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~ Abstract—The changing configuration of a group of mov- activity sequence into different stationary shape aatisiand
ing landmarks can be modeled as a moving and deforming track them. Noisy observations coming from these models
shape. The landmarks defining the shape could be moving .4, pe tracked using a particle filter. We discuss applioatio

objects(people/vehicles/robots) or rigid components of an articu- o . . -
lated shape like the human body. In past work, the term “shape to abnormal activity detection, tracking and activity seqce

activity” has been used to denote a particular stochastic model S€gmentation.
for shape deformation. Dynamical models have been proposed

for characterizing stationary shape activities (assume constdn We use a shape based dynamical model for activity
mean shape). In this work we define stochastic dynamic models because it makes our approach invariant to camera motion,

for non-stationary shape activities and show that the stationay der th K ti del (al f dt th
shape activity model follows as a special case of this. Most under the weak perspective model (also referred to as the

activities performed by a group of moving landmarks (here, Scaled orthographic camera) [8] assumption. The weak per-
objects) are not stationary and hence this more general model spective model is a valid assumption when the scene depth
is needed. We also define a piecewise stationary model with non- js much smaller compared to distance from the camera. This
stationary transitions which can be used to segment out and is often also the case when the moving objects in the scene

track a sequence of activities. Noisy observations coming from I h to be treated int obiects. f |
these models can be tracked using a particle filter. We discuss areé smail enougn 1o be lreated as point objects, for exampie

applications of our framework to abnormal activity detection, N surveillance applications, see Figure 6(a).
tracking and activity sequence segmentation.

The “shape activity” is a generic framework which can
used to model dynamics of moving configurations in many

The changing configuration of a group of moving land-applications depending on what is treated as the landmark.
marks (here point objects) can be modeled as a moving aiitie “landmark” can be a person or a vehicle or any moving
deforming shape. Shape of a group of discrete points (knovabject. One can learn a shape dynamical model for an activity
as ‘landmarks’) is defined by Kendall [1] as all the geometriperformed by a group of moving people or model moving
information that remains when location, scale and rotafiontraffic and use it to detect abnormal (suspicious) behavior
effects are filtered out. The deformation of a moving ang3], e.g. see Figure 6(a). The “landmark” could be a robot
deforming shape can be split into rigid motion of an averagand this framework can be extended to apply feedback
shape and its non-rigid deformations [2]. In past work [3]control to a group of robots to perform a certain task.
we have used the term “shape activity” to denote a particul&@iternatively, the “landmarks” could be the various rigid
stochastic model for shape deformation. Dynamical modefsarts of the human body (see figure 4(a)). Our framework
were proposed for characterizing stationary shape desvit can be used to learn models for the actions and detect and
(assume constant “mean shape”) and statistics defined ttack abnormality in the action. This ability could be udefu
detect “abnormality” [4]. In this work we define stochasticmedical professionals trying to analyze motion disordars i
dynamic models for nonstationary shape activities and shaieir patients. Also, the piecewise stationary framewah c
that the stationary shape activity model follows as a specibe used to segment a long sequence into piecewise stationary
case of this. Most activities performed by a group of movingctions. Our approach is sensor independent. The landmark
landmarks (here, objects) are not stationary and hence tlubservations could be obtained by tracking moving objects
more general model is needed. If the activity is actuallyn low resolution video or using radar, acoustic or infrd-re
stationary it still gets tracked by the non-stationary modesensors, and only the observation model changes.
We use our model to track noisy observations using a particle
filter [5], [6]. The nonstationary model, being more gengral We discuss related work and the shape representation used
is also more robust to model error and is able to track the next two subsections. The shape activity models are
abnormalities in the activity (which have not been modeted ipresented in section Il. Abnormality detection and tragkin
the training data). Abnormality is detected by using the ELlare discussed in section Ill. Shape activity segmentason i
statistic defined in [4], [7]. Finally, we also define a piet@v explained in section IV. Results are presented in section V
stationary model which can be used to segment a givemnd discussion and conclusion in section VI.

