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Abstract— The changing configuration of a group of mov-
ing landmarks can be modeled as a moving and deforming
shape. The landmarks defining the shape could be moving
objects(people/vehicles/robots) or rigid components of an articu-
lated shape like the human body. In past work, the term “shape
activity” has been used to denote a particular stochastic model
for shape deformation. Dynamical models have been proposed
for characterizing stationary shape activities (assume constant
mean shape). In this work we define stochastic dynamic models
for non-stationary shape activities and show that the stationary
shape activity model follows as a special case of this. Most
activities performed by a group of moving landmarks (here,
objects) are not stationary and hence this more general model
is needed. We also define a piecewise stationary model with non-
stationary transitions which can be used to segment out and
track a sequence of activities. Noisy observations coming from
these models can be tracked using a particle filter. We discuss
applications of our framework to abnormal activity detection,
tracking and activity sequence segmentation.

I. I NTRODUCTION

The changing configuration of a group of moving land-
marks (here point objects) can be modeled as a moving and
deforming shape. Shape of a group of discrete points (known
as ‘landmarks’) is defined by Kendall [1] as all the geometric
information that remains when location, scale and rotational
effects are filtered out. The deformation of a moving and
deforming shape can be split into rigid motion of an average
shape and its non-rigid deformations [2]. In past work [3],
we have used the term “shape activity” to denote a particular
stochastic model for shape deformation. Dynamical models
were proposed for characterizing stationary shape activities
(assume constant “mean shape”) and statistics defined to
detect “abnormality” [4]. In this work we define stochastic
dynamic models for nonstationary shape activities and show
that the stationary shape activity model follows as a special
case of this. Most activities performed by a group of moving
landmarks (here, objects) are not stationary and hence this
more general model is needed. If the activity is actually
stationary it still gets tracked by the non-stationary model.
We use our model to track noisy observations using a particle
filter [5], [6]. The nonstationary model, being more general,
is also more robust to model error and is able to track
abnormalities in the activity (which have not been modeled in
the training data). Abnormality is detected by using the ELL
statistic defined in [4], [7]. Finally, we also define a piecewise
stationary model which can be used to segment a given

activity sequence into different stationary shape activities and
track them. Noisy observations coming from these models
can be tracked using a particle filter. We discuss applications
to abnormal activity detection, tracking and activity sequence
segmentation.

We use a shape based dynamical model for activity
because it makes our approach invariant to camera motion,
under the weak perspective model (also referred to as the
scaled orthographic camera) [8] assumption. The weak per-
spective model is a valid assumption when the scene depth
is much smaller compared to distance from the camera. This
is often also the case when the moving objects in the scene
are small enough to be treated as point objects, for example
in surveillance applications, see Figure 6(a).

The “shape activity” is a generic framework which can
used to model dynamics of moving configurations in many
applications depending on what is treated as the landmark.
The “landmark” can be a person or a vehicle or any moving
object. One can learn a shape dynamical model for an activity
performed by a group of moving people or model moving
traffic and use it to detect abnormal (suspicious) behavior
[3], e.g. see Figure 6(a). The “landmark” could be a robot
and this framework can be extended to apply feedback
control to a group of robots to perform a certain task.
Alternatively, the “landmarks” could be the various rigid
parts of the human body (see figure 4(a)). Our framework
can be used to learn models for the actions and detect and
track abnormality in the action. This ability could be useful to
medical professionals trying to analyze motion disorders in
their patients. Also, the piecewise stationary framework can
be used to segment a long sequence into piecewise stationary
actions. Our approach is sensor independent. The landmark
observations could be obtained by tracking moving objects
in low resolution video or using radar, acoustic or infra-red
sensors, and only the observation model changes.

We discuss related work and the shape representation used
in the next two subsections. The shape activity models are
presented in section II. Abnormality detection and tracking
are discussed in section III. Shape activity segmentation is
explained in section IV. Results are presented in section V
and discussion and conclusion in section VI.



