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ABSTRACT

The goal of this work is to recover a sequence of sparse vectors, st;
and a sequence of dense vectors, ℓt, that lie in a “slowly changing”
low dimensional subspace, from time-varying undersampled linear
projections of their sum. This type of problem typically occurs when
the quantity being imaged can be split into a sum of two layers, one
of which is sparse and the other is low-dimensional. A key applica-
tion where this problem occurs is in undersampled functional mag-
netic resonance imaging (fMRI) to detect brain activation patterns in
response to a stimulus. The brain image at time t can be modeled as
being a sum of the active region image, st, (equal to the activation
in the active region and zero everywhere else) and the background
brain image, ℓt, which can be accurately modeled as lying in a slow-
ly changing low dimensional subspace.

We introduce a novel solution approach called matrix comple-
tion projected compressive sensing or MatComProCS. Significant-
ly improved performance of MatComProCS over existing work is
shown for the undersampled fMRI based brain active region detec-
tion problem.

Index Terms— matrix completion, compressive sensing, fMRI

1. INTRODUCTION

The goal of this work is to recover a sequence of sparse vectors,
st; and a sequence of dense vectors, ℓt, that lie in low dimensional
subspace which is either fixed or can “slowly change” over time,
from time-varying undersampled linear projections of their sum, i.e.
from measurements of the form

yt := At(st + ℓt) (1)

where At := HtΨ, Ψ is an orthonormal matrix (m×m) represent-
ing the measurement basis; (Ht)n×m := Iωt

′ is the undersampling
matrix at time t and ωt ⊆ {1, 2, · · · ,m} is the set of indices of the
rows selected at time t. Here I is the identity matrix; and the nota-
tion (B)T refers to the sub-matrix containing columns of the matrix
B with indices in the set T .

One way to quantify the “slowly changing low dimensional sub-
space” assumption as follows. We assume that ℓt = P(t)at with
P(t) = Pj for all tj ≤ t < tj+1. Here Pj is an unknown m × r
matrix with r ≪ m orthonormal columns (i.e. P ′

jPj = I), and
at is an unknown zero mean r × 1 vector. The change times tj are
also unknown. At the changes times, t = tj , some new directions
get added to and/or removed from Pj . Let Pj,new denote the newly
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added directions. By “slowly changing”, we mean that the projec-
tion of ℓt along these new directions, at,new := Pj,new

′ℓt, is small for
some time after t = tj , i.e. ∥at,new∥2 = ∥(I − Pj−1Pj−1

′)ℓt∥2 is
small compared to ∥ℓt∥2 for some time after t = tj . Of course, over
time, this projection may increase gradually to a large enough value.
Here ′ denotes transpose.

In addition, we also assume that an initial short sequence of mea-
surements of only the low dimensional sequence are available, i.e.
we have yt := Atℓt, for all t = 1, 2, . . . t0.

This type of problem typically occurs when the quantity being
imaged can be split into a sum of two layers, one of which is s-
parse and the other is low-dimensional. For example, in functional
magnetic resonance imaging (fMRI), Ψ = F is the discrete Fourier
transform (DFT) matrix, zt := st + ℓt is the brain image at time t
which consists of the active region image, st, (equal to the activation
in the active region and zero everywhere else) and the background
brain image, ℓt, which can be modeled as lying in a slowly changing
low dimensional subspace. In single-pixel video imaging, Ψ can be
a block Hadamard matrix [1] or any other structurally random ma-
trix, zt = st + ℓt is the video image at time t, ℓt is the background
layer while st is a sparse image that is zero everywhere except where
the foreground, e.g. moving object(s), is present. As shown in Fig
1, the “slowly changing” low dimensional subspace assumption in-
deed holds for the background sequence in fMRI. It has also been
verified for the background sequences of video data in earlier work
[2]. Moreover, the assumption that a short sequence of measure-
ments of only the low dimensional sequence (background sequence)
are available is also easy to satisfy in either application.

Related Work. While there has been a very large amount of
recent work on both sparse recovery (more popularly known as com-
pressive sensing (CS)), e.g. [3, 4, 5] and all later work, and on low
dimensional signal sequence recovery (low rank matrix completion),
e.g. [6, 7, 8], the problem of recovering structured signals from their
sums has not received as much attention. The problem of separating
linear projections of a sparse signal from outliers which are modeled
as large but sparse vectors has been studied in [9] as well as in other
later works such as [10, 11, 12, 13].

