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Additive Change Detection in Nonlinear Systems
With Unknown Change Parameters

Namrata Vaswani

Abstract—We study the change detection problem in partially
observed, nonlinear systems [which satisfy the hidden Markov
model (HMM) property]. The change parameters are assumed
unknown, and the changes can be slow or sudden. A partially
observed system needs to be tracked first before changes can
be detected. Sudden changes result in significant loss of track.
These can be detected easily using the increase in tracking error
(TE) or observation likelihood (OL) or using a CUSUM-type
method applied to either of these. However, slow changes (which
result in small loss of track) often get missed. We propose here a
statistic that uses the tracked component of the change to detect
it and, hence, detects slow changes faster than TE or OL. We
show, both analytically and through simulations, that this statistic
complements OL and TE for change detection.

Index Terms—Abnormality detection, change detection, particle
filtering, tracking, unknown change parameters.

I. INTRODUCTION

CHANGE detection is required in many practical problems
arising in quality control, flight control, fault detection

[1]–[3], in target tracking problems where the motion model
may change over time [4, Ch. 23], [16], as well as in surveil-
lance problems like abnormal activity detection [5], [6] or ac-
tivity recognition [7]. We study the online change detection
problem in partially observed linear or nonlinear systems [also
called a general hidden Markov model (HMM) [8]], when i)
the changed system parameters are unknown and ii) the change
can be slow or sudden. A linear, Gaussian state-space model can
be tracked using a Kalman filter (KF) [9], while, in other situ-
ations, a particle filter (PF) [4], [10], [11] can be used. Sudden
changes, which result in significant loss of track, are easily de-
tected using existing statistics such as tracking error (TE) [12]
or observation likelihood (OL)1 [2], [13]. We propose a statistic
called the “negative expected log likelihood of state” (ELL, and
its generalization, gELL), which uses the tracked component of
the change to detect it. Hence it detects slow changes (which re-
sult in small loss of track) faster than TE or OL. We show, both
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1In this paper, OL refers to the -log of the likelihood of current observation
(Y ) given all past observations (Y ), see Definition 9. It should not be con-
fused with the other frequently used meaning of OL in PF literature where it
sometimes refers to the conditional likelihood of the observation at t; Y , given
state at t; X .

analytically and experimentally, that ELL complements OL [2],
[13], i.e., it detects changes that OL misses and vice versa.

The fact that ELL can detect a change before significant
loss of track is useful in target(s) tracking problem where the
target(s)’ dynamics might change over time. If the change in
target motion dynamics is slow, it may not immediately result
in loss of track. If one can detect the change before loss of
track, one can try to learn its parameters on the fly (or at least
increase the system noise variance), before completely losing
track of the target. For example, a target may be moving with
a constant velocity model in a given direction, and this may
slowly (or suddenly) change to a changing velocity model in a
different direction, e.g., [6] or [4, Ch. 23]. Change detection in
a bearings-only target tracking problem [14] is demonstrated in
Section VII-E. Abnormality detection while tracking groups of
moving persons (landmarks) [5] is discussed in Section VII-F.
We have used ELL to detect changes in landmark-shape dy-
namical models [5]–[7]. This has applications in abnormal
action detection [6] and in activity segmentation (segmenting a
long activity sequence into piecewise stationary elementary ac-
tivities) [6] and recognition [7]. Other applications of ELL are
in neural signal processing (detecting changes in response of
animals’ auditory neurons [15] to changes in stimuli provided
to them), and in acoustic tracking of targets with changing
dynamics.

We now discuss existing work. Cumulative sum (CUSUM)
[16], [17] is the classical algorithm for change detection in time
series. The CUSUM statistic is the maximum (taken over all
previous time instants) of the likelihood ratio assuming that the
change occurred at time , i.e.,

CUSUM (1)

(2)

If the changed system parameters are unknown, the non-null hy-
pothesis is composite (i.e., ). CUSUM can
then be replaced by generalized CUSUM where another maxi-
mization is performed over all possible values of .

For nonlinear partially observed systems with known change
parameters, [18] proposed an efficiently computable modifica-
tion of the CUSUM statistic using a PF. Some other approaches
are discussed in [19]. When the change parameters are unknown
and the system is nonlinear, generalized CUSUM is, in general,
intractable. For the special case of the parameter belonging to
a finite set of cardinality , [20] and [21] propose to run one
particle filter for each possible value of the parameter. When
the unknown parameter does not belong to a finite set, one can
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try to use approximations to maximum likelihood (ML) for pa-
rameter estimation, such as the expectation-maximization (EM)
algorithm, to perform generalized CUSUM [19]. However, the
EM algorithm (or any other ML technique) requires estimates
of the smoothing distributions. It is well known that a particle
filter with a fixed number of particles does not give reli-
able estimates of the smoothing distributions [19]. We have im-
plemented this method for a simple example. We compare its
performance with ELL in Section VII-A, where we refer to it
as CUSUM-ML-OL. Recently proposed modifications of EM,
such as online EM [22] or recursive ML [23], can potentially be
used to improve its performance. A model validation approach
to change detection using a PF is presented in [24].