A. Related Work

There are many representations for the shape of contin-
uous curves - Fourier descriptors [9], B-splines [10], angle
function or curvature based representations [11], deformable
snakes and level sets [12]. But in our work, we are trying
to model the dynamics of a group of discrete landmarks
and so the data is inherently finite dimensional. Hence
we use Kendall’s representation of shape of a group of
discrete landmarks [1], [13]. Our approach is invariant to
scaled orthographic camera motion. Other view invariant and
quasi view invariant approaches for modeling actions are
[14], [15]. Our approach can be made invariant to affine
camera motion by replacing the regular shape space by
affine shape spaces (chapter 12 of [13]). Also, both [14]
and [15] are non-parametric approaches, while we define a
shape based parametric model for representing group activity
or human actions. Another work which also models human
motion using a dynamical model is [16]. They learn a linear
dynamical model for the gait of different subjects and use
the distance between dynamical models as a metric for gait
recognition. Our dynamical model is similar in spirit to [17]
where the authors use piecewise geodesic priors to define
models for motion on Grassmann manifolds and track them
using a particle filter. The application considered there is
time-varying subspace estimation.

B. Shape Representation

We use a discrete representation of shape of a group of
k landmarks. The various moving objects (point objects)
in group activity or the rigid parts of human body in an
action form the “landmarks”. Theconfiguration is the set
of landmarks, in the 2D case it is the x and y coordinates of
the landmarks which can be represented as ak dimensional
complex vector [13].

The raw configuration,Yraw, can be normalized for trans-
lation (moving origin to the centroid of the configuration) and
then for scale (normalizing the translation normalized vector
by its Euclidean norm) to yield thepre-shape, denoted byw.
A configuration ofk points after translation normalization,
denoted byY , lies in Ck−1 ((k-1)-dimensional complex
space) while the pre-shape,w, lies on a hyper-sphere in
Ck−1. A pre-shapew1 can be aligned with another pre-shape
w0 by finding the rotation angle for the best fit (minimum
mean square error fit) and this gives theProcrustes fit of
w1 onto w0 [13]. This is theshape of w1 w.r.t. w0. The
Procrustes distancebetween preshapesw1 and w0 is the
Euclidean distance between the Procrustes fit ofw1 onto
w0. The Procrustes meanof a set of preshapes{wi} is
the minimizer of the sum of squares of Procrustes distances
from eachwi to an unknown unit size mean configurationµ
[13]. Any pre-shape of the set can then be aligned w.r.t. this
Procrustes mean to return theshape(denoted byz) w.r.t. the
mean shape,µ [13].

Definition 1: The term “mean shape”, in this entire
paper, is used to denote the minimizer of the expected
value (w.r.t. a probability distributionP on the shape
space, M) of the squared Procrustes distance of any

shape from this shape, i.e.µ = arg minµ EP [d2(z, µ)] =
arg minµ

∫
z∈M

d2(z, µ)P (dz), where d is the Procrustes
distance.

The shape space,M, is a manifold inCk−1 and hence
its actual dimension isCk−2. Thus the tangent plane at any
point of the shape space is aCk−2 dimensional hyperplane
in Ck [13]. The tangent coordinate (denoted byv) w.r.t. µ,
of a configuration,Yraw, is evaluated [13] as follows1:

Y = CYraw, where C
△
= Ik − 1k1T

k /k

s
△
= s(Y ) = ||Y ||, w = Y/s,

θ
△
= θ(Y, µ) = − arg(wT µ), z(Y, µ) = wejθ (1)

v
△
= v(Y, µ) = [Ik − µµT ]z = [Ik − µµT ]

Y ejθ

s
(2)

II. T HE SHAPE ACTIVITY MODEL

The distinction between motion and deformation of a
moving and deforming shape is not clear. We model the mo-
tion/deformation of a deforming shape as scaled Euclidean
motion of the “mean shape” (translation, rotation, isotropic
scaling) plus its non-rigid deformation. The term “shape
activity” is used to denote a particular stochastic model
for shape deformation [3]. We define a “stationary shape
activity” as one for which the shape vector is stationary
i.e. the “mean shape” remains constant with time and the
deformation model is stationary. Since the “mean shape” is
constant and assuming small enough variance, the dynamics
in shape space can be approximated by dynamics in the
tangent to shape space at the mean (see Figure 1(a)). A
partially observed and non-linear model for representing a
stationary shape activity was proposed in [3]. It used tangent
coordinates of shape w.r.t mean, and the motion parameters
(scale, rotation) as the state.