I. INTRODUCTION



A. Related Work shape from this shape, i.e. = argmin, Ep[d?(z,u)] =

There are many representations for the shape of contift8 min [, d*(z, 1) P(dz), where d is the Procrustes
uous curves - Fourier descriptors [9], B-splines [10], angldistance. _ . _
function or curvature based representations [11], defblena  The shape spacet, is a manifold inC*~! and hence
snakes and level sets [12]. But in our work, we are tryin§fS actual dimension i*~2. Thus the tangent plane at any
to model the dynamics of a group of discrete landmarkBOiNnt of the shape space isCA~* dimensional hyperplane
and so the data is inherently finite dimensional. Henc# C* [13]. The tangent coordinate (denoted byw.r.t. i,
we use Kendall's representation of shape of a group & @& configurationy; ., is evaluated [13] as follovis
discrete landmarks [1], [13]. Our approach is invariant to A T
scaled orthographic camera motion. Other view invariadt an CYraw, where €' =1 — 131y /k

quasi view invariant approaches for modeling actions are s 2 s(Y)=1Y|, w=Y/s,

[14], [15]. Our approach can be made invariant to affine A . T i
camera motion by replacing the regular shape space by = 0Yp) = —arg(w p), (Vo) = wel™ (1)
affine shape spaces (chapter 12 of [13]). Also, both [14] Y eit
and [15] are non-parametric approaches, while we define a + = (Y, u) = [l — pp’ ]z = [Ir — pu’] © 2
shape based parametric model for representing grouptsctivi §

or human actions. Another work which also models human Il. THE SHAPEACTIVITY MODEL

motion using a dynamical model is [16]. They learn a linear The distinction between motion and deformation of a
dynamical model for the gait of different subjects and usenoving and deforming shape is not clear. We model the mo-
the distance between dynamical models as a metric for gaién/deformation of a deforming shape as scaled Euclidean
recognition. Our dynamical model is similar in spirit to [17 motion of the “mean shape” (translation, rotation, isoicop
where the authors use piecewise geodesic priors to defiggaling) plus its non-rigid deformation. The term “shape
models for motion on Grassmann manifolds and track thegictivity” is used to denote a particular stochastic model
using a particle filter. The application considered there ifor shape deformation [3]. We define a “stationary shape
time-varying subspace estimation. activity” as one for which the shape vector is stationary
i.e. the “mean shape” remains constant with time and the
. , deformation model is stationary. Since the “mean shape” is
We use a discrete representation of shape of a group Qngtant and assuming small enough variance, the dynamics
k landmarks. The various moving objects (point objects)m shape space can be approximated by dynamics in the
in group activity or the rigid parts qf human'body in antangent to shape space at the mean (see Figure 1(a)). A
action form the “landmarks”. Theonfiguration is the set a1y observed and non-linear model for representing a
of landmarks, in the 2D case itis the x and y _coordl_nates %ftationary shape activity was proposed in [3]. It used tahge
the landmarks which can be represented asdimensional 4o ginates of shape w.r.t mean, and the motion parameters

complex vector [13]. _ (scale, rotation) as the state.
The raw configurationy;...,, can be normalized for trans- * | "o work, we define a “non-stationary shape activity”

lation (moving origintq the centroid oftr_]e configur_atiomm model for which the “mean shape” is time-varying and

the_n for sc_ale (normahzmg. the translation normalizedt@ec hence modeling the shape dynamics requires a tangent space

Zy its Epchde;an norm) t'o yield thmre—shape denoted'byu.. (see figure 1(b)) defined w.r.t the current shape. Thus the
configuration ofk points after translation normalization, state space now consists of the “mean shape! @iven

C T 1 ) .
denoted by’ lies in C ((k-1)-dimensional complex X;_1), the tangent coordinate w.r.t. the current “mean shape”

space) while the pre-shape;, lies on a hyper-sphere in (ugnane velocity”) and motion parameters;; 6,. Our model

chol. A.prt_a—shapewl can be aligned with anoth(_ar prt_a—;hapecan be understood as a Markov model on “shape velocity”
wo by finding the rotation angle for the best fit (minimumnic, is parallel transported at eaéfto the tangent space
mean square error f.'t) _and this gives tRecrustes fit of at the current “mean shape”. The stationary shape activity
w1 Onto wy [_13]' This is theshapeof w; w.rt wo- The model of [3] is a special case of this nonstationary model
Procrustes distancebetween preshapes; and wy is the 5, s giscussed in Section II-B. We also define a piecewise
Euclidean distance between the Procrustes fnw@fon_to stationary shape activity model in Section II-C to either
wo. The Procrustes meanof a set of preshapegwi} is  noge) 5 shape activity with slowly varying “mean shape” or

the minimizer of the sum of squares of Procrustes distancg& segment and track a sequence of activities each of which
from eachw; to an unknown unit size mean configuration is stationary.

