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ABSTRACT its largest mode, i.e.p(X¢|Y1.:) = 0(X: — m:) wherem; =

] o ] ] o arg max p(X¢|Y1:t) = arg max p(Yz, X¢|Y1::—1) (the largest mode
We propose particle filtering algorithms for tracking on infinite (or Xt Xt

large) dimensional state spaces. We consider the general case whae Of P(X:Y1.;) is also the global maximizer @f(Y;, X:[Y1:.—1)).
state space may not be a vector space, we assume it to be a sep#@%> X:|Y1::—1) is evaluated using Bayes recursion and the delta
ble metric space (Polish space). In implementation, any such spadénction approximation op(X; 1 |Y1.1—1) as:

is approximated by a finite but large dimensional vector, whose diy,(y,, X,|,,_,) = / p(Ye| Xe)p(Xe|we—1)p(@e—1]Yise—1)dri1 ~
mension may vary at every time. Monte carlo sampling from a large Jay 4

dimensional system noise distribution is computationally expensivep(Y:| X:)p(X¢|X¢—1 = m¢—1). Thusm; is evaluated as

Also, the number of particles required for accurate particle filtering
increases with the number of independent dimensions of the system

noise, making particle filtering even more expensive. But as long a? is maximizer is tvoically found by starting with, — as
the number of independent system noise dimensions is small, even. i ypically } Dy starting L= el
nitial guess and running “some” iterations of gradient descent to

. R . . ) X |
the total state space dimension is very large, a particle filtering algo-_. =" : L I . g
rithm can be implemented. In most large dim applications, it isfairtom'nmllzi_ log p(Y:|Xy). The 'mp"‘?" asslumpltlon 'r_‘ dplng _th's '_S
assume that “most of the state change” occurs in a small dimension&12t?” = p(X¢|X:—1,Y), has a single local maximizer (is uni-

Y| X+) is multimodal (e.g. contours of multiple moving

basis, which may be fixed or slowly time varying (approximated agn°da). Ifp(

piecewise constant). We use this assumption to propose efficient FFPIECtS in the image, or presence of spurious edges or large intensity
algorithms. These are analyzed and extended in [1]. variations resulting in temporary false modes) will be unimodal
only if the spread op(X¢|X:—1) is small enough. For large dim

state spaces, this may not hold. Whenis not unimodal, it is not
1. INTRODUCTION clear how to find the global maximizer. Also, one would like to track
all the “significant” modes, not just the largest mode.

We propose practically implementable particle filtering [2, 3] algo-  But, in applications involving tracking on large dim state spaces,
rithms for tracking on infinite (or large) dimensional state spacesit is fair to assume that conditioned on a small part of the current
Tracking is the problem of causally estimating a hidden state sestate, denoted\; ., the above, i.e.p(X;|X:—1, X¢s,Y:), is uni-
quence{ X, } (thatis Markovian with state transition pdfX:| X;—1)), modal. This, as we discuss in Section 3, follows from the assumption
from a sequence of observatiog$} }, that satisfy the Hidden Markov that in most large dim tracking applications, at a given time, “most of
Model (HMM) assumption X; — Y; is a Markov chain for each the state change” occurs in a small dim basis. For many applications,
¢, with observation likelihood denoteaY;|X;)). Some examples this small dim basis can be assumed to be fixed and known. The con-
of applications where large dim state spaces occur are (i) trackingur tracking algorithm of [8] can be understood as one application
the boundary (contour) of deforming objects in image sequencesf this idea. There we chos¥; s to be the 6-dim space of affine
(e.g. space sequences such as consecutive slices in medical imagformations - which approximates a global deformation model for
ing or time sequences), whose dimension, in the worst case, male contour - and we used a particle filter to track,. Conditioned
be as large as that of the image (space filling curve); (i) trackingon X; ; andY; (image att), the non-affine deformation can be as-
the Spectro-Temporal Receptive Fields (STRFs) [4] which are timesumed to be unimodal - this assumption is valid in many problems
frequency plots used to characterize the time varying input-outpudf object tracking, since typically multiple contours are separated by
transfer function of the auditory neuron in [4], a typical STRF di- translation or scale. So, we used a posterior mode tracker for track-
mension isl5 x 13 = 195; or (iii) tracking optical flow [5] as a ing the non-affine deformation. This idea as we explain later, can be
function of time. Optical flow, for an image at timte/;(z,y) gives  understood as a modification of the algorithm of [13]. But in certain
the motion of every point, y during one frame time. Its dimension other applications, such as in medical imaging, there may be two
is twice the image dimension. Butin all these cases, atanyttithe  (or more) contours of interest at roughly the same “affine location”.
number of dimensions in which most of the change (contour deforin other applications such as the STRF tracking problem, there may
mation or STRF intensity change or optical flow magnitude changehot be a single constant basis (like affine basis for contour tracking)
occurs is much smaller. where most of the state change occurs. To handle such applications,