In this work, we define a “non-stationary shape activity”
model for which the “mean shape” is time-varying and
hence modeling the shape dynamics requires a tangent space
(see figure 1(b)) defined w.r.t the current shape. Thus the
state space now consists of the “mean shape” att (given
Xt−1), the tangent coordinate w.r.t. the current “mean shape”
(“shape velocity”) and motion parameters -st, θt. Our model
can be understood as a Markov model on “shape velocity”
which is parallel transported at eacht to the tangent space
at the current “mean shape”. The stationary shape activity
model of [3] is a special case of this nonstationary model
and is discussed in Section II-B. We also define a piecewise
stationary shape activity model in Section II-C to either
model a shape activity with slowly varying “mean shape” or
to segment and track a sequence of activities each of which
is stationary.

A. Non-stationary Shape Activity (NSSA)

The observed configuration of landmarks after translation
normalization,Yt, forms the observation vector. The “mean
shape” at timet, µt, the coefficients vector (of the tangent

1Note for complex numbers (or vectors),T denotes conjugate transpose



coordinate of shape w.r.t. the current mean shape),ct, and
the motion parameters (scalest, rotationθt) form the state
vector, i.e. stateXt = [µt, ct, st, θt]. Denote the tangent
space atµt by Tµt

. We then have the following dynamics:
The shape at the previous time instant is used as the current

mean shape, i.e.µt = zt−1 and soTµt
= Tzt−1

. The tangent
coordinate ofzt in Tzt−1

defines a“shape velocity”. Since
the tangent plane is a(k−2)-dim hyperplane inCk, a tangent
vector has only(k − 2) independent (complex) coefficients.
We perform an SVD (Singular Value Decomposition) [18]
of the tangent projection matrix,[Ik − µtµ

T
t ]C, to obtain

a (k − 2)-dim orthogonal basis forTµt
. The basis vectors,

{ut,i}
k−2
i=1 , are arranged as column vectors of a matrix,

Ut(µt), i.e. Ut
k×(k−2) = [ut,1, ut,2...ut,k−2]

2. The vector
of coefficients ((k − 2)-dim) along these basis directions,
ct(zt, µt), is thus a canonical representation of the tangent
coordinate ofzt in Tµt

. The tangent coordinate is given by
vt(zt, µt) = Utct.

Now, the coefficient vector,ct is the coefficient vector of
the shape velocity, and is thus the multivariate analog of one
dimensional speed. We can assumect (shape speed) to be
i.i.d. Gaussian or define a linear Gauss-Markov model on it.
Both these can be summarized by the following model.

µt = zt−1

ct = Ac,2,tct−1 + nt, nt ∼ N (0,Σn,c,2,t)

vt = Utct, Ut = orthogonal basis(Tµt
)

zt = (1 − vT
t vt)

1/2µt + vt. (3)

One thing to note is that a Markov model on the shape speed
corresponds to a second order Markov model on shape,zt

(hence the subscript ‘2’ on the parameters). Some special
cases areAc,2,t = 0 or i.i.d. speed (first order Markov model
on shape);Ac,2,t = I which corresponds to i.i.d. acceleration
andAc,2,t = AAR or stationary speed.