There is a huge amount of literature on fault (change with un-
known parameters) detection and isolation [1]–[3], [25]–[27].
References [25]–[27] tackle deterministic nonlinear systems.
Some statistical approaches are presented in [1]–[3]. A common
choice for the “residual” [1] is the innovation error, which is
a white-noise sequence under no fault conditions. The squared
sum of innovation errors, also referred to as the TE [12], is a
commonly used detection statistic. This can be computed only
when the observation model can be defined as in (5), i.e., the
observation noise is additive. In general, it may be replaced by
the logarithm of the likelihood of the current observation given
past observations (OL), defined in Definition 9, or its sum over
a sliding window [2]. OL (or its sum over all ) is a commonly
used statistic for model validation using finite-state HMMs [13].
In fact, for additive white Gaussian observation noise, when the
variance of the posterior is small, OL is approximately equal to
TE.2

Another fault detection statistic is the score function [1],
which is the sensitivity of the log likelihood to change in the pa-
rameter and is computed as OL . Its expected value
over unchanged observations is zero [1]. For certain types of
partially observed systems, the score function can be efficiently
calculated using a particle filter [28]. However, for the general
case, computing it using a particle filter is computationally very
expensive [19].

Both TE [12] and OL [2] use loss of track to detect change
and hence are able to detect only sudden changes which result in
large loss of track. We discuss this in detail in Section V. For the
same reason, the score function, which is the sensitivity of OL
to the change parameter, will also only detect sudden changes
(increase in sensitivity of OL due to a slow change will also be
insignificant). Our goal is to also detect slow changes for which
loss of track is small. We propose the statistic called ELL, which
uses the tracked part of the change to detect it. As explained in
Section III-A, ELL can be understood as a measure of inaccu-
racy [29] between the posterior at and the -step-ahead predic-
tion distribution of the unchanged state. We propose a general-
ization of ELL called gELL, where we replace the -step-ahead
prediction distribution by a -step-ahead prediction that
improves its sensitivity. Also, gELL can be used to detect mul-
tiple changes.

2It follows by writing Taylor series expansion of  (X) about
[X] (notation defined in Sections II-A and II-B) and taking
[:].

II. NOTATION AND PROBLEM FORMULATION

A. Notation and Definitions

denotes the state at , and denotes the observation at .
denotes all observations from time 1 to . denotes the state

space. The notation . (and )
denotes expectation (and variance) under the measure, .
(and ) denotes expectation (and variance) under the distri-
bution of random variable . denotes differential entropy
[30]. denotes a Gaussian probability density func-
tion (pdf) of with mean , covariance .

Change start and end times are denoted by and . Ob-
servations generated by the nominal (unchanged) system model
are denoted by . Observations generated by the changed
system model are denoted by . Thus,3

and . The pos-

terior distribution4 at time is . The
-step-ahead prediction distribution is

.
Definition 1 (Prior State pdf): At time is the pdf of

without conditioning on any observations (denoted ). It
can also be understood as the -step-ahead prediction pdf of ,
i.e., . For the nominal state, it is denoted by , and
for changed state, it is denoted by .

Definition 2 (Weak Norm): The weak norm between two
probability distributions and is defined as [8]

(3)

where denotes the class of Borel measurable functions on the
state space and .

The superscript is used to denote any variable, parameter,
or distribution related to the changed system and for the nom-
inal (unchanged) system. The superscript denotes posterior
or prediction distributions (or statistics computed using them)
obtained when observations coming from the changed system
model are tracked by a filter designed for unchanged system.
Superscripts and are similarly defined. These are often
replaced by a single or when the meaning is clear from con-
text, e.g., is denoted by . denotes number of particles.
The -particle PF estimates of is denoted , and so on.

B. State-Space Model: General HMM

We assume a discrete-time general HMM model [8] with an
valued state process and an valued observation

process . Thus, the state-space . We use the sub-
script “ ” to denote the discrete-time instants with time begin-
ning at . The state transition model (system model) for the
nominal (unchanged) system can be written in the form

(4)

where is the system noise (models uncertainty in the
state space description of the system) with pdf and

3Note that if t < t , then [t : t ] denotes an empty set.
4Misusing notation, we denote the pdf corresponding to � (dx) also by � .
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is independent of . Thus, the state transition pdf is
and the state tran-

sition kernel [8] is .
The prior state pdf at , is the unconditional pdf of

. Given , is independent of all past observations
and states. The conditional distribution of given ,

. We

denote the pdf . In many cases, the
observation noise is additive, i.e.,

(5)

where is a continuous function of and is observation
noise with pdf . Thus

. is independent of .

C. Problem Statement and Formulation

A change in the system model begins to occur at some finite
time and lasts until a finite final time . During , the
system model changes to .

Definition 3 (Change Model): The change in system model
is completely characterized by the change start/end times, ,
and by , . For
an additive change, is not a function of .

The change model ( , , , ) is assumed
unknown. The goal is to detect the change, with minimum delay.

Existing detection statistics, such as TE [12] or OL [2], [13],
use the loss of track of changed observations to detect change.
The loss of track is quantified by the weak norm of the error5

in the posterior . depends on
and on the observation model and on (in case of

PF). depends on and on the magnitude of
, in comparison to the standard deviation (in general,

spread) of . Given a , the variance of is pro-
portional to the system noise variance, . Thus, we have Def-
inition 4.

Definition 4 (Slowness of Change): Define slowness (change
magnitude per unit time) of change at , as

(6)

For an additive change, is not a function of and in such
cases can be removed from (6).