Recent works such as the robust PCA work of Candes et al, and
Chandrasekharan et al [14, 15] focus on separating a sparse and a
low-dimensional signal sequence from their sums. In very recen-
t works [16, 17, 18] the compressive robust PCA problem has also
been looked at. All these works assume that the low dimensional sig-
nal sequence is dense (resulting in a low-rank but dense matrix) and
the sparse signal sequence has independent and identically distribut-
ed (i.i.d.) support sets (resulting in a sparse but full rank matrix with
high probability). However, the assumption of i.i.d. support sets is
often not valid in many practical applications where the sparse sig-
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Fig. 1. Verifying slow subspace change in an fMRI background brain
image sequence. We used a 90 frame rest brain fMRI sequence
(brain fMRI when no stimulus is provided to the subject) where each
image was of size 64×64, i.e. m = 4096. We used the first t0 = 46
frames to compute P0. We computed P0 by computing the SVD of
[ℓ1, ℓ2, . . . ℓ46] and retaining the eigenvectors containing 99.9% (and
99.999%) of the total energy. We observed that 99.9% of the ener-
gy was contained in only r = 1 direction while 99.999% of the
energy was contained in only 42 directions. For t > t0 we plot
∥(I − P0P0

′)(ℓt)∥2/∥(ℓt)∥2. Notice that, for the next 44 frames,
this quantity is below 6% in both cases, i.e. slow subspace change
does indeed hold.

nal is usually both spatially and temporally correlated. For example,
in the brain fMRI problem, the active region consists of one, or a
few, contiguous regions of the brain and it changes only a little from
one time instant to the next. The same is true for video where the
foreground typically consists of one, or a few, moving objects.

In recent work [19, 20], we studied the full sampled version of
the above problem and proposed a solution called recursive project-
ed CS that removes the above limitation. In [21], we studied the
undersampled version but with a fixed measurement matrix, i.e. the
current problem but with At = A for all t. Using a time-varying
At, as done in this paper, has the following advantages. First, with
At = A one can only recover st and ℓ̃t := Aℓt (but not ℓt) whereas
a time-varying At makes it possible to recover both st and ℓt. Sec-
ond, a time-varying At makes sparse recovery much more likely to
succeed; the probability that most random matrices At are bad (do
not satisfy the restricted isometry property (RIP)) is much lower than
the probability that a given fixed A is bad. Finally, a time-varying
At can allow one to use batch sparse recovery algorithms, such as
k-t-focuss [22] or [23], which exploit Fourier sparsity along the time
axis or blind CS techniques [24, 25], which also exploit sparsity a-
long the time axis, in the projected sparse recovery step (step 2 of
Algorithm 1), although we currently do not use these.

We should point out that the solution approach needed for the
case of time-varying At is quite different from that used in [21] when
At is fixed. The reason is that when At = A, ℓ̃t := Aℓt also lies
in a slowly changing low dimensional subspace and this fact can be
exploited in trying to recover st and ℓ̃t. However this is no longer
true for the sequence Atℓt.

Contributions. (1) In this work we propose a novel solution
approach called Matrix Completion Projected CS (MatComProCS)
for separating sparse and low dimensional signal sequences from
time-varying undersampled projections of their sums. (2) We show
how it can be applied to successfully detect the brain activation pat-
tern from undersampled functional MRI sequences. This problem
becomes particularly difficult in the low contrast to noise ratio (C-
NR) regime, i.e. when the activation is very weak compared with
the background. This is exactly the situation where the standard
approach of first recovering the entire image sequence from under-
sampled measurements and then solving the active region detection

problem as in [26] fails. Extensive comparisons with other exist-
ing works, e.g. [26] and references therein, for solving this problem
show the superiority of MatComProCS.

Notation. For a index set T ⊂ {1, 2, · · · ,m}, we use T c

to denote its complement w.r.t. {1, 2, · · · ,m}, i.e., T c := {i ∈
{1, 2, · · · ,m} : i /∈ T}. For a matrix B,B′ denotes its transpose,
and B† its Moore-Penrose pseudo-inverse. ∥B∥∗ is the nuclear nor-
m, i.e., sum of singular values. ∥B∥F is the Frobenius norm. BT

denotes the sub-matrix consisting of the columns of B indexed by
T . Also ∅ denotes the empty set. For a vector b, bT denotes a vector
consisting of the entries of b indexed by T .

Define the set of index sets, Ωt1,t2 := {ωt1 , ωt1+1, . . . ωt2}
where ωτ ⊆ {1, 2, . . .m} is a set of cardinality n < m. In
this work, ωτ is the set of indices of the rows selected at time
τ . For an m × t matrix Z, define the projector P(Ωt1,t2 ;Z) :=
[(Z1)ωt1

, (Z2)ωt1+1 , . . . (Zt)ωt2
] where Zi denotes the ith column

of the matrix Z.