[13]. Any pre-shape of the set can then be aligned w.r.t. this
Procrustes mean to return tekape(denoted by:) w.r.t. the A. Non-stationary Shape Activity (NSSA)

mean shapey [13]. ) o _ The observed configuration of landmarks after translation
Definition 1: The term “mean shape’, in this entire  ormalization,Y;, forms the observation vector. The “mean

paper, is used to denote the minimizer of the expecteghape” at timer, 1, the coefficients vector (of the tangent
value (w.rt. a probability distribution” on the shape

space, M) of the squared Procrustes distance of any Note for complex numbers (or vectors), denotes conjugate transpose

B. Shape Representation



coordinate of shape w.r.t. the current mean shape)and 1) Training: Given a training sequence of centered (trans-
the motion parameters (scadg, rotationd;) form the state lation normalized) configurationgY;}7_,, we first evaluate
vector, i.e. stateX; = [u,ct, 5¢,0;]. Denote the tangent {c;, v, ss,0;}1_, as follows? :

space af; by 7),,. We then have the following dynamics:

The shape at the previous time instant is used as the current pe = Zt-1
mean shape, i..; = 2,1 and soT},, = T;,_,. The tangent st = |[IVall, wi=Yi/s4,
coordinate ofz; in 7., , defines d'shape velocity”. Since  6,(Y;, ;) = —angle(w! z_1), 2(Yy, 2-1) = weel?

the tangent plane is @ —2)-dim hyperplane ir€”, a tangent N

. S v (Y, pt)
vector has only(k — 2) independent (complex) coefficients. T
We perform an SVD (Singular Value Decomposition) [18]Ct(Yf’“t) = Uz-1) 2 (6)

of the tangent projection matri{/, — 1.1/ |C, to obtain  |f we assume a time invariant Markov model on we can
a(k —k_22)-d|m orthogonal basis fof,,. The basis Vectors, yse{¢,}Z_, to learn its parameters [3], [18].
{u,;};i=, are arranged as column vectors of a matrix, _ o
Uppae), e, UF*=2) = (.1, 5ty o) 2 The vector B. Stationary Shape Activity (SSA)
of coefficients (k — 2)-dim) along these basis directions, For a stationary shape activity, the “mean shape” is
ce(2t, 11e), is thus a canonical representation of the tangemonstant with time,u; = p, and the shape sequence is
coordinate ofz; in 7),,. The tangent coordinate is given by clustered around the “mean shape” (see Figure 1(a)). Hence
ve(ze, ) = Urey. the shape deformation dynamics can be defined in a single

Now, the coefficient vector; is the coefficient vector of tangent space at the mean (which can be learnt as the
the shape velocity, and is thus the multivariate analog ef orProcrustes mean [13] of the training data). The SVD of
dimensional speed. We can assume(shape speed) to be the tangent projection matrix’y = Uy = basis(T),,) is
i.i.d. Gaussian or define a linear Gauss-Markov model on iconstant toow; = v;(Y;, po) = Uoc (Y3, p1o) is the tangent
Both these can be summarized by the following model. coordinate w.r.t. the “mean shape” (not tangent velocity a

0, = 0,(Y%, o) is rotation angle w.r.t. the constant mean (not

= [Ik - Zt—lz?—l]zt7

Mt = Zt-1 rotation speed). Since there is a single mean shape, it does
e = Acsrcir+ng, ng~N(0,S,c04) not need to be part of the state vector. Thus the state vector
v = Uc, U, =orthogonal basig},) is X; = [cs,54,0;]. The dynamics ory, is defined by the

4 = (1- oTo )1/2 e 3) autoregressiong; = A.1ci—1 + ny. Note that in this case
t AN c: (Y, po) are the tangent coordinates for the shapeand

One thing to note is that a Markov model on the shape Spe@gnce the above model correspo_nds .to a first order Markov
corresponds to a second order Markov model on shape, model on shape;;. Also note that in this casey andc; are
(hence the subscript ‘2’ on the parameters). Some speclglated by a constant orthogonal transformation.

cases arel. ,, = 0 or i.i.d. speed (first order Markov model
on shape)A. 2 : = I which corresponds to i.i.d. acceleration
and A, = Aap or stationary speed.