The problem of tracking on large dim state spaces has been studre consider a generalization of the above assumption that allows the
ied by many researchers in the context of contour tracking, [6, 7dimension ofX; s to be slow time varying.
8, 9]. Many of these tracking algorithms, e.g. the ones given in  We present particle filtering algorithms for tracking on large dim
[7, 10], can be understood as approximate “posterior mode trackstate spaces based on the above ideas. Our algorithm is an efficient
ers” for a state space model following the HMM assumptions. Theymportance sampling technique that can also be applied to reduce
approximate the posteriop(X:|Y1.:), as a Dirac delta function at complexity of smaller dim tracking problems as long as they satisfy

my = arg n}(axp(E\Xt)p(Xt\thl =mi_1)
t



Assumptions 2 and 3. The general form of the state space mod€lbservation Model: Assume an observation model where the ob-

is explained in Section 2. The algorithm for fixed and known ba-servations,Y; depend only orC4, i.e. the observation likelihood,

sis is given in Section 3. The algorithm for time varying basis isp(Y;|X:) = p(Y:|C:) and whereC; — Y; is a Markov chain for

introduced in Section 4, more details are given in [1]. Design is-eacht. The observation likelihoodh(Y;|C:), obtained from above

sues, application to contour tracking and conclusions are discussedodel can, in general, be multimodal (e.g. multiple target tracking

in Section 5. problems or problems where multiple false target modes may get
generated due to sensor error or background clutter).

2. STATE SPACE MODEL

3. CONSTANT FINITE-DIM BASIS

State Space: We use the subscriptto denote the discrete time in-
stants. Consider a state space model with state= [C;, v,] where

v denotes the time “derivative” af';. C; can be a large finite dim | . ! | ) ]
vector, or an infinite dim vector;;, = Ci(p), p € [a,b]. OrCy(p)  taken to be the 6-dim basis of affine deformation), this assumption

can itself be a finite dim vector (e.gC:(p) = [CF(p), CY(p)]” suffices. We have considered extensions of the algorithms proposed
with p € [a,b]). Also, C; may not even lie in a vector space (e.g. Nere to time-varying basis in Section 4 and [1]. _
[CZ(p), CY(p)]T may denote one parametrization of a contour [11]). The optimal importance sampling (IS) distribution (one that min-

We assume here that, is constant for alt. For many applications,
such as the contour tracking problems shown in [8] (wh&ras

Also, p can itself belong to a compact subseR3for R? etc (e.g. op-
tical flow, C:(x,y) = [u(x,y), v(z,)|]”, = € [0,a], y € [0,b).
Thus to incorporate all these cases, assume@hat C:(p), with
p belonging to a compact subset®f. Assume that’; belongs to

imizes the variance of weightsf) conditioned on particlesgle

and past observatioris; ;1) for particle filtering has been shown
to bep* £ p(X:|X:—1,Y:) in [13] and other works. But this can-
not be evaluated analytically for most state space models. In [13],

a Polish spacé (a complete separable metric space) with distancéhe authors suggest approximatipigby a Gaussian about its mode,

metricd. v, now denotes the time “derivative” @f, (defined in the
corresponding tangent space&t denoted’ S¢, ). Thusv; belongs

when it is unimodal. Whep(Y;| X;) is multimodal,p* will be uni-
modal only if the spread of(X:|X:—1) is small. For a large dim

