Least Squares and Kalman Filtering

Questions: Email me, namrata@ece.gatech.edu

Recall: Weighted Least Squares

- $y=H x+e$
- Minimize

$$
\begin{equation*}
J(x)=(y-H x)^{T} W(y-H x) \triangleq\|y-H x\|_{W}^{2} \tag{1}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
\hat{x}=\left(H^{T} W H\right)^{-1} H^{T} W y \tag{2}
\end{equation*}
$$

- Given that $E[e]=0$ and $E\left[e e^{T}\right]=V$, Min. Variance Unbiased Linear Estimator of x : choose $W=V^{-1}$ in (2) Min. Variance of a vector: variance in any direction is minimized

Recall: Proof

- Given $\hat{x}=L y$, find L, s.t. $E[L y]=E[L H x]=E[x]$, so $L H=I$
- Let $L_{0}=\left(H^{T} V^{-1} H\right)^{-1} H^{T} V^{-1}$
- Error variance $E\left[(x-\hat{x})(x-\hat{x})^{T}\right]$

$$
\begin{aligned}
E\left[(x-\hat{x})(x-\hat{x})^{T}\right] & =E\left[(x-L H x-L e)(x-L H X-L e)^{T}\right] \\
& =E\left[L e e^{T} L^{T}\right]=L V L^{T}
\end{aligned}
$$

Say $L=L-L_{0}+L_{0}$. Here $L H=I, L_{0} H=I$, so $\left(L-L_{0}\right) H=0$

$$
\begin{aligned}
L V L^{T} & =L_{0} V L_{0}^{T}+\left(L-L_{0}\right) V\left(L-L_{0}\right)^{T}+2 L_{0} V\left(L-L_{0}\right)^{T} \\
& =L_{0} V L_{0}^{T}+\left(L-L_{0}\right) V\left(L-L_{0}\right)^{T}+\left(H^{T} V^{-1} H\right)^{-1} H^{T}\left(L-L_{0}\right)^{T} \\
& =L_{0} V L_{0}^{T}+\left(L-L_{0}\right) V\left(L-L_{0}\right)^{T} \geq L_{0} V L_{0}^{T}
\end{aligned}
$$

Thus L_{0} is the optimal estimator (Note: \geq for matrices)

Regularized Least Squares

- Minimize

$$
\begin{align*}
& J(x)=\left(x-x_{0}\right)^{T} \Pi_{0}^{-1}\left(x-x_{0}\right)+(y-H x)^{T} W(y-H x) \tag{3}\\
& x^{\prime} \triangleq x-x_{0}, y^{\prime} \triangleq y-H x_{0} \\
& J(x)=x^{\prime T} \Pi_{0}^{-1} x^{\prime}+y^{\prime T} W y^{\prime} \\
&=z M^{-1} z \\
& z \triangleq\binom{0}{y^{\prime}}-\left[\begin{array}{c}
I \\
H
\end{array}\right] x^{\prime} \\
& M \triangleq\left[\begin{array}{cc}
\Pi_{0}^{-1} & 0 \\
0 & W
\end{array}\right]
\end{align*}
$$

- Solution: Use least squares formula with $\tilde{y}=\binom{0}{y^{\prime}}, \tilde{H}=\left[\begin{array}{c}I \\ H\end{array}\right]$, $\tilde{W}=M$

Get:

$$
\hat{x}=x_{0}+\left(\Pi_{0}^{-1}+H^{T} W H\right)^{-1} H^{T} W\left(y-H x_{0}\right)
$$

- Advantage: improves condition number of $H^{T} H$, incorporate prior knowledge about distance from x_{0}

Recursive Least Squares

- When number of equations much larger than number of variables
- Storage
- Invert big matrices
- Getting data sequentially
- Use a recursive algorithm

At step $i-1$, have \hat{x}_{i-1} : minimizer of
$\left(x-x_{0}\right)^{T} \Pi_{0}^{-1}\left(x-x_{0}\right)+\left\|H_{i-1} x-Y_{i-1}\right\|_{W_{i-1}}^{2}, Y_{i-1}=\left[y_{1}, \ldots y_{i-1}\right]^{T}$
Find \hat{x}_{i} : minimizer of $\left(x-x_{0}\right)^{T} \Pi_{0}^{-1}\left(x-x_{0}\right)+\left\|H_{i} x-Y_{i}\right\|_{W_{i}}^{2}$,

$$
H_{i}=\left[\begin{array}{c}
H_{i-1} \\
h_{i}
\end{array}\right]\left(h_{i} \text { is a row vector), } Y_{i}=\left[y_{1}, \ldots y_{i}\right]^{T}\right. \text { (column vector) }
$$