C. Piecewise Stationary Shape Dynamics

When the shape is not stationary but is slowly varying, one

Motion dynamics can be defined as in [3] or differentIyCOU|d_ model the “Inean Shape",,"’?s being piecewise constant.
ow in SSA, the “mean shape” is constant ig.= g for

depending on the application. We use a Markov log-normay . ; : .
mo[zjel forgthe scalepzarametesr,, and a Markov un%form all t and hence all the dynamics can be described in a single

model forf;. Note thatd; here is the rotation angle of currenttangent space while in NS.SA’ the tangent space changes at
configuration w.rt. the current “mean shape’— z_; and eaqh time instantu; = z;_1 is the pole of the tangent space
hence is a measure of rotation speed while in [3] it denot timet. But for PSSA we let the meam; (and hence also

rotation of current configuration w.r.t. the constant méare ~ * T_t?rlgenf space) hbe p",eCEW'Se Ct(')nstant. g
motion model equations are: et the “mean shape” change times bet, t3,... an

the corresponding means pe, ps, i3, .... Then we have the

logs; = aslogs;—1+ (1 — ags)us+ nsy following dynamics: Between,;_; <t < t;, fir = -1 and
logso ~ N, 02), naey~N(0,02 SOct,l(zt,.l,,ut.) = ct_,l(zt,l,ut,l). Hence |nth|s interval,
§ %0 (15, %) >t ( T,) the dynamics is similar to that for an SSA, i.e.
0, = apbi_1+ng:, ngs~Unif(—a,a) (4)
. . celze, pe) = Ac,l,tct—l(zt—luut) + ng,
The shape and motion model (equations (3), (4)) form the
; ; . vy = U(Mt)cm
system model The observation modelis as follows: T /2
ze = (L—wv;v) "+ vg. @)
Y, = h(X)+G, G ~NOX .
! ( t)_j(ft G (0 Zobs.t) At the change time instant, = ¢;, u; = p; and so the
MXi) = zspe” " (®) tangent coefficient;_; needs to be recalculated in the new
2Rx (k=2 — orthogonal basi),,) is evaluated as :U; SNote, the last equation;; = U;T z;, holds because; = U v,

t
Ufull,tQ where Uf'UZlatSU?ull,t = []k — /Ltuz]c, andQ UtT[I — thlth_l}Zt = UtT[I — Zt—lth_l}CZt = UtTUtUtTZt
U (k—2)x (k—2), O(k—2)x2] T U T 2.



tangent space w.r.i; = 1. This is achieved as follows:  Carlo approximation of the optimal non-linear filter. The
particle filter [6] is a recursive algorithm which produces

_ T JO(zt—1,1t) ’
1ot m) = Ule) " zie at each timet, a cloud of N particles, {z\"}¥,, whose
i(zes ) = Acpici1(z-1, ) + 1, empirical measure (denoted by (dz)) closely “follows”
ve = Ulue)er, m(dz|Yo.:), the posterior distribution of the state given past
2 (1 — ol v) "2y + vy ®) observations (denoted by (dz) in the rest of the paper).
Note that in NSSAu; is a tangent coordinate w.rt; = A. Tracking to Obtain Observations

zi—1 and hence it measures shape velocity while in this case, The particle filter also provides at each time instant the
v; (and hence alse;) is a tangent shape coordinate W-r-t-prediction distribution, r,(X,|Y1._1), which can be used

the current “mean shapgl;. Hence like in SSA, here also o predict the expected configuration at the next time in-
we have a first order Markov model on shape. Hence thsetant using past observations, i, 2 E[Y|Yoi—1] =
y LB = t1Yo:e—1] =

subscript ‘1’ onA. 1 . o ; )
. 2L E..._,[h(X:)]. We can use this information to improve the
Ht—1 2
The tlmelsd a; \;\;}hl;h thek changes li)ccur and the th?r?g?ﬁ%asurement algorithm used for obtaining the observations
means cou 0 € unknown or known or on€ ot them, - yiinn detector [19] in our case). Its computational
could be unknown. When both change times and the corr