Remark 1 (Loss of Track Depends on Slowness): For a given
observation model, the loss of track, , is directly propor-
tional to , . This can be seen rigorously for a
KF tracking a scalar state with an additive change.

and . Replace the
weak norm by the total variation norm, . Then, it can be
shown that

5Weak norm is the only norm that can be computed for Monte Carlo estimates
of a distribution.

where is the cumulative distribution function of a standard
normal. Given the observation model, is directly proportional
to . Also, given the observation model, is a
positive linear function of (see Example 2). Thus, given an
observation model and , is directly proportional to

.
Thus TE and OL fail (or take longer) to detect slower changes

(smaller ). To address this problem, we propose a
statistic (ELL) that uses the tracked part of the change to detect
it. In the next section, we define ELL and its generalization,
gELL, and study their detection performance (if computed
exactly using ). In Section IV, we discuss how to compute
ELL and gELL statistics using a KF and using a PF. Since
changed system is unknown, these are computed using .
In Section V, we explain the errors due to this and why ELL
works better than OL when loss of track is small (slow change)
and vice versa. An example illustrating this is given for a KF
tracker. We prove a qualitative result demonstrating the com-
plementarity of ELL and OL for change detection using a PF
in Section VI. Simulation results are presented in Section VII.
Conclusions are given in Section VIII.

III. NEGATIVE EXPECTED LOG LIKELIHOOD OF STATE

Definition 5 [Negative Expected Log Likelihood of State
(ELL)]: ELL6 is defined as

ELL
(7)

ELL is the expectation of under the posterior
and so can be understood as the minimum mean-square error
(MMSE) estimate of given observations until .

Taking expectation of ELL over observation sequences
generated from the unchanged system, we get

ELL

where denotes differential entropy [30]. Thus, the detection
statistic is as follows.

Definition 6 [ELL-Based Detection Statistic (Estat)]: Is

Estat ELL ELL ELL

Estat is computed at each and a change is declared if Estat
, where is the detection threshold. Value of can be

decided based on allowed level of false alarms.

IV. RELATION TO KERRIDGE INACCURACY

Definition 7 (Kerridge Inaccuracy [29], [31]): Between two
pdf’s and is . It is
used as a measure of inaccuracy between distributions.

Fact 1: ELL is the Kerridge inaccuracy between and ,
i.e., ELL .

We denote ELL and ELL

.

6This term may be a bit confusing since the word “likelihood” usually refers
to the probability of observation given state.
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Fact 2: Expectation of ELL over changed system observa-
tions is ELL and over un-
changed system observations is ELL

.
Implication: The Kullback–Leibler divergence [30] between
and is . By its posi-

tivity [30], we get that . Assuming that
(this holds, for example, if the two distribu-

tions differ only in the location parameter), this implies that
, i.e., the average value of

ELL of changed observations is greater than the average value
of ELL of unchanged observations. This gives an indication why
ELL can detect changes.

A. Detectability of a Change Using ELL

Change is declared when Estat exceeds the
detection threshold . Define . Apply
Chebyshev’s inequality [32] to ELL to bound
the false-alarm probability,

. Also, if

(8)

then detection probability [33] at is

using(8)

Fact 3 (Sufficient Condition for Detectability Using ELL):
Given a threshold , the probability of false alarm at

. Also, if at , (8) is satisfied for some , then with
probability , the change will get detected
at7 .

The above gives an upper bound on the detection delay, which
can be stated as the following corollary.

Fact 4 (Bounding Detection Delay): To ensure ,
, the threshold should be chosen as . For

a given , w.p , the detection time will be less than
or equal to the smallest value of (denoted ) that satisfies
(8), and hence the detection delay will be less than or equal to

.
1) Computing the Variances: Computing or

analytically is not possible without having an
analytical expression for or . But we can use
the conditional variance identity ([33, Theorem 4.4.7],

) to upper

bound and . Set , use
and to get

7Since this is a sufficient condition, the change may get detected earlier than
t also.

2) An Example:
Example 1 (computing detection delay using Fact 4): As-

sume scalar state and observation, known initial state and the
following system model:

(9)

where , for the unchanged system. For the changed
system, , and otherwise. Thus,

and are defined as

(10)

where (11)

(12)

The observation model is with
. We let be truncated8 Gaussian observation noise with

variance and truncation parameter, . Then,

(13)

(14)

We use Fact 4 with , (3-sigma rule). Using (14),
we set . This ensures .
Also, , the detection time is smaller
than/equal to the minimum that solves

(15)

Now, consider . Using (14), this simplifies to

with . It is easy to see that this
inequality is satisfied for . First, assume small, i.e.,

. Then, , where .
Let . The inequality is satisfied for , i.e., with
probability at least 0.89, the change will get detected in less
than (or equal to) 10.25 time units, if the threshold is set to
ensure . This computation assumes that the true
is used to compute ELL. Also, it uses the loose upper bounds
on variance and the loose Chebyshev inequality bound. With
100 simulations for and using with to
approximate ELL, (i.e., using a PF with 100 particles) instead
of , it was observed that for a threshold of , 89%
of the times, the detection delay was less than or equal to four
time units.

If small does not hold, then the detection time, , is
the least that solves with . This simplifies
to . It is easy to see that the maximum
delay increases with . For , it is
computed to be 17 time units.

B. gELL: A Generalization of ELL

In many cases, such as Example 1 above, the variance of
may keep increasing with . For such systems, ELL will

8This is required for stability of the PF [34], [35].
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take longer to detect a change of given magnitude, that occurs at
a later time, as shown above in Example 1. For such problems,
we propose a generalization of ELL.