2. MATRIX COMPLETION PROJECTED CS
(MATCOMPROCS)

The stepwise Matrix Completion Projected CS (MatComProCS) is
given in Algorithm 1. The key ideas of our solution approach are as
follows. Given an initial short sequence of measurements of the form
yt = HtΨℓt, for t = 1, 2, . . . t0, where the ℓt’s satisfy ℓt = P0at

for an m× r matrix P0 with r ≪ m, we estimate P0 as follows. Let
L := [ℓ1, ℓ2 . . . ℓt0 ]. The problem of recovering ΨL (and hence L =
Ψ′ΨL) from [y1, y2, . . . yt0 ] becomes a low-rank matrix completion
problem and one can use nuclear norm minimization [6, 7] or one of
the greedy approaches in literature, e.g. [8], to solve it. In this work
we use nuclear norm minimization, i.e. we solve

min
L
∥ΨL∥∗ s.t. P(Ω1,t0 ; ΨL) = [y1, y2, . . . yt0 ].

Let L̂ denote its solution. As shown in [6], this will result in exact
recovery if ΨL satisfies certain incoherence assumptions, the sets ωt

are sampled uniformly at random and independently of all previous
sets and nt0 ≥ Cm5/4r logm. We estimate P0 by computing the
left singular vectors of L̂ with nonzero (in practice, non-negligible)
singular values, i.e. by principal components analysis (PCA).

For t > t0, we have measurements of the form yt := Atst +
Atℓt with At := HtΨ. Suppose that P̂(t−1) is available and is
such that span(P̂(t−1)) ≈ span(P(t)). By projecting perpendicular
to the span of AtP̂t−1, we can approximately nullify Atℓt and get
projected measurements of Atst. To be precise, we compute ỹt :=

Φtyt where Φt := (I − AtP̂t−1(AtP̂t−1)
†). Clearly, ỹt can be

rewritten as ỹt = (ΦtAt)st + βt, where βt := ΦtAtℓt can be
interpreted as small noise resulting from incomplete nullification1 of
Atℓt. The problem of recovering st from ỹt now becomes a standard
sparse recovery problem in small noise. One can use any of the
sparse recovery / compressive sensing (CS) approaches to recover st.
In this work we use noisy ℓ1 minimization at the first time instant and
we use modified-CS [27] at all other time instants, i.e. for t > t0,
we compute ŝt,modcs as the solution of

min
x
∥xT̂c

t−1
∥1 s.t. ∥ỹt − (ΦtAt)x∥2 ≤ ξt

with T̂t0 = ∅. We can pick ξt using the following idea which was
suggested in [2] for another similar problem. Notice that ξt is the

1incomplete because span(P̂(t−1)) ̸= span(P(t))



Algorithm 1 MatComProCS

Input: yt’s, Output: P̂t’s, ŝt’s, ℓ̂t’s, Parameters: ξt, r, C, α, ϵ
Initialization:

• Compute L̂ as the solution of

min
L
∥L∥∗ s.t. P(Ω1,t0 ; ΨL) = [y1, y2 . . . yt0 ]

• Compute the SVD L̂
SV D
= UΛV ′ and compute P̂0 =

(U)[1,2,··· ,r̂], where r̂ is the number of singular values larger
than the 99.9% energy threshold of Λ.

• Let P̂(t0) ← P̂0

• Let T̂t0 ← ∅.
For t > t0, do the following:

1. Nullify ℓt: compute Φt ← (I − AtP̂(t−1)(AtP̂(t−1))
†) and

ỹt = Φtyt.

2. Sparse Recovery by Modified-CS: compute ŝt,modcs as the so-
lution of

min
x
∥xT̂c

t−1
∥1 s.t. ∥ỹt − (ΦtAt)x∥2 ≤ ξt

with ξt = 1.01∥Φt−1
ˆ̃
ℓt−1∥2

3. Support Estimate: T̂t = {i : |(ŝt,modcs)i| > C} where C is
the larger one of the 100th largest absolute value of ŝt,modcs

and the 99% energy threshold of ŝt,modcs [27].

4. LS estimate: (ŝt)T̂t
= ((ΦtAt)T̂t

)†yt, (ŝt)T̂c
t
= 0

5. Estimate ℓ̃t: compute ˆ̃
ℓt = yt −Atŝt

6. Recover ℓt’s and estimate P̂(t) every α frames
If mod (t− t0, α) ̸= 0, P̂(t+1) ← P̂(t).
If mod (t− t0, α) = 0,

(a) Compute L̂ as the solution of

min
L
∥L∥∗ s.t.