to a vector space. state space, the spreadudfX;| X;—1) may not be small enough in
In implementing any algorithm for infinite dim state spaces, theall dimensions to ensure unimodality pf and hence the algorithm
number of points at whicti', is defined is always large but finite (and of [13] cannot be usedBut if the change in the “rest of the state
can change at every. For example, if the parametgre [0, 1], C; space”, Sy, is “small enough” (quantified in Assumption 3), then,
is defined af\Z; pointsp = 0,1/M,, ...1 attimet. Hence intherest p™* £ p(X¢|X;—1,v1,5,Y:) = p(C:¢|Ct,Y:) can be shown to be
of this paper, we assume thatis a large but finite dim space with unimodal. Under this assumption, we propose the following modi-
dimension)M; at timet. fication to the algorithm of [13]: For each partialg(i) samplevt(fz

State Dynamm}s{ (System Model):V\_/e_ splitv; asv, = [vt,_s, vt_,T], from its state transition pdb(vt,s|v§?1 .) (defined by (3)), in order
wherev; s € R™ denotes the coefficients along thé basis direc- . . . . (@)
tions representing th& -dim subspaced.), in which “most of the  1© Sample possible multiple modes ¢, and (ii) sampIeO(t.) from
state change” is assumed to occur, and denotes the state change @ Gaussian approximationd™ aboutits mode (denoted,”). The
in the rest of the state spac§,§ which is assumed “small”. The Gaussian approximation pf* is denotedV (Cy; mt(”, E“)), where
basis directions fos are denoted byB. (p) = [b1(p), ..bx (p)] and  the modem!” = mt(ct@l, vt(f; Y1), is obtained as
the basis fotS, are denoted byB,.(p). The basis directionscanbea
function of the previous stat€;_;. Their dimension can also vary mﬁ”
with ¢ (piecewise constant witt). But to simplify notation, we do
not use the subscriptwith B;.

We assume the following general form of the discrete time stat
dynamics (with time discretization interval denotedrgs

= argmin L(Cy)&—logp™ + const
t

=—logp(Y:|C:) — logp(Ct|CA't(i)) + const. (5)

She M, x M, covariance matrix2(”, can be chosen as suggested
in [13] to bex® = L”(m{"). In summary, we propose to use as
importance sampling density:

Cilp) = Culp) + 9(Cr, Br(p)uve.r) M ! | -

Co(p) = Cioa(p) +79(Cior, Ba(p)vrs), Bs £ B(Cio1) (2) a(X X0 Y0) = pluslo?y N (Cim?, 29)(6)
Ve = fe(T,ve-1,5) + Vs, Vis ~ Dots(.) (3)  Note that whenS is not a vector space, we usé(Cy; m:,¥) to
Vir = Ver, Vir ~ Dotr(.) (4)  denote the following sampling scheme: Sample~ N(0, ) and

computeC = my + 7g(m¢, Brve). The stepwise algorithm is sum-
marized in Algorithm 1. We now discuss sufficient conditions under
whichp** will be unimodal.

g defines the mapping frofS¢, , (tangent space at;—:) to S.
For e.g., ifC is a planar contour [11}(C, v(p)) = v(p) N(C(p))
where IN(C(p)) denotes the normal t6' at pointC(p). For this
application, B, can be a K=6-dim basis for affine deformation as Sufficient Conditions for Unimodality of p**

in [8] or it can be a K-qlim B-s_pline basis for interpolating contour Assumption 1 To simplify the derivation below, assume, . (vr.,) =
velocity at K control points as in [12]. N (v1.050,5,) withS, = A I, i.e. the change i, is spatially i.i.d.

_ The dimension ofS;, K, can be fixed or slowly time vary- Gayssian distributed with varianc&. The derivation can be easily
ing (modeled as piecewise constant). The system noise Sequencesheralized to any unimodal pdf.

{Vu,t,s, Vu,e,r} are independent of each other and over time. We™

have assumed a first order Markov modebop while v . = vy, ~ DefineDs(Cz, C1) as

pu,t,r(.) isindependent over and so can be excluded from the state Ds(Co. C1) 20T 1 2 BT YO, Co—C
spaceThus, in this paper we assume the state t&bhe= [C, vy,]. =(Cs, C1)=or Uy Ur rg (1 G 1)
The pdfp, ¢ ~(.) is unimodal.

