we would define gELL for only for posterior af:). To compute
the gELL, we need a closed form expression fgf,_. To get
that, we propose to approximate the PF estimate of the parster
t—A, m_ap—a(X1), by a Gaussian density, i.8,Y 5|, A (X1) &

N(uf’,A‘t,A,Zf’,A‘t,A) where the parameters are estimated as

the empirical mean and covariance of the weighted partatie@n-
prising ofw,{\iA‘th(Xt). With this approximation, the prediction
distribution, ;A (Xt), which is obtained by applying the system
model of A; given in (2) A times tom,_a|:—a(X:), is also Gaus-
sian, i.e. my-a(Xe) & N(uf,_a, 51, a) With parameters de-
fined below. Thus, in summary, gELL is computed as:

N
gELL(t, A)2Y wi(A; = pii-a)" Sife-a

i=1

1.
(A; - u’f\\]f,—A)7

N
/l'f\\]t—A:ﬂiV—A\t—A £ ZwLAALA
=1
Se-a2SApoa + AL
Zz]tv—A\théZ wi—a(Npma — pie—a)(Ni—a — pij—a)” (8)

i=1

The choice ofA in the above expression is not clear. If it is too
small, the change between timandt — A may not be large enough,
i.e. the numerator(A} — pf\"t_A), may be too small. If it is too

large, the prediction covariancﬁi\(t_A = ZiV_M_A +AIl may be

larger than needed, thus reducing its sensitivity to smalianges (a
problem similar to that of ELL which use& = ¢). Thus, a statistic
that is always more sensitive that? LL(t, A) (i.e. its detection
delay is smaller than or equal to that@® LL(t, A)) is

gELL-max(t) £ 9)

max
A=1,2,...

, 9ELL(t,A)
Of course it may also generate a few extra false alarms. In &ec
we show experiments with boZ L L(t, A), for the car sequence
which is faster moving and thus has faster rate of changéuwnhid
nation covariance, and with the more sensitiw®,L L-max(t), for
the face sequence in which the changes are slower.

3.2. UsinggELL or gELL-max to Change System Model

1. Auxiliary Resampling: Vi, compute g; using g;
wi_1p(Ys| Xy = X{_1) and resampleX;_, according to it.
Reset the weights of the resampled particléu®g_,)"" =

wi_y _ p(VelXe=X]_)
Ng; - N .

2. Importance Sample (IS) on effective basig, samplev, i ~
h(u) and computer; = uj_; + Vu;.

3. Mode Tracking (MT) in residual space: Vi, computem;
usingmj = Aj_, + (1" + AT,V "Aq,) ALV 'D
D 2 [G]yee — fr, (PAI_;) and set\i = mi.

4. Weighting: Computew! using wi = ENW —, W =

) ) o j=1W%

p(Yelut, Ap)p(Ai|Ai—1) -

5. gELL Computation: Compute gELL using (8) or
gELL-maz(t) using (9).

6. Changell: If gELL exceeds threshold, s = Il;4,ge,

when it goes below threshold d8t= I1;cqyn¢-

4. EXPERIMENTAL RESULTS

We now demonstrate the utility of the proposed approachvior t
different datasets. The car dataset was generated from ergam-
serving a road from above as cars approach an intersectibmeve
in and out of shadow. The second dataset contained sevéjatii
moving through different illuminations in an outdoor emriment.

In Figure 1 we show the results of using gELL and PFMT using
100 particles. Around frame 40, when the car starts to mawe fr
shadow to sunlight (as indicated by the double arrow in Eg@a(d))
the gELL value starts to increase from its shadow value. When
does we sell = Ilj4rge in Algorithml. We uselljorge = 00.
When gELL decreases again, we reBeto I1;..,»:. The tracking
is shown in first row of Figure 1. If we do not use gELL to detect
the transitions and increadg the tracker fails( Figure le-h). We
also show the use of normalized tracking error (normalizgdab
tio of peaks of actual tracking error to gELL) for change détm
in Figure 1(d). As can be seen, tracking error does not shgw an
sharp change around frame 40 unlike gELL whose change idyclea
detectable. This makes the task of switchlligo IT;,. ¢ difficult
leading to loss of track. For the face tracking case Figurepl i
we tried the use of both gELL( 8) and gELL-max (9). gELL max
works better for this case since the rate of change of illatidm
are slower than in the face case (See Section 3.1). The ahverge

We begin by tracking using PF-MT that uses (2) with a small co-from changeover from sunlight to shadow (arrows indicedent of
variancell = I1,,..;; (learnt only from the shadow sequence) and _changeover) are again detected accurately. However icdlsis us-

we keep computing thés = 5 step ahead gELL (or gELL-max)

at everyt. gELL (or gELL-max) exceeding its detection threshold

is used as a cue to increase the valudld II;qrge. Iiarge CaN
heuristically set to a large value (or evendoto allow PF-MT to
only use the observations) or if enough training data fortthesi-
tion frames is available, it can be learnt from it. A largeuebf
II models a weak prior, i.e. the tracker mostly follows the diiag
observations. It uses these observations to latch on touthigkt
illumination. When the car has fully transitioned to the lggit re-
gion, the value of gELL falls below its threshold, and thiuused
as a cue to again redudé to I1,,,.;;. The complete algorithm in
summarized in Algorithm 1.

ing PF-MT succeeds even across illumination changes.

5. CONCLUSION

In this paper, we proposed to use the recently proposed ajerest
ELL (gELL) idea which uses the tracked part of the change teale
it and hence detects such partially trackable changes ugckly.
Since gELL detects the illumination change before lossaifktroc-
curs, one is able to transition to the “transition” model badk with-
out ever losing track. Furthermore we demonstrate the ug&bl
in combination with the lllumination PF-MT algorithm [4] wdh is
more stable to model change than the original PF. We denzdedtr
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Fig. 1. Tracking using PF-MT and gELL as objects move through ckffié lighting conditions. The white box corresponds to th&m
estimate of the “shape vector”. (a) (b) (c) show tracking afa (d) shows the comparison of the tracking error with gELhe second
row shows the tracking of the car as it moves from shadow ttghtrwhen gELL is not used to detect change and PF-MT is leéttered.
Bottom two rows show the face tracking cases where gELL méectieillum changes correctly

the algorithm for tracking faces and cars across drastimithation
changes.
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