For simplicity of notation, assume $x_{0}=0$ and $W_{i}=I$.

$$
\begin{aligned}
H_{i}^{T} H_{i} & =H_{i-1}^{T} H_{i-1}+h_{i}^{T} h_{i} \\
\hat{x}_{i} & =\left(\Pi_{0}^{-1}+H_{i}^{T} H_{i}\right)^{-1} H_{i}^{T} Y_{i} \\
& =\left(\Pi_{0}^{-1}+H_{i-1}^{T} H_{i-1}+h_{i}^{T} h_{i}\right)^{-1}\left(H_{i-1}^{T} Y_{i-1}+h_{i}^{T} y_{i}\right)
\end{aligned}
$$

Define

$$
\begin{aligned}
P_{i} & =\left(\Pi_{0}^{-1}+H_{i}^{T} H_{i}\right)^{-1}, \quad P_{-1}=\Pi_{0} \\
\text { So } P_{i}^{-1} & =P_{i-1}^{-1}+h_{i}^{T} h_{i}
\end{aligned}
$$

Use Matrix Inversion identity:

$$
\begin{gathered}
(A+B C D)^{-1}=A^{-1}+A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1} \\
P_{i}=P_{i-1}-\frac{P_{i-1} h_{i}^{T} h_{i} P_{i-1}}{1+h_{i} P_{i-1} h_{i}^{T}}
\end{gathered}
$$

$$
\begin{aligned}
\hat{x}_{0}= & 0 \\
\hat{x}_{i}= & P_{i} H_{i}^{T} Y_{i} \\
= & {\left[P_{i-1}-\frac{P_{i-1} h_{i}^{T} h_{i} P_{i-1}}{1+h_{i} P_{i-1} h_{i}^{T}}\right]\left[H_{i-1}^{T} Y_{i-1}+h_{i}^{T} y_{i}\right] } \\
= & P_{i-1} H_{i-1}^{T} Y_{i-1}-\frac{P_{i-1} h_{i}^{T}}{1+h_{i} P_{i-1} h_{i}^{T}} h_{i} P_{i-1} H_{i-1}^{T} Y_{i-1} \\
& +P_{i-1} h_{i}^{T}\left(1-\frac{h_{i} P_{i-1} h_{i}^{T}}{1+h_{i} P_{i-1} h_{i}^{T}}\right) y_{i} \\
= & \hat{x}_{i-1}+\frac{P_{i-1} h_{i}^{T}}{1+h_{i} P_{i-1} h_{i}^{T}}\left(y_{i}-h_{i} \hat{x}_{i-1}\right)
\end{aligned}
$$

If $W_{i} \neq I$, this modifies to (replace y_{i} by $w_{i}^{1 / 2} y_{i} \& h_{i}$ by $w_{i}^{1 / 2} h_{i}$):

$$
\hat{x}_{i}=\hat{x}_{i-1}+P_{i-1} h_{i}^{T}\left(w_{i}^{-1}+h_{i} P_{i-1} h_{i}^{T}\right)^{-1}\left(y_{i}-h_{i} \hat{x}_{i-1}\right)
$$

Here we considered y_{i} to be a scalar and h_{i} to be a row vector. In general: y_{i} can be a k-dim vector, h_{i} will be a matrix with k rows

RLS with Forgetting factor

Weight older data with smaller weight $J(x)=\sum_{j=1}^{i}\left(y_{j}-h_{j} x\right)^{2} \beta(i, j)$
Exponential forgetting: $\beta(i, j)=\lambda^{i-j}, \quad \lambda<1$
Moving average: $\beta(i, j)=0$ if $|i-j|>\Delta$ and $\beta(i, j)=1$ otherwise

Connection with Kalman Filtering

The above is also the Kalman filter estimate of the state for the following system model:

$$
\begin{align*}
x_{i} & =x_{i-1} \\
y_{i} & =h_{i} x_{i}+v_{i}, \quad v_{i} \sim \mathcal{N}\left(0, R_{i}\right), R_{i}=w_{i}^{-1} \tag{4}
\end{align*}
$$

Kalman Filter

RLS was for static data: estimate the signal x better and better as more and more data comes in, e.g. estimating the mean intensity of an object from a video sequence

RLS with forgetting factor assumes slowly time varying x

Kalman filter: if the signal is time varying, and we know (statistically) the dynamical model followed by the signal: e.g. tracking a moving object

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(0, \Pi_{0}\right) \\
x_{i} & =F_{i} x_{i-1}+v_{x, i}, \quad v_{x, i} \sim \mathcal{N}\left(0, Q_{i}\right)
\end{aligned}
$$