Motion dynamics can be defined as in [3] or differently
depending on the application. We use a Markov log-normal
model for the scale parameter,st, and a Markov uniform
model forθt. Note thatθt here is the rotation angle of current
configuration w.r.t. the current “mean shape”µt = zt−1 and
hence is a measure of rotation speed while in [3] it denotes
rotation of current configuration w.r.t. the constant mean.The
motion model equations are:

log st = αs log st−1 + (1 − αs)µs + ns,t

log s0 ∼ N (µs, σ
2
s), ns,t ∼ N (0, σ2

r)

θt = αθθt−1 + nθ,t, nθ,t ∼ Unif(−a, a) (4)

The shape and motion model (equations (3), (4)) form the
system model. The observation model is as follows:

Yt = h(Xt) + ζt, ζt ∼ N (0,Σobs,t)

h(Xt) = ztste
−jθt . (5)

2U
k×(k−2)
t = orthogonal basis(Tµt ) is evaluated as :Ut =

Ufull,tQ where Ufull,tSUT
full,t

= [Ik − µtµ
T
t ]C, andQ =

[I(k−2)×(k−2), 0(k−2)×2]
T

1) Training: Given a training sequence of centered (trans-
lation normalized) configurations,{Yt}

T
t=1, we first evaluate

{ct, vt, st, θt}
T
t=1 as follows3 :

µt = zt−1

st = ||Yt||, wt = Yt/st,

θt(Yt, µt) = −angle(wT
t zt−1), zt(Yt, zt−1) = wte

jθt ,

vt(Yt, µt) = [Ik − zt−1z
T
t−1]zt,

ct(Yt, µt) = Ut(zt−1)
T
zt. (6)

If we assume a time invariant Markov model onct, we can
use{ct}

T
t=1 to learn its parameters [3], [18].

B. Stationary Shape Activity (SSA)

For a stationary shape activity, the “mean shape” is
constant with time,µt = µ0, and the shape sequence is
clustered around the “mean shape” (see Figure 1(a)). Hence
the shape deformation dynamics can be defined in a single
tangent space at the mean (which can be learnt as the
Procrustes mean [13] of the training data). The SVD of
the tangent projection matrixUt = U0 = basis(Tµ0

) is
constant too.vt = vt(Yt, µ0) = U0ct(Yt, µ0) is the tangent
coordinate w.r.t. the “mean shape” (not tangent velocity) and
θt = θt(Yt, µ0) is rotation angle w.r.t. the constant mean (not
rotation speed). Since there is a single mean shape, it does
not need to be part of the state vector. Thus the state vector
is Xt = [ct, st, θt]. The dynamics onct is defined by the
autoregression,ct = Ac,1ct−1 + nt. Note that in this case
ct(Yt, µ0) are the tangent coordinates for the shape,zt and
hence the above model corresponds to a first order Markov
model on shape,zt. Also note that in this case,vt andct are
related by a constant orthogonal transformation.

C. Piecewise Stationary Shape Dynamics

When the shape is not stationary but is slowly varying, one
could model the “mean shape” as being piecewise constant.
Now in SSA, the “mean shape” is constant i.e.µt = µ0 for
all t and hence all the dynamics can be described in a single
tangent space while in NSSA, the tangent space changes at
each time instant:µt = zt−1 is the pole of the tangent space
at timet. But for PSSA we let the meanµt (and hence also
the tangent space) be piecewise constant.

Let the “mean shape” change times bet1, t2, t3, ... and
the corresponding means beµ1, µ2, µ3, .... Then we have the
following dynamics: Betweentj−1 < t < tj , µt = µt−1 and
soct−1(zt−1, µt) = ct−1(zt−1, µt−1). Hence in this interval,
the dynamics is similar to that for an SSA, i.e.

ct(zt, µt) = Ac,1,tct−1(zt−1, µt) + nt,

vt = U(µt)ct,

zt = (1 − vT
t vt)

1/2µt + vt. (7)

At the change time instant,t = tj , µt = µj and so the
tangent coefficientct−1 needs to be recalculated in the new

3Note, the last equation,ct = Ut
T zt, holds becausect = Ut

T vt =
Ut

T [I − zt−1zT
t−1]zt = Ut

T [I − zt−1zT
t−1]Czt = Ut

T UtUt
T zt =

Ut
T zt.



tangent space w.r.t.µt = µj . This is achieved as follows:

ct−1(zt−1, µt) = U(µt)
T zt−1e

jθ(zt−1,µt)

ct(zt, µt) = Ac,1,tct−1(zt−1, µt) + nt,

vt = U(µt)ct,

zt = (1 − vT
t vt)

1/2µt + vt. (8)

Note that in NSSA,vt is a tangent coordinate w.r.t.µt =
zt−1 and hence it measures shape velocity while in this case,
vt (and hence alsoct) is a tangent shape coordinate w.r.t.
the current “mean shape”µt. Hence like in SSA, here also
we have a first order Markov model on shape. Hence the
subscript ‘1’ onAc,1,t.