ELL is the Kerridge inaccuracy between and .
is the -step-ahead prediction pdf of the nominal state. If we have
prior information that no change has occurred until a certain
time9 , then we can replace by a -step ahead
prediction distribution , whose average variance (average
taken over ) will be smaller than or equal to that of

(follows from [33, Theorem 4.4.7]). We define generalized
ELL as ELL with regard to . Another way to look at this is
that we move the time origin to , i.e., we assume that tracking
starts at with initial state distribution given by .

The prior information about can either come from expert
knowledge or one can adaptively choose , where
is chosen large enough so that with high probability no change
has started to occur until (if it has not been detected until ).
We define ELL as ELL with regard to . A more robust
and practical solution is to maximize gELL minus its average
value over all possible value of , i.e., define gELL statistic.

Definition 8 [Generalized ELL Statistic (gEstat)]: Is

gEstat gEstat

gEstat (16)

and is the differential

entropy [30] of . Note is not the conditional
differential entropy [30] (we are not averaging over ).

Note that gEstat gEstat Estat. Also, the best (least av-
erage variance10) prediction distribution of the unchanged state
is (since is the last unchanged observation). We
do not know , but we know that gEstat gEstat . So,
for a given threshold, the detection probability of gEstat at will
be greater than or equal to that of Estat or gEstat . Note,
this does not say anything about false-alarm probability, which
may also be larger.11

A second use of gEstat is that it can be used to detect multiple
changes in the system model, by maximizing over

where is end time of the previous change. This
will be studied in future work.

C. Detectability of a Change Using ELL

We can get a result similar to Fact 3 for ELL . The anal-
ysis assumes , i.e., and that
is known exactly. First, note that ELL

. Let ELL

and ELL

9As pointed out by a reviewer, this is a commonly used assumption in sliding-
window-based change detection methods, which assume no change before start
of the window.

10This follows from [33, Theorem 4.4.7].
11False alarm probability of gEstat will not be too much larger than that for

Estat because for the nominal system, there is not much difference in the values
of gEstat and Estat. Rigorous analysis of gEstat will be presented in future
work.

. Similarly, define
ELL and .

Fact 5: With these new definitions of , ,
, and , Fact 3 and Fact 4 hold. Also, for a

given threshold, the detection probability for gEstat,
.

D. When Is gELL Not Required?

In many applications, for example the problem discussed in
Section VII-F (details in [5]) or in Example 3 of Section VII-C,
the nominal state can be modeled to be stationary or asymptot-
ically stationary. In these cases, the variance of is bounded.
If the state is stationary, is constant for all and thus ELL
detects a change equally well for all . If asymptotically sta-
tionary, this holds for large . Thus, defining gELL by approx-
imating (which introduces more approximation error)
does not give much extra benefit for such applications. We show
the ELL Estat and gELL gEstat receiver operating charac-
teristics (ROC) plots for Example 3 in Fig. 5(a) and (b).

The same is true for systems for which the nominal state pdf
varies slowly with . For such systems, the nominal state se-
quence can be modeled as being piecewise stationary (with non-
stationary transitions). A common example is switched linear
dynamic systems, e.g. [36] or piecewise stationary shape activ-
ities [6], [7]. If one training state sequence is available, a para-
metric form for the piecewise constant can be learned.

V. COMPUTING ELL AND gELL

Computing ELL or gELL requires computing the posterior,
at each . The transition from to is defined using

the Bayes recursion as follows [8]:

(17)

If the system and observation models are linear Gaussian, the
posteriors are also Gaussian and can be computed using a
KF [9]. We discuss ELL and gELL computation using a KF
in Section IV-A. For nonlinear or non-Gaussian system or
observation models, linearization methods such as extended
KF [9] or the Gaussian sum filter [37] can be used, but these
are often unstable and the large filtering error may wrongly be
detected as a change. Instead, we use a PF [4], [10], [11], which
converges (under mild assumptions) to the true filter for large
enough number of Monte Carlo samples (or “particles”) [38].
This is discussed in Section IV-B.

A. Computing Using a Kalman Filter (KF)

A linear, Gaussian state-space model can be tracked using
a KF [9] designed for the unchanged system. The posterior is
given by , where ,

. Also, and
can be computed exactly by applying the system model times
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to . Recall dimension . Let the eigenvalue de-
composition of be

Let

gEstat

gEstat gEstat Estat gEstat (18)

For changed observations, the KF computes
and so the above estimates will be Estat and

gEstat . If the state is a scalar, the above simplifies to

gEstat (19)

B. Computing Using a Particle Filter

We first explain the basic PF algorithm, then give the expres-
sions for computing ELL, gELL statistics. Finally, we discuss
how to define for nonlinear systems and how to approximate

(required for computing gELL).
1) Particle Filtering: A PF [4], [38] is a recursive algorithm

that produces at each time a cloud of particles whose
empirical measure, , closely “follows” . The PF starts with
generating Monte Carlo samples (called “particles”) from
to approximate it by , where

denotes the Dirac delta distribution at . Then, for
each time step , the PF approximates the Bayes recursion (given
in (17)), which can be summarized as follows:

Step 1 above is the Importance Sampling Step, which approxi-
mates the prediction step, Step 2 is the Weighting or the Update
Step, and Step 3 is the Resampling Step. We refer the interested
reader to [4], [11], and [38] for details about each step and for
alternate more efficient importance sampling densities.

2) ELL, gELL Estimate Using PF: The estimate of Estat and
gEstat using the PF described above are given by

Estat (20)

gEstat

gEstat gEstat Estat gEstat (21)

where denotes a parametric approximation of .