)

1If ¥ is singular,x—! denotes the pseudo-inverse.



Algorithm 1 Particle Filter with Efficient Importance Sampling

1. Att = 0,fori = 1to N, setC{” = Co, samplevy) ~
N (v0,5;0, o). Setx{? = [C§7,v{")]
2. At any t, assume that p(X¢—1|Y1:t—1) ~
SN (A/N)S(Xe—r — X)) is available.
3. Importance Sampling: Fori = 1to N,
(a) Samplev,”) ~ p,...(.). Computev.’) using (3) and
¢ using (2).
(b) Computem'” defined in (5).
(©) If S =~ 0isvalid, setC” = m”, else samplé€, (i)
N(Ci;m?, %),
(d) setx(” = [0}, v;)]

2

4. Weighting : Fori = 1to N,

@If % ~ 0 is valid, @” =
w2 p(|C (O, of)), else @) =
_() p(vilepeP oD vl
t—1 N(Ct(z);mgl),z)

) _ (i)
@) _ _ af

N
j=1%t

Now p(X;|Y1.) = N (wi)s(x, — X7
5. Resampling: Foralli = 1to N:
(a) Sample the index (i) ~ {i, w!" Y.
(b) Setx ) — X" @ 1w — 1/N.
Now p(X:|Yi.) = SN (1/N)s(X: — X ).
6. Sett «—— ¢+ 1,gotostep 3

Then, since,. = A I,

A . . Di(Cy, C
P(Ct|Ct) = pv,z,r(BrTg I(Civ Cr — Ct)) & exp [7%)

Thus

D;(Cy, Cy)

L(Cy) = E(Cy) + A

, B(Ct) £ —logp(Y:|Ct) (9)

Assumption 2 Assume

1. E(C;) and D;(C;, C;) are continuously differentiable func-
tions of C;.

2. Ds is a strictly convex function af;.
3. Eis Lipschitz continuous everywhere.

4. C, qus in a region wherdv is locally convex, i.e. the Hessian
E"(C:) > 0 (positive definite).

Definition 1 (Region R) Denote byC?,,,, the minimizer o whose
distanceD;(Chin, C’t) from C, is the least among all minimizers
of E. Define theregion R as the largest continuous region around
C:..n that containsC; and whereE is locally convex, i.e. the Hes-
sianE" (C}) > 0 (positive definite).

Fact 1 With Assumption 2, the regioR always exists and.(C')
is strictly convex insidek. Also, the minimizer of. inside R, m,
satisfiesE (Cr,in) < E(m) < E(CY).

Now if we can assume that, there is no extremum poirt ofitside
R (denotedR°), thenm will be the only minimizer ofL (i.e. p**
will be unimodal). A sufficient condition for this is that for every
C € R°, there exists somg for which (Vo L)(p) = (Ve E)(p) +
(VeDr)(p)/2A # 0. The only places whergéV ¢ L)(p) can equal
0 for all p, will be in regions wher€V¢FE)(p) and (Ve Dr)(p)
differ in sign for allp, i.e. (V¢ E)(p)(VeDr)(p) < 0, Vp. Butif

A'iis such that it is strictly smaller thanax,, LEeB0EL for all ¢

in these regions, thefV ¢ L) (p) will never be zero for alp in these
regions.

Assumption3 Let A 2 {C € R° : (VcE)(p)(VeDr)(p) <
0, Vp}. Assume

A < min max (Ve D) (p)] £

B GoR) ()] (10)

Fact 2 By assumption 2\ is strictly positive. If assumptions 1, 2
and 3 are true, therd. has a single minirpizer, denoted by, yvhich
lies insideR. Equivalentlyp™™ = p(C:|Ct, Y:) x p(Yz, Ci|Cy) =
e~ is unimodal.

Practical choice ofX in (6) for Large Dim State Spaces: Since
conditioning reduces average variance,

E[Covar[p(Ct|Cy, Y2)]] < Covar[p(Ci|Cy)] = A T < A*I. But

Y &~ Covar[p(C:|Cy, Y:)]. Thus in situations wherd* is small,
the average (taken ovéf;) eigenvalues of: will be still smaller.
Also, it is observed that the value &f* decreases as the dimension
M, increases (for fixed(). This happens because the minimization
in (10) will be performed over a larger dim space. Thus for large
M, the approximatiort = 0 is valid. WhenM; is large, impor-
tance sampling frorV'(C; m.,Y) is approximately equivalent to
deterministically setting the particle”) = m(C",,v{"),Y,).

