Least Squares and Kalman Filtering

Questions: Email me, namrata@ece.gatech.edu
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Recall: Weighted Least Squarej

e y=Hx+e

e Minimize

J(x) = (y — Hz)"W(y — Hz) £ |ly — Ha||% (1)

Solution:
&= (H"WH) *H" Wy (2)

e GiventhatEle] = 0 andE[eel] =V,
Min. Variance Unbiased Linear Estimatorof choose?/ = V1 in (2)
Min. Variance of a vector: variance in any direction is minimized
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Recall: Proof.

e Givenz = Ly, findL,s.t. E|Ly] = F|LHz| = E|z],SOLH =1
o LetLg=(H'VIH)'H'V~!
e Error variancel[(z — 2)(xz — 2)7?]
El(x—2)(x—2)'] = E[(x — LHx — Le)(x — LHX — Le)']
= E[Lee' L' =LVL*
SayL=L— Lo+ Lo. HereLH =1, LoH =1,s0(L — Ly)H =0
LVLY = LoVL{ +(L - Lo)V(L - Lo)" +2LoV(L — Lo)*
= LoVLT +(L—Lo)V(L - Lo)T + (H'V'H) " 'HT (L — Ly)”
= LoVLI 4+ (L —Lo)V(L - Lo)" > LoVL{

Thus L Is the optimal estimator (Notex for matrices)
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Regularized Least Squarej

e Minimize

J(x) = (x — 20) Iy (z — o) + (y — Hz)" W(y — Hz) (3)

A
r — Zo, y/:y—HfCo

J(CC) :C/TH()_lajl 4+ y/TWy/
Mt 2
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t=x0+ Ty + HTWH) "HTW (y — Hay)

e Advantage: improves condition number&f H, incorporate prior
knowledge about distance from

Least Squares and Kalman Filtering 5



Recursive Least Square'

e \When number of equations much larger than number of variables
— Storage
— Invert big matrices
— Getting data sequentially
e Use arecursive algorithm
At step: — 1, havez;_1: minimizer of
(z — 20)THy (@ — 20) + || Hi—12 — Yioillsy,  Yier = [y1, -yim1)”

Find 2;: minimizer of (z — zo) "Iy ' (z — zo) + || Hiz — V3| |3,

H;_ .
! (h; is a row vector)Y; = [y1,...y;]* (column vector)
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For simplicity of notation, assume&, = 0 andW; = 1.

HY Hi_+hlh
(g + H H:))"'H}'Y,
(Og' + H  Hi—y + h{ he) " (HYie1 + hi ys)

Define
P, = (Ig'+H H)™ ' P, =1
So Pi_l — Pi__ll + h;rhz

Use Matrix Inversion identity:
(A+BCD) ' = A1+ A"'B(C' + DA 'B)"'DA!
__f%—1hg7%f%—1

P=P_
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If W; +# I, this modifies to (replacg; by w.”?y; & h; by w.’>h;):

i = @14+ Piihl (w;mt + hiPi_ihi )" Ny — hidi—1)
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Here we considereg; to be a scalar anhl; to be a row vector.
In generaly; can be a&-dim vector,h; will be a matrix withk rows

RLS with Forgetting factor

Weight older data with smaller weight(z) = 3" _, (y; — h;z)?8(i, )
Exponential forgetting3(i, j) = \*7, A< 1

Moving averagep3(¢,j) = 0if |i — j| > A andj(i, ) = 1 otherwise
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Connection with Kalman Filtering I

The above is also the Kalman filter estimate of the state for the following

system model:

X Li—1

Yi hixi +vi, v; ~N(0,R;), Ry = wi_l

Least Squares and Kalman Filtering 10



Kalman Filter .

RLS was for static data: estimate the signdletter and better as more and
more data comes in, e.g. estimating the mean intensity of an object from
video sequence

RLS with forgetting factor assumes slowly time varying

Kalman filter: if the signal is time varying, and we know (statistically) the
dynamical model followed by the signal: e.g. tracking a moving object

I ~/ N(O, Ho)
v, = Fxiq+vei, v, ~N(0Q;)

The observation model is as before:

= hix; + v, v; ~N(0,R;)
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Goal: get the best (minimum mean square error) estimate wbm Y

Cost: J(2;) = E[(z; — 2;)2|Y;]

Minimizer: conditional meatt; = E|z;|Y;]

This is also the MAP estimate, i.¢; also maximize®(x;|Y;)
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Kalman filtering algorithm I

Ati=0,29 =0, Py = 1.

For any:, assume that we know;, _; = F|x;|Y;_1]. Then

N VAN
Elz;|Yi1] = FiZi_1 = T

A
Var(z;|Yi-1) EP_ F' +Q; = Py,

This is theprediction step
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Filtering or correction step: Now z;|Y; 1 & y;|x;, Y;_1 jointly Gaussian

rilYicr ~ N(Ziji—1, Piji-1)
yilri, Yic1 = yilzs ~ N(hjzi, R;)

Using formula for the conditional distribution ¢f; | Z> whenZ; andZ, are
jointly Gaussian,

E[ilfz\Yz] = 9AU¢|¢—1 T Pz’\i—lh;’r(Ri + hiPi|i—1h;'r)_1(yi — hii‘i|i—1)
Var(z;|Y;) = PBji—1 — Pi|i—1h7;ThiPi|i—1<Ri T hz’Pfi|z’—1hzT)_1
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Summarizing the algorithm I

Fiz;—q

FiP 1 F + Qs

Ty—1 + Pz'|7;—1hz'T(Rz‘ T hiP¢|¢—1h?)_1(yi — hiZipi-1)
P11 — Pz'|z'—1h;'rhipi|z'—1(Ri + hiP7;|z'—1h;TF)_1

ForF; =1, (Q; = 0, get the RLS algorithm.
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Example Applications'

o RLS:

— adaptive noise cancelation, given a noisy sighaassumed to be
given byd,, = u!'w + v, get the best estimate of the weight
Herey, =d,, hp, =u,,, z =w

— channel equalization using a training sequence

— Obiject intensity estimation: = intensity,y; = vector of intensities of
object region in frame, h; = 1,,, (column vector ofn ones),

e Kalman filter: Track a moving object (estimate its location and velocity
at each time)
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Suggested Readinl

e Chapters 2, 3 & 9 of Linear Estimation, by Kailath, Sayed, Hassibi

e Chapters 4 & 5 of An Introduction to Signal Detection and Estimation
by Vincent Poor
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