For changed observations, the PF gives and so the
above estimates will be Estat and gEstat . If the state
is scalar and is approximated by a Gaussian, denoted

, the above simplifies to

gEstat (22)

3) Defining , : If is Gaussian and the system
model is linear Gaussian, then will also be Gaussian
and can be defined in closed form by recursively applying
the system model to for . If the system
model is nonlinear, Gaussian, it can be recursively linearized
(first-order Taylor series about predicted state at ) for
each and applied to the estimate of .
Computing gELL requires approximating the PF estimate of

(with ) by a parametric pdf. This can be done
as follows: Approximate by a Gaussian (or by a mixture
of Gaussians) about the significant mode(s). Significant modes
of can be learned using any mode-finding technique,
e.g., mean shift [39]. If the nominal state dynamics is linear
Gaussian, then each mode can be propagated through it to get
a Gaussian (or mixture of Gaussians) approximation to .
If the state dynamics is nonlinear Gaussian, it can be linearized
for and applied to each mode.

VI. DETECTING SLOW AND SUDDEN CHANGES

We track changed observations using a PF (or a KF) optimal
for the unchanged system and so it approximates (or computes
exactly) instead of . We refer to the error
as the “exact filtering error.” In addition, the PF uses a finite
number of particles, , to approximate , i.e., it computes

. We refer to as the “PF approximation
error.” We use these errors to explain why OL fails for slow
changes while ELL fails for sudden changes. The discussion
below and in the next section is for tracking using a PF.12 We
first precisely define OL and CUSUM-OL (maximum over par-
tial sums of OL).

Definition 9 (OL, Ostat): OL [2] is the negative log likeli-
hood of the current observation conditioned on past observa-
tions under the no change hypothesis, i.e.,

OL (23)

The OL change detection statistic stat is

stat OL OL (24)

12It can be applied to KF by replacing by , but one may be able to
get much stronger results by studing a linear Gaussian model.
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where OL is the conditional dif-
ferential entropy of given past observations. In general, it
needs to be computed empirically by simulating and tracking the
unchanged system many times and computing a Monte Carlo
estimate.

One can use a sum of the OL values over a set of past time
steps for robustness, i.e., define CUSUM-OL.

Definition 10 (CUSUM-OL): Is the maximum over partial
sums of Ostat (a modification of the CUSUM idea [1], [40]):

OL Ostat (25)

For changed observations, we compute OL
. As explained in Section II-C, a slow

change implies small loss of track, and hence OL OL .
Now assuming that , this implies
that OL

OL OL
, where

is the detection threshold and OL . If
is of the order of and , then the

detection probability is as small as the false-alarm probability.
CUSUM-OL is more robust, and it can detect some changes
that OL misses (sum of small errors due to the slow change
may be detectable). On the other hand, slow change (small
loss of track) also means that ELL ELL and Fact 4
(which holds for ELL ) can be used here. Thus, the change
will get detected using ELL as soon as it is large enough to be
detectable by ELL (using Fact 4).

For a sudden change, the loss of track is large, and hence
ELL is significantly smaller (closer to unchanged ELL)
than the true ELL ELL . This leads to significantly larger de-
tection delay (than what it would be if using the true ELL).
In fact, the PF error increases nonlinearly with increasing loss
of track and hence the PF may completely stop following the
change and hence ELL could completely miss such a change.
However, large ELL approximation error also means that at least
one of OL OL is large (from Theorem 1 in the next
section), and hence OL detects immediately.

The above discussion extends directly to ELL assuming
and negligible error in approximating .

Thus, if the type of change (slow or sudden) is not known, one
should use both ELL (or gELL) and OL (or CUSUM-OL) and
declare a change if either exceeds its threshold. We summarize
this in Fig. 1.

Example 2 (Computing and Comparing Estat and Ostat): We
consider a scalar linear Gaussian state-space model, for which
Estat and Ostat can be computed in closed form. Let the un-
changed and changed system model be as in Example 1. Let the
observation model be , with

. Let . For simplicity of notation, assume
that steady state of the KF has been reached. The steady-state
prediction variance is the unique stabilizing solution to the

Fig. 1. Change Detection Algorithm: Note that ELL refers to Estat, OL refers
to Ostat. Th and Th are the detection thresholds for Estat and Ostat,
respectively.

discrete-time algebraic Riccati equation [9]: i.e., , where
solves . The solution

is . The steady-state Kalman gain
is [9]: . The steady state of (updated
variance) is . Also, the steady-state value of
observation prediction error variance (variance of )
is .

Computing Estat Ostat, and the Thresholds:

Estat Estat (26)

As before, we have . Thus, once again, we set the
threshold , which ensures that

Estat (27)

For the linear Gaussian system, OL is computed as OL

OL , and so we have

OL OL (28)

Ostat Ostat (29)

Ostat (30)

Here again, we can set , which ensures that

Ostat (31)

Comparing Detection Delays: We compute Estat and
Ostat at . Applying the KF [9] to changed
observations, , we have

where

(32)

Estat (33)



866 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007

Now, (26) and (27) imply that at any , w.p.

Thus (34)

Thus, at , w.p.

Estat

(35)

The least for which Estat will exceed w.p.
is obtained by finding the smallest that satisfies

(36)
We denote the solution by , i.e., w.p. the
delay will be less than/equal to this value. Also

Ostat

where (37)

Here, (29), (31), and (37) imply that w.p.

(38)

Thus, the least for which Ostat will exceed w.p.
is obtained by finding the smallest that satisfies

(39)

We denote the solution by , i.e., w.p. the
delay will be less than/equal to this value.