. .complexity can be reduced and its ability to ignore outliers
sponding means are known, PSSA can .b.e used for trgckl_g n be improved by using the predicted configuration and
a sequence of stationary shape activities (each with

o _'Issearching only locally around it for the current obserwvetio
known shape mean and known transition times) and detecti

. . . we show in section V, the observed configuration is close
abnorm?hty. Abnorm?hty can.be defined as ELL w.r..t. theto its prediction when there is no abnormality or change and
cur.rent mean shape” exceeding a threshold. When times nce the prediction can be used to obtain the observation.
which the changes c“)ccur are unk“nown, one can use ELL.[ Iso, if the configuration is a moving one, then the predicted
[7]w.rt. the C.“Tre”t mean shape. .to d'etect'a C.h ange. Fnis otion information can be used to translate, zoom or rotate
useful for activity sequence identification (figuring outewvh the camera (or any other sensor) to better capture the scene
one activity ends and the next one starts) and tracking. Bo Ut in this case. one would have to alter the motion model
cases are discussed in Section IlI-C. to include a con,trol input.

When both change times and changed system means are
not known, one can detect the change using ELL. Thg. Abnormal Activity Detection

“best” estimate of the shape at théased on observations - - o .
An abnormal activity (suspicious behavior in our case) is

Y1, can be used as the new shape mean. Now since tggfined as a change in the system model, which could be slow
shape space is nonlinear, the expected value of shape given 9 y '

observations,Ewiv 2] (the MMSE estimate), may not lie or drastic, and whose parameters are unknov@iven a test

in the shape space at all. But we can instead estimate®gacNce of observations and a "shape activity” model, we

o .. use the change detection statistics defined in [4], [7] teatet
Procrustes mean [13] of the shape which is the minimum . . .

. . N a change (i.e. detect when observations stop following the
mean Procrustes distance square estimator (“mean shape

w.r.t. posterior distribution). It can be evaluated as Hrgést given shape activity model). A change being drastic or slow
T ) X depends on the system model used in particle filtering. A

. RPSVAN T N i 4T
eigenvector of the matris = E. v (22, | = v 2,=1 %% more general system model can track a lot more changes and
[13]. Note that the Procrustes mean is an intrinsic meafynce the nonstationary shape activity model does a better
for the shape 'mar?lfold. Ong ca.n also evaluate' the extrlns]'(‘fb of tracking abnormal observations than the stationary
mean [11] which is the projection of the Euclidean meaiyne \whenever changed observations get tracked correctly,
of tangent coordinatesy v [v;], onto the shape space, i-e.tne EL| detects the change while if the PF loses track, the
pgmtrnsics = (1 = Epn[od)"Exn [0a]) P11 + Eqxn[vd- tracking error detects the change [4], [7].
Setting the mean this way will be valid as long as the tracking Now for abnormality detection, the normal activity needs
error (or equivalently the observation likelihood, OL [#])  to be characterized first. We can either use shape velocity
is still below the tracking error threshold (the posterigf is o, shape or both to represent normalcy depending on the
estimated correctly). This follows from theorem 4 in chaptepactical problem being dealt with. To use shape to detect
2 of [7]. This form of PSSA can be used for activity sequencgpnormality, we represent a normal activity by a stationary
segmentation and tracking as discussed in Section IV.  shape activity model or by a PSSA model (whichever is
I1l. ABNORMAL ACTIVITY DETECTION AND TRACKING ~ @PPropriate for a given problem). For simplicity, assume
an SSA model for normal activity. Then the normal prior

Now, in the previous section, we have defined StOChaStl;é a time invariant Gaussian distribution of the tangent

dynamic models for shape and motion dynamics with nois
observations of the configurations forming the observation g, thing to note here is that in certain cases (for examptagiposte-
vector. Filtering needs to be performed to estimate (filtefor of any state variable is multimodal), evaluating the pdst expectation
out) the posterior probability distribution of shape (sjat as a prediction of the current observation is not the corttgng to do. In
. . . . . . such a case, one can track the observations using the CONPHAN
given the noisy observations. Since the model is nonlmea&ﬁgorithm [10] which searches for the current observatimuad each of

we use a particle filter (PF) [5] which is a sequential Montehe possibleh(z?),7 = 1,2...N.