The observation model is as before:

$$
y_{i}=h_{i} x_{i}+v_{i}, \quad v_{i} \sim \mathcal{N}\left(0, R_{i}\right)
$$

Goal: get the best (minimum mean square error) estimate of x_{i} from Y_{i}
$\operatorname{Cost}: J\left(\hat{x}_{i}\right)=E\left[\left(x_{i}-\hat{x}_{i}\right)^{2} \mid Y_{i}\right]$

Minimizer: conditional mean $\hat{x}_{i}=E\left[x_{i} \mid Y_{i}\right]$

This is also the MAP estimate, i.e. \hat{x}_{i} also maximizes $p\left(x_{i} \mid Y_{i}\right)$

Kalman filtering algorithm

$$
\text { At } i=0, \hat{x}_{0}=0, P_{0}=\Pi_{0} .
$$

For any i, assume that we know $\hat{x}_{i-1}=E\left[x_{i} \mid Y_{i-1}\right]$. Then

$$
\begin{align*}
E\left[x_{i} \mid Y_{i-1}\right] & =F_{i} \hat{x}_{i-1} \triangleq \hat{x}_{i \mid i-1} \\
\operatorname{Var}\left(x_{i} \mid Y_{i-1}\right) & =F_{i} P_{i-1} F_{i}^{T}+Q_{i} \triangleq P_{i \mid i-1} \tag{5}
\end{align*}
$$

This is the prediction step

Filtering or correction step: Now $x_{i}\left|Y_{i-1} \& y_{i}\right| x_{i}, Y_{i-1}$ jointly Gaussian

$$
\begin{aligned}
x_{i} \mid Y_{i-1} & \sim \mathcal{N}\left(\hat{x}_{i \mid i-1}, P_{i \mid i-1}\right) \\
y_{i}\left|x_{i}, Y_{i-1}=y_{i}\right| x_{i} & \sim \mathcal{N}\left(h_{i} x_{i}, R_{i}\right)
\end{aligned}
$$

Using formula for the conditional distribution of $Z_{1} \mid Z_{2}$ when Z_{1} and Z_{2} are jointly Gaussian,

$$
\begin{aligned}
E\left[x_{i} \mid Y_{i}\right] & =\hat{x}_{i \mid i-1}+P_{i \mid i-1} h_{i}^{T}\left(R_{i}+h_{i} P_{i \mid i-1} h_{i}^{T}\right)^{-1}\left(y_{i}-h_{i} \hat{x}_{i \mid i-1}\right) \\
\operatorname{Var}\left(x_{i} \mid Y_{i}\right) & =P_{i \mid i-1}-P_{i \mid i-1} h_{i}^{T} h_{i} P_{i \mid i-1}\left(R_{i}+h_{i} P_{i \mid i-1} h_{i}^{T}\right)^{-1} \\
\hat{x}_{i}=E\left[x_{i} \mid Y_{i}\right] & \text { and } P_{i}=\operatorname{Var}\left(x_{i} \mid Y_{i}\right)
\end{aligned}
$$

Summarizing the algorithm

$$
\begin{aligned}
\hat{x}_{i \mid i-1} & =F_{i} \hat{x}_{i-1} \\
P_{i \mid i-1} & =F_{i} P_{i-1} F_{i}^{T}+Q_{i} \\
\hat{x}_{i} & =\hat{x}_{i \mid i-1}+P_{i \mid i-1} h_{i}^{T}\left(R_{i}+h_{i} P_{i \mid i-1} h_{i}^{T}\right)^{-1}\left(y_{i}-h_{i} \hat{x}_{i \mid i-1}\right) \\
P_{i} & =P_{i \mid i-1}-P_{i \mid i-1} h_{i}^{T} h_{i} P_{i \mid i-1}\left(R_{i}+h_{i} P_{i \mid i-1} h_{i}^{T}\right)^{-1}
\end{aligned}
$$

For $F_{i}=I, Q_{i}=0$, get the RLS algorithm.

Example Applications

- RLS:
- adaptive noise cancelation, given a noisy signal d_{n} assumed to be given by $d_{n}=\underline{u}_{n}^{T} \underline{w}+v_{n}$, get the best estimate of the weight w. Here $y_{n}=d_{n}, h_{n}=\underline{u}_{n}, x=\underline{w}$
- channel equalization using a training sequence
- Object intensity estimation: $x=$ intensity, $y_{i}=$ vector of intensities of object region in frame $i, h_{i}=1_{m}$ (column vector of m ones),
- Kalman filter: Track a moving object (estimate its location and velocity at each time)

Suggested Reading

- Chapters 2, 3 \& 9 of Linear Estimation, by Kailath, Sayed, Hassibi
- Chapters 4 \& 5 of An Introduction to Signal Detection and Estimation, by Vincent Poor