∥[ˆ̃ℓt−2α+1,
ˆ̃
ℓt−2α+2 . . .

ˆ̃
ℓt]− P(Ωt−2α+1,t; (ΨL)∥F ≤ ϵ

(b) Compute the SVD L̂
SV D
= UΛV ′ and compute P̂(t) =

(U)[1,2,··· ,r̂], where r̂ is the number of singular values
larger than the 99.9% energy threshold of Λ.

7. Update t← t+ 1 and go to step 1.

upper bound on ∥βt∥2. We do not know βt. All we can do is estimate

it from t − 1 as β̂t−1 = Φt
ˆ̃
ℓt−1. We use a value a little larger than

∥β̂t−1∥2 for ξt, i.e. we let ξt = 1.01∥β̂t−1∥2 = 1.01∥Φt
ˆ̃
ℓt−1∥2.

By thresholding on ŝt,modcs, one gets an estimate of its support.
As suggested in earlier work [27, 21], the support can be estimated
as the 99% energy set of ŝt,modcs or the 100 largest absolute value
of ŝt,modcs. By computing a least squares (LS) estimate of st on the
estimated support and setting it to zero everywhere else, we can get
a more accurate final estimate, ŝt, as first suggested in [28].

This ŝt is used to estimate ℓ̃t as ˆ̃ℓt := yt−Atŝt. Every α frames,
these can then be used in a noisy matrix completion algorithm [7] to
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ktFOCUSS 2 iterations
modCSres
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MatComProCS
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Fig. 2. ROC curves when CNR = 4.

recover the ℓt’s. The noisy version is needed because ˆ̃
ℓt = Atℓt +

Atet, where et := st − ŝt is the error in estimating st. PCA on
the last 2α estimates of ℓ̃t or projection PCA [2] can then be used to
compute P̂t. We summarize the complete algorithm in Algorithm 1.

3. SIMULATION RESULTS

In this section, we show experiments on real fMRI data with sim-
ulated activation. We evaluate the detection performance of Mat-
ComProCS and other algorithms using Receiver Operating Char-
acteristic (ROC) curves. To quantify detection performance using
ROC curves, we need to know the ground truth for active regions.
We captured a rest brain sequence (brain fMRI when no stimulus
was provided to the subject) using a real MR scanner, but adding the
activation later in software. Rest fMRI (TR/TE=2500/24.3 ms, 90
degrees flip angle, 3 mm slick thickness, 22 cm FOV, 64×64 matrix,
90 volumes) was performed using a 3T whole-body MR scanner and
a gradient-echo echo-planar imaging(EPI) acquisition sequence. We
added synthetic BOLD contrast with different CNR to pixels corre-
sponding to motor activation on one slice. The 64 × 64 slice image
has 23 active pixels. The BOLD signal was created by convolving a
bi-Gamma HDR model (6-s onset delay, 4-s FWHM) with binary-
valued function representing a block stimulus (30s active, 30s rest,
obtaining 1 volume at every 3 seconds, start/end in rest condition).
Stimulus has been added for 4 times at every other 60 second-
s starting from 30th second, thus, the active set Sact is roughly
{13, 14, · · · , 23, 33, 34, · · · , 43, 53, 54, · · · , 63, 73, 74, · · · , 83}
(this is computed by assuming a 2 frame delay for the activation to
become significant), and the other volumes form the rest set Srest.
5 separate sequences were generated by resampling the original rest
fMRI data with the wavestrapping technique and adding activation
to the motor pixels, as explained in [29]. fMRI measurements were
generated by uniformly undersampling the DFT of each image to
retain n = 0.5m measurements.

Before we proceed we explain exactly how MatComProCS was
implemented for the dataset. In fMRI, one typically does not care
about recursive recovery. Since we had a sequence with only 12
initial rest (background-only) frames and these are not sufficient for
accurately solving the matrix completion problem, we rearranged
the sequence so that all rest frames, i.e. the frames in the set Srest

appeared first. There were a total of 46 rest frames, thus we imple-



mented Algorithm 1 with t0 = 46. Also, we picked α = 46. Since
there were only 44 other frames, this meant that we never actually
updated P̂(t). In future work, we will experiment with significant-
ly longer sequences where the update will be essential. Finally, our
model assumes that ℓt is zero mean. However as with all imaging
problems, the background image sequence is not zero mean. Hence,
after recovering ℓt we computed its mean µ and subtracted it out
before the PCA step. The same mean was also subtracted from yt
before step 1 of the algorithm.