The times at which the changes occur and the changed
means could both be unknown or known or one of them
could be unknown. When both change times and the corre-
sponding means are known, PSSA can be used for tracking
a sequence of stationary shape activities (each with its
known shape mean and known transition times) and detecting
abnormality. Abnormality can be defined as ELL w.r.t. the
current “mean shape” exceeding a threshold. When times at
which the changes occur are unknown, one can use ELL [4],
[7] w.r.t. the current “mean shape” to detect a change. This is
useful for activity sequence identification (figuring out when
one activity ends and the next one starts) and tracking. Both
cases are discussed in Section III-C.

When both change times and changed system means are
not known, one can detect the change using ELL. The
“best” estimate of the shape at thet based on observations
Y1:t can be used as the new shape mean. Now since the
shape space is nonlinear, the expected value of shape given
observations,EπN

t
[zt] (the MMSE estimate), may not lie

in the shape space at all. But we can instead estimate a
Procrustes mean [13] of the shape which is the minimum
mean Procrustes distance square estimator (“mean shape”
w.r.t. posterior distribution). It can be evaluated as the largest

eigenvector of the matrixS
△
= EπN

t
[ztz

T
t ] = 1

N

∑N
i=1 zi

tz
i
t
T

[13]. Note that the Procrustes mean is an intrinsic mean
for the shape manifold. One can also evaluate the extrinsic
mean [11] which is the projection of the Euclidean mean
of tangent coordinates,EπN

t
[vt], onto the shape space, i.e.

µextrinsic
t = (1 − EπN

t
[vt]

T EπN
t

[vt])
1/2µt−1 + EπN

t
[vt].

Setting the mean this way will be valid as long as the tracking
error (or equivalently the observation likelihood, OL [4],[7])
is still below the tracking error threshold (the posteriorπN

t is
estimated correctly). This follows from theorem 4 in chapter
2 of [7]. This form of PSSA can be used for activity sequence
segmentation and tracking as discussed in Section IV.

III. A BNORMAL ACTIVITY DETECTION AND TRACKING

Now, in the previous section, we have defined stochastic
dynamic models for shape and motion dynamics with noisy
observations of the configurations forming the observation
vector. Filtering needs to be performed to estimate (filter
out) the posterior probability distribution of shape (state)
given the noisy observations. Since the model is nonlinear,
we use a particle filter (PF) [5] which is a sequential Monte

Carlo approximation of the optimal non-linear filter. The
particle filter [6] is a recursive algorithm which produces
at each timet, a cloud of N particles,{x(i)

t }N
i=1, whose

empirical measure (denoted byπN
t (dx)) closely “follows”

πt(dxt|Y0:t), the posterior distribution of the state given past
observations (denoted byπt(dx) in the rest of the paper).

A. Tracking to Obtain Observations

The particle filter also provides at each time instant the
prediction distribution,πt(Xt|Y1:t−1), which can be used
to predict the expected configuration at the next time in-

stant using past observations, i.e.Ŷt
△
= E[Yt|Y0:t−1] =

Eπt|t−1
[h(Xt)]. We can use this information to improve the

measurement algorithm used for obtaining the observations
(a motion detector [19] in our case). Its computational
complexity can be reduced and its ability to ignore outliers
can be improved by using the predicted configuration and
searching only locally around it for the current observation4.
As we show in section V, the observed configuration is close
to its prediction when there is no abnormality or change and
hence the prediction can be used to obtain the observation.
Also, if the configuration is a moving one, then the predicted
motion information can be used to translate, zoom or rotate
the camera (or any other sensor) to better capture the scene
but in this case, one would have to alter the motion model
to include a control input.