We used , and varied and
computed , by solving (36) and
(39) in MATLAB. We used . The plots are shown in
Fig. 2. For (observations less reliable than the system
model), . Thus, is smaller for than for

(observations more reliable than the system model),
where . Thus, maximum detection delay using ELL
is smaller for . Also, using OL, for , the max-
imum delay is while for , the maximum delay is 2 or
less. When the change is tracked, OL is using only a single time
instant value of the change magnitude, and hence is able to de-
tect only large magnitude per unit time changes. ELL, on the
other hand, uses the entire tracked part of the change, and hence

Fig. 2. � and � as a function of r for  = 1=5
and  = 5. For r < 5, the maximum delay using OL is1.

detects slower changes faster than OL. We have compared only
ELL and OL here. Both cOL and gELL will perform better.

ELL-OL Complementarity: Now, the true value of ELL is

Estat

Estat (40)

From (33) and (40), the ELL error Estat
Estat is directly proportional to . Also,
Ostat is directly proportional to . Thus, if

decreases, ELL error decreases (ELL detects
change as soon as detectable) and OL also decreases (OL fails
to detect), and vice versa. This complementarity is proved for
tracking using a PF in the next section. The PF error increases
nonlinearly with loss of track [41], resulting in faster loss of
track.

VII. COMPLEMENTARITY OF ELL AND OL

We prove here that the error in approximating ELL of
changed observations using a PF optimal for the unchanged
system is upper bounded by an increasing function of OL. We
later discuss how this implies complementarity of ELL and OL.
First we define some terms and notation.

A. Notation and Definitions

For any nonnegative measure , defined on state space ,
. For any finite nonnegative measure ,

the normalized measure is . A non-
negative state transition kernel , defined on the state space

, operates on a nonnegative measure , as
[8]. The normalized nonnegative oper-

ator is defined by [8]. Inner

product is defined by .
Definition 11 (Mixing, Mixing Parameter): A nonnegative

kernel defined on is mixing [8] if there exists a constant,
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(called the mixing parameter), and a nonnegative
measure s.t. and for
any Borel subset .

Definition 12 (Unnormalized Filter Kernel): The unnor-
malized filter kernel [8], for a system with state transition
kernel and probability of observation given state ,
is . So is
the unnormalized filter kernel for changed system observa-
tions tracked using unchanged system model . Similarly,

, .
Definition 13 (Posterior State Space ): For an observation

, the posterior state space is defined as
. If observation noise is bounded (e.g., truncated

Gaussian), then is compact.

B. Complementarity Result

Assuming that the unnormalized filter kernels and
are mixing (i.e., their respective mixing parameters ,

) and that the posterior state space is a compact
and proper subset of , the ELL approximation error for ,

ELL ELL , obeys [34], [35]

(41)

where . (the exact filtering

error bound) and (the PF approximation error bound coef-
ficient) are defined as follows [8], [34], [35]:

(42)

(43)

where (44)

(45)

(46)

and (47)

are defined in [8]. Note for , , ,
and . This result is based on Theorems 4.8

and 5.8 of [8]. Also, OL can be expressed as

OL (48)

First, consider . It depends on past values of and .
Using Remark 5.11 of [8] and (48) above, we have the following
bounds on :

(49)

Next, consider . It depends on past values of and .
We use inequality (6) of [8], which states that

(50)

Also note that and that
. Applying (50) with and
and using (48) to replace the denominator of both

terms, we get that

(51)

Applying inequalities (7) and (8) from [41, Appendix] to bound
the two terms inside the square brackets, we get

(52)

where
is a distance between the state transition kernels and [41].
Now, it is easy to see that , where is defined in
(47). We also know that (from (45)). Combining these
two facts, we get that

(53)

Thus, combining (41), (42), and (43) with (49) and (53), we have
the following result.

Theorem 1 (ELL-OL Complementarity): Assuming that
the unnormalized filter kernels , are
mixing (with mixing parameters , ) and that the posterior
state space is a compact and proper subset of for all

, the ELL approximation error for , is upper
bounded by an increasing function of OL , , as
given below:

where

(54)

and , , and are defined in
(47), and is defined in (44).
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Fig. 3. Example 1, Change time t = 5: ROC curves comparing performance of ELL and CUSUM-ELL with CUSUM-ML-OL (cML-OL), OL, CUSUM-OL
(cOL), and CUSUM-TE (cTE). Note that we mean Estat and Ostat wherever we say ELL and OL. (a) Slow (r = 1), t = 5, t = 15; (b) faster (r = 2), t = 5,
t = 15; and (c) sudden (r = 5), t = 5, t = 15.

C. Implication and Extension to CUSUM-OL and gELL

If a change is not detected by OL until time , it means that
all values of OL, OL OL OL are below the de-
tection threshold and, hence, small. By the above theorem, this
implies that the loss of track is small (slow change) and that the
bound on ELL approximation error is also small. This
implies that the estimated ELL ELL behaves like the true
ELL ELL , i.e., the change gets detected when true ELL is
large enough to be “detectable” (using Fact 3).

If estimated, ELL does not detect a change that is “de-
tectable”; it means that ELL approximation error is large. By
the above theorem, this implies that loss of track is large (sudden
change) and that at least one of OL OL OL is
large. Hence, OL will detect it.