coordinates w.r.t.ugp (the normal activity mean shape), (i.e. neither of the known activity types) if the ELL w.r.ti al
N(0,%,,0). Now for a Gaussian prior, the discriminatingknown models exceeds a threshold.
term of ELL reduces to expectation, under the posterior, of
the Mahalonobis distance from the prior's mean. We evaluate IV. SHAPE ACTIVITY SEQUENCESEGMENTATION
it as follows: We project the filtered shape of the obser- The PSSA model with unknown mean shapes and un-
vations at timet into 7,,, to obtainv(z, uo) and evaluate known change times can be used along with ELL for activity
Ex, [v(2e, 10) TS, v (21, po)]- Thus given the particle filtered sequence segmentation as follows:

g N A N 1 ; - Track observations using PSSA, until the ELL of tangent
shape ,dlsmbu“omt (dze) = 2Jimy 0,0 (dze) (which coordinates w.r.t. the currept,, ELL(p;) = By, [v] 2, 1]
approximatesr,(dz;)), we evaluate exceeds the change detection threshold. 7

A X - Use time instants wheR' L L(u;) exceeds its threshold, as
T (dvg ) = Z Ncivm (dvg,y,), where segmentation boundaries.
i=1 o - If at time ¢, ELL(u;) has exceeded its threshold but
ol 20 m0) = [ — popg) 2P ed® w0 (g)  the tracking error is still below its threshold (PF is still i
track, i.e.w) approximatesrt{ correctly), then seti;,; as
ELL(Shape) is then approximated as the posterior Procrustes mean of the shapg given past

| X . observationsy.,. This is explained in the last paragraph of
ELLY (Shape) = — 3 o) " Sobol) . (10)  section II-C.
N P ’ - Recalculater; and¢, in the new tangent space at,; (as

If PSSA is used to define a normal activity, the prior .Sdlscussed in section [I-C).

a Gaussian distribution on the tangent coordinates in the V. EXPERIMENTAL RESULTS
tangent space of the current mean A

: : . . Simulated Shape Sequence
Depending on the practical problem, one might want ) i o ) )
to use shape velocity (rate of change of shape) to define We first simulated a shape activity sequence, starting with

normalcy. Given that a stationary Gauss Markov model hasrégular hexagon as the mean. The sequence was stationary
been defined for the shape velocity, with parameters for the first 40 frames (around the regular hexagon) and

S92, Ay.2, S .2, the change detection statistic will simplify for th_e next 40 frames, a bi_as was add_ed to the tangent
to E, [vtTE;évt] wherev, = v(z, z_1) denotes shape ve- coordinate at every frame, which resulted in unmodeled non-

stationary deformations of the shape (abnormality). We als

Many times, the learnt covariance matrices can be mudif@/éd and rotated each frame according to Markov log-
smaller than the actual variance of and in such cases, normal and uniform models. Four pixel and nine pixel i.i.d.

a better solution is to use unweighted shape velocity norm¥ite Gaussian observation noise was added to each frame to
produce the observations. Another sequence of training dat

C. Activity Sequence Identification and Tracking was generated this time without adding any bias in tangent

Consider two possible situations for tracking a sequenc®@c€ (no abnormality). The parameters of both SSA and
of activities. Assume each activity is represented by an SSNSSA were leamt using this normal sequence and with no
so that the sequence of activities is characterized by a pssgpservation noise added. i )
The “mean shape” of each SSA component is known but the We attempted to track the abnormal noisy observations
transition times are unknown.

locity>. We refer to this statistic as “ELL (Shape Velocity)”.

using both SSA and NSSA models. Both SSA and NSSA

First consider the case when there are two possible acti\;f-""Ck t-he- normal observatmnslequally_well, see F|gure.2(a)
ties and their order of occurrence is known, only the chan ut V‘l”th'n a fe|\(/v frﬁ_l;nes of mFroducI:lng the apnqrmallt)l/(
time is unknown. In this case, one can detect the change>” 0Ses track, while NSSA is able to remain in track,

using ELL (before the particle filter loses track) and starp€€ Figure 2(b). Even in 9-pixel noise, NSSA is able to
tracking it with the second activity’s transition model. track the abnormality, we show the distance from ground