B. Abnormal Activity Detection

An abnormal activity (suspicious behavior in our case) is
defined as a change in the system model, which could be slow
or drastic, and whose parameters are unknown.Given a test
sequence of observations and a “shape activity” model, we
use the change detection statistics defined in [4], [7] to detect
a change (i.e. detect when observations stop following the
given shape activity model). A change being drastic or slow
depends on the system model used in particle filtering. A
more general system model can track a lot more changes and
hence the nonstationary shape activity model does a better
job of tracking abnormal observations than the stationary
one. Whenever changed observations get tracked correctly,
the ELL detects the change while if the PF loses track, the
tracking error detects the change [4], [7].

Now for abnormality detection, the normal activity needs
to be characterized first. We can either use shape velocity
or shape or both to represent normalcy depending on the
practical problem being dealt with. To use shape to detect
abnormality, we represent a normal activity by a stationary
shape activity model or by a PSSA model (whichever is
appropriate for a given problem). For simplicity, assume
an SSA model for normal activity. Then the normal prior
is a time invariant Gaussian distribution of the tangent

4One thing to note here is that in certain cases (for example, ifthe poste-
rior of any state variable is multimodal), evaluating the posterior expectation
as a prediction of the current observation is not the correctthing to do. In
such a case, one can track the observations using the CONDENSATION
algorithm [10] which searches for the current observation around each of
the possibleh(x̄i

t), i = 1, 2...N .



coordinates w.r.t.µ0 (the normal activity mean shape),
N (0,Σv,0). Now for a Gaussian prior, the discriminating
term of ELL reduces to expectation, under the posterior, of
the Mahalonobis distance from the prior’s mean. We evaluate
it as follows: We project the filtered shape of the obser-
vations at timet into Tµ0

to obtainv(zt, µ0) and evaluate
Eπt

[v(zt, µ0)
T Σ−1

v,0v(zt, µ0)]. Thus given the particle filtered

shape distributionπN
t (dzt)

△
=

∑N
i=1

1
N δ

z
(i)
t

(dzt) (which
approximatesπt(dzt)), we evaluate

πN
t (dvt,µ0

)
△
=

N∑

i=1

1

N
δ
v
(i)
t,µ0

(dvt,µ0
), where

v
(i)
t,µ0

△
= v(z

(i)
t , µ0) = [Ik − µ0µ

∗
0]z

(i)
t ejθ(z

(i)
t ,µ0). (9)

ELL(Shape) is then approximated as

ELLN (Shape) =
1

N

N∑

i=1

v
(i)
t,µ0

T
Σ−1

v,0v
(i)
t,µ0

. (10)

If PSSA is used to define a normal activity, the prior is
a Gaussian distribution on the tangent coordinates in the
tangent space of the current meanµt.

Depending on the practical problem, one might want
to use shape velocity (rate of change of shape) to define
normalcy. Given that a stationary Gauss Markov model has
been defined for the shape velocity,vt, with parameters
Σv,2, Av,2,Σn,v,2, the change detection statistic will simplify
to EπN

t
[vT

t Σ−1
v,2vt] wherevt = v(zt, zt−1) denotes shape ve-

locity5. We refer to this statistic as “ELL (Shape Velocity)”.
Many times, the learnt covariance matrices can be much
smaller than the actual variance ofvt and in such cases,
a better solution is to use unweighted shape velocity norms.

C. Activity Sequence Identification and Tracking

Consider two possible situations for tracking a sequence
of activities. Assume each activity is represented by an SSA
so that the sequence of activities is characterized by a PSSA.
The “mean shape” of each SSA component is known but the
transition times are unknown.

First consider the case when there are two possible activi-
ties and their order of occurrence is known, only the change
time is unknown. In this case, one can detect the change
using ELL (before the particle filter loses track) and start
tracking it with the second activity’s transition model.