Similarly, if CUSUM-OL (max over partial sums of OL)
fails to detect until , it also means that OL OL are small
and so ELL will eventually detect. If ELL fails, at least one
of OL OL are large and so CUSUM-OL will be large.
The above theorem also carries over to gELL versus OL, if we
assume negligible error in approximating and choice of

. The only difference is that, in the definition of in
(44), the summation starts at (instead of ).

Thus, if OL (or CUSUM-OL) fails to detect, ELL (or gELL)
will eventually detect. If ELL (or gELL) fails to detect, OL (or
CUSUM-OL) will detect. If loss of track is large enough to be
detectable by OL, but small enough for ELL error to not be too
large, both will detect.

VIII. SIMULATION AND EXPERIMENTAL RESULTS

We simulated the system defined in Example 1, a nonaddi-
tive change (a change from asymptotically stationary system to
a random walk model), a nonlinear system model problem from
[10] and the bearings-only tracking problem [10] (with addi-
tive change in direction velocity). Performance of ELL, gELL,
and CUSUM-ELL (cELL) (defined exactly like CUSUM-OL in
Definition 10) was compared against that of OL, CUSUM-OL
(cOL), CUSUM-TE (cTE) (defined exactly like CUSUM-OL
in Definition 10) and CUSUM-ML-OL (cML-OL), described
in Section I. CUSUM-ML-OL involves running PFs, with the
maximum-likelihood estimate of the changed parameter evalu-
ated starting at , respectively, for each

PF, where corresponds to the unchanged system. It then
evaluates CUSUM on the observation likelihood ratio as given
in (1) (see [19] for details).

Performance was compared by plotting ROC curves. An
ROC curve for a change detection problem [16] is a plot of
the average detection delay against the average mean time
between false alarms (MTBFA). It is obtained by varying the
detection threshold (in an appropriate range) and evaluating
average detection delay and average time between false alarms
for each value of threshold.13 We simulated the nominal system
100 times and used the maximum and half the mean value of
the detection statistic to define the limits of the range in which
to vary the threshold. The average MTBFA is computed by
simulating the nominal system 100 times, and average delay is
computed by simulating the changed system 100 times.

Finally, we also show time plots of ELL, OL, and TE for
detecting abnormal activity from a video sequence using the
framework of [5].

A. Example 1, Small

We simulated Example 1 discussed in Section III-B-1) with
, . We used system noise variance

, observation noise variance , and truncation pa-
rameter . We tested detection performance for in-
creasing magnitudes of . We show ROC plots for
with (slow), (faster), and (sudden) in
Fig. 3. We simulated the system 100 times for 50 time steps.
Computing cML-OL takes very long ( time to simulate

time steps) and, hence, its ROC was computed with only 40
simulations instead of 100 simulations for computing all other
statistics. We used 100 particles for each PF simulation.
As can be seen from Fig. 3, for the slow and the “faster”

changes, ELL (blue “-o”) has smaller detection delay
(for the same level of MTBFA) than cOL (magenta “- ”), OL
(yellow pentagons), and cTE (green “-x”). Also, cML-OL has
the worst performance for the slow change, and we noticed from
experiments that this was because the change parameter was
overestimated most of the time. For the sudden change ,
all of cML-OL, cOL, OL, and cTE detect changes much faster

13Please note that the threshold is constant for all t.
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Fig. 4. Example 1, Change time t = 100: ROC curves comparing performance of gELL with ELL and with OL, CUSUM-OL (cOL), and CUSUM-TE (cTE).
Note that we mean Estat, gEstat and Ostat wherever we say ELL, gELL, and OL. (a) Slow (r = 1), t = 100, t = 110; (b) faster (r = 2), t = 100, t = 110;
and (c) sudden (r = 5), t = 100, t = 110.

Fig. 5. Change detection ROCs for Example 3 and the nonlinear system example of Section VII-D. (a) Example 3, � = 1, t = 25, t = 40; (b) Example 3,
� = 0:9, t = 25, t = 1; and (c) nonlinear system (slow change, t = 5).

than ELL or cELL. In particular, cML-OL had the best perfor-
mance. Note that cOL performs much better than OL, while
cELL (red “- ”) and ELL have similar performance. This is be-
cause ELL already uses the total magnitude of change until ,
while OL uses only the change at the current time instant (when
the change is tracked). cELL is shown only in Fig. 3(a). Also,
gELL is not shown since its performance is similar to that of
ELL for small .

B. Example 1, Large

We also simulated Example 1 100 times, with and
. ROC plots are shown in Fig. 4 for ,

, and . Here, gELL performs significantly better than
ELL for reasons discussed earlier in Section III-C. Also, gELL
significantly outperforms OL, cOL, and cTE for , ,
while it fails for .

C. Asymptotically Stationary Nominal State, Nonadditive
Change, Large

Example 3: (Asymptotically Stationary Nominal State, Non-
additive Change): Assume scalar state and observation

and additive truncated Gaussian observation noise. Let the
unchanged system dynamics be , ,

with . Thus, ,

with as (asymptotically
stationary).

Consider a change to (change from stable system to
random walk) for . After , again. Thus,
the changed system dynamics is . For

, the change and so
if (system reached

steady state before change). Also,
. Thus, for ,

and decreases slowly to zero after . In this case,
the increase in is due to the increase in average

(due to increase in ). Thus, there is more variability for
different realizations of : in some cases, the change is easily
detected; in others, it will not be detectable even if were fully
observed. This is observed as larger average detection delays
[see Fig. 5(a)]. Also, since the nominal state is asymptotically
stationary, variance of is bounded, and so ELL and gELL
have similar performance (seen in the figure).