Now consider the general case when a sequence of actiyigth i|_1 Fi_gur_e 2(c). We also plot the abnormality detection
ties occur, and we do not know the order in which they occuptatistics in Figure 3. Both SSA and NSSA are able to detect

In this case, we can use a discrete mode variable as part of ﬁ.]tgﬁormallty using both shape and shape velocity statistics

state vector to denote each activity type. We make the stafle show ELL (Shape), ELL (Shape Velocity, Unweighted)

transition model a mixture distribution and keep the mod@nOI ELL (Shap_e) for 9-pixe|_opservati0n noise in 3 (a), ()
variable as a state. Whenever a change occurs, it takes fmed © re_spectlvely. All statistics have been normalizgd b
mode variable a few time instants to stabilize to the corredf€l" maximum value (to be able to plot SSA and NSSA in

mode. One could replace the multimodal dynamics with th&t"e figure).
of the detected mode once the mode variable has stabilizgsl. Human Actions

Also, in this case we can declare an activity to be abnormal Next we attempted to track human actions and track as

5Note thatw(z, 110) denotes the tangent shape coordinate;ofi.r.t. 120 well as d.etect apnormahty in the actlo_n. We show here result
while v; = v(z¢, z:—1) denotes the shape velocity on tracking a figure skater, shown in Figure 4(a). We had



observation noise-free locations of landmarks in the nborm&SA model. For the same reason, it is also more robust to
skater sequence. The 10 landmarks used were [head, tonsmdeling error in learning the system model parameters as
both elbows, hands, knees and feet]. The abnormality wésng as the observations are good. The SSA model on the
the knee deviating too far away. As before, we used thether hand is more specific to the activity it has been learnt
normal sequence for training SSA and NSSA models; addddr and because of this is more robust to observation noise
observation noise to the abnormal one and attempted to traickthe data (for normal sequences) than the more general
it. We show the tracks (of the landmark locations) along wittNSSA model. The PSSA model offers a good compromise
the ground truth in Figure 4(b) and (c). SSA is able to tracketween the two models, the “mean shape” changes only
the normal sequence better than NSSA while it completelyhen the ELL from the current mean exceeds a threshold (the
fails for the abnormality. But NSSA is able to track both. Incurrent stationary model is unable to track the observajion
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(a) Stationary Shape Activity (SSA)

Fig. 1.

Let z = [cos 6, sin6]7,
Aviy = Acypi[—sind, cos ],
Acii1 = |AB| is a scalar inR?

(b) Nonstationary Shativity (NSSA)

SSA & NSSA depicted irl??. M denotes the shape space. In (a), we show a sequence of shapes $8A; at all times the

shapes are close to the mean shape & so the dynamics can be appraximigieIn (b), we show a sequence of shapes from an NSSA,
the shapes move on the shape manifald, & so we need to define a new tangent space at every time instant.
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Fig. 2. Simulated shape: Abnormality introducedtat 40. Tracks of normal and abnormal behavior using SSA, NSSA
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Fig. 3.
by their respective maximum values.

(b) ELL (Shape Vel., Unweighted)
Simulated Shape Statistics: Abnormality introduced &t 40. Note each ELL statistic plot in both (b) and (c) are normalized
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(a)The Figure Skater (b) Normal (SSA tracks it better) (chatmal (SSA fails)

Fig. 4. Tracking the figure skater: Abnormality introducedtat 20. SSA tracks the normal sequence better than NSSA. NSSA is able
to track the abnormality (introduced &at= 20) better than SSA. Green triangles line is the observed (noisy) data, the-tyme is the
ground truth, the blue circles and red stars are filtered shape using HS$&SSA respectively.
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Fig. 5. Tracking the figure skater: Abnormality introducedtat 20. NSSA remains in track and is able to detect using both ELL
(Shape) and ELL (Shape Velocity). SSA loses track and hence is abktdotdising only tracking error. Note each ELL statistic plot in
both (b) and (c) are normalized by their respective maximum values.
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Fig. 6. Tracking activity performed by a group of people: Abnormality introelliatt = 5. NSSA is able to track the sudden abnormality
(tracking error using NSSA shown in (b)) and also detect the slow ehasigg ELL (shown in (c)). Here again each ELL plot is normalized
by its maximum value.