Now consider the general case when a sequence of activi-
ties occur, and we do not know the order in which they occur.
In this case, we can use a discrete mode variable as part of the
state vector to denote each activity type. We make the state
transition model a mixture distribution and keep the mode
variable as a state. Whenever a change occurs, it takes the
mode variable a few time instants to stabilize to the correct
mode. One could replace the multimodal dynamics with that
of the detected mode once the mode variable has stabilized.
Also, in this case we can declare an activity to be abnormal

5Note thatv(zt, µ0) denotes the tangent shape coordinate ofzt w.r.t. µ0

while vt = v(zt, zt−1) denotes the shape velocity

(i.e. neither of the known activity types) if the ELL w.r.t all
known models exceeds a threshold.

IV. SHAPE ACTIVITY SEQUENCESEGMENTATION

The PSSA model with unknown mean shapes and un-
known change times can be used along with ELL for activity
sequence segmentation as follows:
- Track observations using PSSA, until the ELL of tangent
coordinates w.r.t. the currentµt, ELL(µt) = Eπt

[vT
t Σ−1

v,tvt]
exceeds the change detection threshold.
- Use time instants whenELL(µt) exceeds its threshold, as
segmentation boundaries.
- If at time t, ELL(µt) has exceeded its threshold but
the tracking error is still below its threshold (PF is still in
track, i.e.πN

t approximatesπc
t correctly), then setµt+1 as

the posterior Procrustes mean of the shape att, given past
observations,Y1:t. This is explained in the last paragraph of
section II-C.
- Recalculatevt andct in the new tangent space atµt+1 (as
discussed in section II-C).

V. EXPERIMENTAL RESULTS

A. Simulated Shape Sequence

We first simulated a shape activity sequence, starting with
a regular hexagon as the mean. The sequence was stationary
for the first 40 frames (around the regular hexagon) and
for the next 40 frames, a bias was added to the tangent
coordinate at every frame, which resulted in unmodeled non-
stationary deformations of the shape (abnormality). We also
scaled and rotated each frame according to Markov log-
normal and uniform models. Four pixel and nine pixel i.i.d.
white Gaussian observation noise was added to each frame to
produce the observations. Another sequence of training data
was generated this time without adding any bias in tangent
space (no abnormality). The parameters of both SSA and
NSSA were learnt using this normal sequence and with no
observation noise added.

We attempted to track the abnormal noisy observations
using both SSA and NSSA models. Both SSA and NSSA
track the normal observations equally well, see Figure 2(a).
But within a few frames of introducing the abnormality
SSA loses track, while NSSA is able to remain in track,
see Figure 2(b). Even in 9-pixel noise, NSSA is able to
track the abnormality, we show the distance from ground
truth in Figure 2(c). We also plot the abnormality detection
statistics in Figure 3. Both SSA and NSSA are able to detect
abnormality using both shape and shape velocity statistics.
We show ELL (Shape), ELL (Shape Velocity, Unweighted)
and ELL (Shape) for 9-pixel observation noise in 3 (a), (b)
and (c) respectively. All statistics have been normalized by
their maximum value (to be able to plot SSA and NSSA in
one figure).

B. Human Actions

Next we attempted to track human actions and track as
well as detect abnormality in the action. We show here results
on tracking a figure skater, shown in Figure 4(a). We had



observation noise-free locations of landmarks in the normal
skater sequence. The 10 landmarks used were [head, torso,
both elbows, hands, knees and feet]. The abnormality was
the knee deviating too far away. As before, we used the
normal sequence for training SSA and NSSA models; added
observation noise to the abnormal one and attempted to track
it. We show the tracks (of the landmark locations) along with
the ground truth in Figure 4(b) and (c). SSA is able to track
the normal sequence better than NSSA while it completely
fails for the abnormality. But NSSA is able to track both. In
Figure 5, we show the tracking error, the ELL (Shape) and
ELL (Shape velocity) plots. NSSA is able to detect using
both ELL(Shape) and ELL(Shape Velocity), while SSA can
detect only using tracking error.