The ROC plots of Fig. 5(a) were generated by simulating the
above example 100 times with between to

. We used , observation noise variance,
, and . Note that we track the observa-

tions with a random walk model, i.e., in the PF, for all
. This introduces a small extra error in tracking the unchanged
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system but tracks the changed system much better. ELL (and
gELL) outperform OL and cOL for smaller thresholds (larger
MTBFA).

Now, consider a change from to , but now
let14 . This change is also detected using ELL and gELL
faster than OL or cOL, as can be seen from Fig. 5(b).

D. Nonlinear State Dynamics

We study here an example from [10] (a univariate nonsta-
tionary growth model) with

. The observation model is
. Here, is Gaussian system noise with

, and is a truncated Gaussian observation noise
with . Initial state is taken to be known at zero. We
introduce a change by adding a bias to the state
equation for 11 time instants beginning at . By using an
approximate linearization of the nominal system model,15 we
take to be a Gaussian with mean
and variance . We show in Fig. 5(c), the ROC plots com-
paring the various statistics for detecting a slow change
in the above setup. Here again, ELL and cELL detect the slow
change much faster than OL, cOL, or cTE.

E. Bearings-Only Tracking

Bearings-only tracking is a common technique for many ap-
plications using radar, sonar, or infra red (IR) sensor informa-
tion in the passive mode [14]. Here, one assumes that the target
moves on the – plane according to the standard second order
motion model (a constant velocity model with Gaussian system
noise) [10]. The state vector consists of the – location and

– velocities. The observation is a noisy measurement of
the target bearing , where de-
notes the location and denotes the location. Here, the
system model is linear Gaussian and hence can be defined
in closed form. We attempt to detect a change in the state dy-
namics where the change is due to an additive bias added to only
the direction velocity, for ten time steps beginning at .
We show ROC plots for (slow change) in Fig. 6.

F. Abnormal Activity Detection

We now show application to the problem of abnormal activity
detection from video sequences [5], where we defined a general
HMM to represent the normal activity. We proposed in [5] a sto-
chastic landmark shape [42] dynamical model for modeling the
changing configuration of a group of moving and interacting
objects (here persons) treated as point objects. The shape and
scaled Euclidean motion at constituted the state vector, i.e.,

. Here, denotes the tangent coordinate of
the shape at , , in the tangent space at the mean shape, ,

14If t is finite, the system will return to the stationary value of unchanged
system soon after t , and it may not get detected before t .

15Note that one does not need an accurate characterization of p . Knowing
its mean at each time instant and defining an appropriate distance function from
the mean, to replace [� log p (x)] is sufficient in practice.

Fig. 6. Change detection ROC for slow change detection in the bearings-only
tracking example (Section VII-E), t = 5, t = 15.

is global scale and is global rotation. The noisy measure-
ments of objects’ configuration (after translation normalization)
formed the observation vector . The observation model was16

(55)

where , and is an
orthogonal basis for the tangent space at . The system model
was

We studied the problem of detecting the change in shape
introduced by one person walking away from his normal path.
Abnormality was defined as a change in the shape dynamics
(change in ) with change parameters unknown and the change
being slow or sudden. The dynamics of is linear Gaussian
and asymptotically stationary. So is defined in closed form
and has bounded variance. Thus, here again, gELL is not
needed. The speed at which the person walked away decided
the slowness of the change. We show in Fig. 7(a)–(c), the plots
of ELL, OL, and TE as a function of time for the no-change
case (blue “-o”) and for increasing walk-away velocitie, as
follows: velocity = 1 (red “- ”), velocity (magenta “- ”),
and velocity (cyan “-pentagon”). Abnormality began at

. Velocity = 1 was a slow change that was detected by
ELL (at ) much faster than by OL or TE (at ).
For velocity , OL or TE detected immediately. Also
note that the TE plot is very similar to that of OL since TE is
approximately equal to OL (to first order) for white Gaussian
observation noise, which is what was used here.

IX. CONCLUSION

We have studied the change detection problem in partially ob-
served nonlinear systems (satisfying the HMM property) when
change parameters are unknown. We have proposed a statistic
called ELL that uses the tracked part of the change to detect

16Complex number notation was used to simplify writing equations.
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Fig. 7. Abnormal activity detection: ELL, OL, and TE plots for different rates of change. Abnormality begins at t = 5. ELL detects the slow abnormality much
faster than either OL or TE. Also notice the similarity in the OL and TE plots. (a) ELL; (b) OL; and (c) TE.

it and, hence, detects changes for which loss of track is small.
ELL can be understood as a measure of Kerridge inaccuracy
[31] between the posterior at and the -step ahead prediction
pdf of the unchanged state. We have proposed a generalization
of ELL called gELL, where we replace the -step ahead predic-
tion pdf by a -step-ahead prediction pdf. This improves
sensitivity of ELL for large change times and also makes it
possible to detect multiple changes in an observation sequence.
We have shown, both analytically and experimentally, that ELL
complements existing detection statistics such as OL, which are
designed to detect the loss of track that occurs due to sudden
changes.

Ongoing work includes a study of the assumptions required
for stability of the errors in approximating ELL of changed ob-
servations using a PF designed for the unchanged system and of
practical examples of systems satisfying these assumptions [43].
We have shown in [41] that the ELL error is upper bounded by
an increasing function of change magnitude per unit time with
all increasing derivatives. We are currently studying the impli-
cations of this result on the design of PF.
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