We used MatComProCS (Algorithm 1) on these measurements
to recover st and ℓt for each of the 10 sequences. The active region
was detected by thresholding on the average of the estimated active
images ŝt, i.e. on (1/44)

∑90
t=47 ŝt. We varied the threshold in

a range and for each threshold computed the detection probability
(number of detected pixels divided by total number of active pixels)
and the false alarm probability (number of wrongly detected pixels
divided by the total number of inactive pixels) and plotted these to
get the ROC curve.

We show comparisons with the approach used in [26] for the
same problem. In this work modified-CS-residual (which is an al-
gorithm for recursively recovering a time sequence of sparse signals
with slowly changing support sets and signal values) was used to re-
construct the entire image sequence. It assumed that each image of
the sequence was wavelet sparse. The reconstructed image sequence
and the knowledge of the active and rest frames was fed into a t-test
based active region detection technique described in [29] to obtain
the ROC curves. We also compare with all the works (kt-FOCUSS,
basis pursuit denoising (BPDN), CS-residual, CS-diff) compared in
[26]. All of these algorithms are also sparse recovery techniques (ei-
ther recursive or batch) that assume different types of sparsity for
the fMRI sequence. CS-residual, CS-diff and BPDN assumed that
each image is wavelet sparse. k-t-focuss assumes wavelet sparsity
along the x-y axis and Fourier sparsity along the time axis. All of
the above algorithms used n = m (100% measurements for the first
frame and n = 0.5m for all other frames and thus, in fact used more
total number of measurements than MatComProCS. Also the best
undersampling scheme was used for each case as explained in [26].

Finally, as baseline, we used a full-sampled fMRI sequence (im-
age sequence recovered by inverse DFT), i.e. n = m for all t, fol-
lowed by the t-test.

We show the ROC curve comparisons in Fig. 2. As can be seen,
MatComProCS significantly outperforms almost all the other algo-
rithms and its ROC curve comes quite close to that of the baseline
(full-sampled case) which has a perfect ROC. There are two main
reasons for this. The first is that while the wavelet basis may be a
valid sparsity basis for the sequence, it is not the best one (we used
the same wavelet basis that was used in [26] and was selected after
experimenting with many choices). It is also not clear which basis
or dictionary is a better one in terms of improving the sparsity. On
the other hand, MatComProCS does not assume a sparsity basis for
the background sequence. Instead, it only assumes that the sequence
is low dimensional and estimates the principal components from the
data itself. Moreover, the active region is recovered by first approxi-
mately nullifying the background sequence (which is the “noise” for
this problem) followed by sparse recovery and this also makes the
recovery much better.

We also compare against an adaptation of Dense Error Correc-
tion (aDEC) which assumes ℓt = Wxt where xt is a sparse vector,
i.e. the background is wavelet sparse and st is just sparse. It thus
solves minx,s ∥x∥1 + ∥s∥1 s.t. yt = AtWx + Ats. But it turned
out that it achieved only 0.01% detection for 5% false alarm with
our data, much worse than all the others, thus we didn’t plot it on
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Fig. 3. Background recovery error when CNR = 3. NMSE(=
∥(ℓ̂t−ℓt)Tc∥2

∥(ℓt)Tc∥2
, where T is the active area, |T | = 23.)

our figures. The reason is that (a) the wavelet basis is not a very
good sparsity basis for the background sequence and also that (b)
the active region image st is itself compressible in the wavelet basis.

We also compared background image recovery performance of
MatComProCS and of the other algorithms in Fig 3. As can be seen
MatComProCS again significantly outperforms the other algorithms.

4. CONCLUSIONS AND FUTURE WORK
In this work we studied the problem of trying to separate a sequence
of sparse vectors, st; and a sequence of dense vectors, ℓt, that lie in
a “slowly changing” low dimensional subspace from time-varying
under-sampled linear projections of their sum. A novel solution
approach called MatComProCS was introduced. Significantly im-
proved performance over existing work was shown for undersampled
fMRI based brain activity pattern detection.

Future work on this topic includes developing an improved ver-
sion of MatComProCS that can give accurate detection performance
with even fewer number of measurements; and developing an effi-
cient algorithm for recursively solving the matrix completion prob-
lem as more data comes in (instead of re-solving the entire problem
again. We are also looking at how to obtain performance guarantees
for MatComProCS. The starting point will be the approach intro-
duced in [2] for reprocs and the matrix completion results [7].
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