C. Group Activity

We also show results on a video sequence of people
deplaning and moving towards the terminal with the ab-
normality being either a person stopped in the path or a
person walking away in a weird direction [3]. In [3], we
used simulated observation noise, but we show here results
on real observations. Very noisy observations were obtained
by using a motion detection algorithm [19] which we tried
to track using NSSA and SSA. We show one image of the
moving people video in Figure 6(a). In Figure 6(b), we show
the tracking error for a sudden abnormality which is smaller
using NSSA than SSA. Also (we have not shown the figure)
both NSSA and SSA are able to detect the abnormality. In
Figure 6(c), we show the ELL (Shape) plot for detecting
a slow abnormality. It can be seen that the NSSA model is
able to detect slow changes as well as SSA. Detecting a slow
change and tracking a sudden change are the more difficult
problems and NSSA can handle both.

VI. D ISCUSSION ANDCONCLUSION

We have proposed a non-stationary “shape activity” model
which has a time varying “mean shape” (and hence a time
varying tangent space) and compared it to the stationary
shape activity model, which was first proposed in [3]. We
have shown application of NSSA to modeling human actions
and also to modeling “group activity” (performed by a group
of moving objects) and detecting abnormality. We show that
the NSSA model can track and detect the abnormality while
SSA can only detect it. We characterize a normal activity by
a SSA (or a PSSA) model and learn its parameters using
training data. Test observations are tracked using NSSA.
The ELL statistic [4], [7] is used for abnormality detection.
Finally, we have also proposed piecewise stationary shape
activity models for modeling a slowly changing mean shape.
The piecewise stationary model can be used in conjunction
with ELL, to segment a long sequence of shape activities into
piecewise stationary segments and to simultaneously trackit
(explained in section IV).

The NSSA system model is more general than the SSA
model and so able to track larger than normal changes in
the system model without losing track. Hence it can track
more sudden abnormalities (and yet detect them) than a

SSA model. For the same reason, it is also more robust to
modeling error in learning the system model parameters as
long as the observations are good. The SSA model on the
other hand is more specific to the activity it has been learnt
for and because of this is more robust to observation noise
in the data (for normal sequences) than the more general
NSSA model. The PSSA model offers a good compromise
between the two models, the “mean shape” changes only
when the ELL from the current mean exceeds a threshold (the
current stationary model is unable to track the observations).
We hope to apply the PSSA model to segment real activity
sequences using PSSA and track them as part of future work.
Also, we intend to perform a theoretical analysis of the
stability of particle filtering under system model error, with
the various models proposed in this work.
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(a) Stationary Shape Activity (SSA) (b) Nonstationary Shape Activity (NSSA)

Fig. 1. SSA & NSSA depicted inℜ2. M denotes the shape space. In (a), we show a sequence of shapes from a SSA; at all times the
shapes are close to the mean shape & so the dynamics can be approximated in Tµ. In (b), we show a sequence of shapes from an NSSA,
the shapes move on the shape manifold,M, & so we need to define a new tangent space at every time instant.
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Fig. 2. Simulated shape: Abnormality introduced att = 40. Tracks of normal and abnormal behavior using SSA, NSSA
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Fig. 3. Simulated Shape Statistics: Abnormality introduced att = 40. Note each ELL statistic plot in both (b) and (c) are normalized
by their respective maximum values.
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Fig. 4. Tracking the figure skater: Abnormality introduced att = 20. SSA tracks the normal sequence better than NSSA. NSSA is able
to track the abnormality (introduced att = 20) better than SSA. Green triangles line is the observed (noisy) data, the cyan -+ line is the
ground truth, the blue circles and red stars are filtered shape using NSSAand SSA respectively.
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Fig. 5. Tracking the figure skater: Abnormality introduced att = 20. NSSA remains in track and is able to detect using both ELL
(Shape) and ELL (Shape Velocity). SSA loses track and hence is able to detect using only tracking error. Note each ELL statistic plot in
both (b) and (c) are normalized by their respective maximum values.
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Fig. 6. Tracking activity performed by a group of people: Abnormality introduced att = 5. NSSA is able to track the sudden abnormality
(tracking error using NSSA shown in (b)) and also detect the slow change using ELL (shown in (c)). Here again each ELL plot is normalized
by its maximum value.