Evaluating/Approximating the mode of p**:  If assumptions 2
and 3 hold,p™™ is unimodal. Also, by Fact 1, its modep =
m(Ci—1, 01,5, Y:), satisfiesE(C,;,) < E(m) < E(Cy). Thus,
by starting withC; = C as initial guess and running gradient de-
scent to minimizeF, there will always be an iteration numbfeffor
which C; = m, if the iteration scaling is small enougfhus, an
efficient way to evaluate: is to start withC;, = C; as initial guess
and to runk iterations of gradient descent to minimiZ In most
practical applications, it is not possible to evalultdut as demon-
strated in the experiments of [8], a heuristic choice often suffices to
give an approximation to the mode.

4. TIME VARYING BASIS

As discussed earlier, the assumption of a fixed basis is restrictive in
certain situations. Here we attempt to relax it with that of a piecewise
constant with time basis.

Fact 3 SinceS is a Polish space, by definitioriy ¢ > 0, for any
C,Ci—1 € §, 3 K = K(¢,C4,Ci—1) large enough ands =
vs(K, Cy, Cy—1) € R, s.t. d(Cy, Cy) < ¢, whereCy = iy +
9(Ci—1, Bkvs). Bk is aK-dim basis for any countable dense sub-
setof7S¢, ;.



Now let us replace distance by average distance i.e. we look for onegg
K and onev; (depending orf; 1) that works for allC; on average.
Also, we consider a piecewise constant effective basis dimension
i.e. the samé works for allC;_; € S and for allt € [T1,T%], i.e.

Assumption 4 Given aA* and a time intervalTy,72], 3 K = FE y—
K(A*,[Th,Tz]) s.t. for everyCy—, € S andVt € [T1,T3], 3 n
Vt,s = vt,s(K, Ci—1) S.t. (a) Occlusion starting (b) Recovered (c) Deformation
E[d(Ct, Ct—1 + g(Cir—1, Bxvt,5))|Cr—1, vt,s] < A*.

. ) . . Fig. 1. Tracking a deforming fish through partial occlusions
In addition, we also need the assumptions discussed in the above sec-

tion that ensure thai(Cy|Ci—1, v¢,s, Y2) is unimodal. Under these

assumptions, one can modify Algorithm 1, to include a basis changg continuously differentiable and strictly convex distance funciion
detection step at everyand a basis dimension estimation step when-anq then ensure thf is large enough so that expected value of this
ever a change is detected. Also, when the basis dimension changgsstance is “small”.

the velocity from the previous time step needs to be re-evaluated in

the new basis. The stepwise algorithm is given and analyzed in [1].  cgnclusions: We have proposed two practically implementable
PF algorithms for tracking on infinite (or large) dim state spaces. The

5. DESIGN ISSUES, APPLICATIONS AND CONCLUSIONS first assumes that there exists a known and constant finite dim basis
in which most of the state change occurs. The second algorithm

Basis Choices and Dimension Estimation: We would like to de-  allows this basis to be slowly time varying (piecewise constant). We

fine aK dim basis to approximate an element of the tangent spaceiscuss the implicit assumptions in defining this algorithm and how

of an element of an infinite dim Polish space. The tangent spacthey can be relaxed in [1]. Also, note that Algorithm 1 suggests an

element is an infinite dim vector. This can be also be understoodfficient importance sampling strategy (a generalization of [13]) that

as a way of sampling a continuous functionfatpoints to define can be used whenever Assumptions 2 and 3 are satisfied (even if the

a K-dim subspace. Some possible choices are: Fourier basis (urstate space dimension is finite and small). It can also be understood

formly discretizes the Fourier transform of the function), B-splineas an approximate Rao-Blackwellization [14] technique.

basis (provides a piecewise polynomial approximation that is local

in space) or the wavelet basis (local in both time and frequency). 6. REFERENCES
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